Lecture 4: Tensor Product Ansatz - part II

ICM Graduate Lectures

Dr Gunnar Möller Cavendish Laboratory, University of Cambridge

slide credits: Philippe Corboz (ETH / Amsterdam)

January 2014

Outline, part II

Optimization of tensor networks

- Variational optimization
- Imaginary-time evolution
- Contraction of tensor networks

✦ Basics

- Approximate contraction of PEPS/iPEPS
- Outlook & Summary

3. Take the next tensor (leave others fixed)

4. Repeat 2-3 iteratively until convergence is reached

Variational Optimization for MPSs

minimize Energy E, enforcing normalization with a Lagrange multiplier λ $\min[\langle \Psi | \hat{\mathcal{H}} | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle]$

minimize with respect to tensor T:

$$\frac{\partial}{\partial T^{lr^*}_{\sigma}}(~\%~) = 0$$

Variational Optimization for MPS's

read as matrix equation in linearized composite index $\ \mu = (a \, b \, \sigma)$

$$F_{\mu'\mu}T_{\mu} = \lambda G_{\mu'\mu}T_{\mu}$$
 where $(G_{\mu'\mu} \propto \delta_{\sigma\sigma'})$

F, G: remainders of tensor networks with both T and T^* cut out

 \blacktriangleright solve for smallest eigenvalue λ_0 and -vector T = new optimized tensor

Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

OI

• At each step: apply a two-site operator to a bond and truncate bond back to D

Time Evolving Block Decimation (TEBD) algorithm

Note: Here I simplified. MPS needs to be in canonical form

Optimization via imaginary time evolution

• Get the ground state via imaginary time evolution (Trotter-Suzuki)

$$\exp(-\beta \hat{H}) = \exp(-\beta \sum_{b} \hat{H}_{b}) = \left(\exp(-\tau \sum_{b} \hat{H}_{b})\right)^{n} \approx \left(\prod_{b} \exp(-\tau \hat{H}_{b})\right)^{n}$$

01.

- **2D: same idea:** apply a two-site operator to a bond and truncate bond back to *D* at each step
- However, SVD update is not optimal (because of loops in PEPS)!

simple update (SVD)

- ★ "local" update like in TEBD
- Cheap, but not optimal

 (e.g. overestimates magnetization
 in S=1/2 Heisenberg model)

full update

 $\exp(-\tau H_b)$

- ★ Take the full wave function into account for truncation
- ★ optimal, but computationally more expensive

Cluster update Wang, Verstraete, arXiv:1110.4362 (2011)

Contracting tensor networks

Contracting a tensor network

contract tensors pairwise

the order of contraction matters for the computational cost!!!

Contracting a tensor network

* Reshape tensors into matrices and multiply them with optimized routines (BLAS)

* Computational cost: multiply the dimensions of all legs (connected legs only once)

Contracting an MPS

Relation to Transfer Matrix

each rung acts as a transfer matrix T !

Correlation functions for two sites

MERA: Properties

MERA: Contraction

MERA: Contraction

Efficient computation of expectation values of observables!

Problem: how do we contract this??

no matter how we contract, we will get intermediate tensors with O(L) legs

number of coefficients D^L Exponentially increasing with L!

NOT EFFICIENT

★ Exact contraction of an PEPS is exponentially hard!

 \bigstar Convergence in χ needs to be carefully checked

 Accuracy of the approximate contraction is controlled by "boundary dimension" χ

 \bigstar Convergence in χ needs to be carefully checked

★ Exact contraction of an PEPS is exponentially hard!

 \bigstar Convergence in χ needs to be carefully checked

Contracting the PEPS using an MPS

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

this is an MPS

this is an MPO (matrix product operator)

Contracting the PEPS using an MPS

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

this is an MPS with bond dimension $D^2 \times D^2$

truncate the bonds to χ

there are different techniques for the efficient MPO-MPS multiplication (SVD, variational optimization, zip-up algorithm...)

Schollwöck, Annals of Physics 326, 96 (2011) Stoudenmire, White, New J. of Phys. 12, 055026 (2010).

Contracting the PEPS using an MPS

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

proceed...

 \star We can do this from several directions

 \star Similar procedure when computing an expectation value

Compute expectation values

Figure taken from Corboz, Orús, Bauer, Vidal, PRB 81, 165104 (2010)

Contracting the iPEPS using the corner transfer matrix

iPEPS

infinite projected entangled-pair state

open boundaries, but "infinitely" far away

Contracting the iPEPS using the corner transfer matrix

Nishino, Okunishi, JPSJ65 (1996) Orus, Vidal, PRB 80 (2009)

figure taken from Orus, Vidal, PRB 80 (2009)

- ★ Let the system grow in all directions.
- ★ Repeat until convergence is reached
- ★ The boundary tensors form the **environment**
- Can be generalized to arbitrary unit cell sizes Corboz, et al., PRB 84 (2011)

Contracting the PEPS/iPEPS using TRG Gu, Levin, Wen, B78, (2008) Levin, Nave, PRL99 (2007) Xie et al. PRL 103, (2009) **T**ensor **R**enormalization **G**roup dimension χ SVD sublattice A: SVD sublattice B:

- - ★ Contract PEPS with periodic boundary conditions
 - ★ Finite or infinite systems
 - ★ Related schemes: SRG, HOTRG, HOSRG, ...

★ Exact contraction of an PEPS is exponentially hard!

 \bigstar Convergence in χ needs to be carefully checked

Expressing the Hamiltonian as a MPO

A Benchmark: Heisenberg model

 Energy:
 QMC (extrap.):
 -0.669437(5)J
 A. Sandvik, PRB56, 11678 (1997)

 iPEPS (D=10):
 -0.66939J
 rel. error < 10⁻⁴

QMC study: Sandvik & Evertz, PRB82, 024407 (2010): system sizes up to 256x256

Distinguish between ordered / disordered phase?

Wenzel, Janke, PRB 79 (2009)

Distinguish between ordered / disordered phase?

★ Extrapolations in D are important to distinguish between ordered phase and a disordered one!

★ A better understanding how to accurately extrapolate in D would be very useful

Fermionic tensor networks

Breakthrough in 2009: Fermions with 2D tensor networks

How to take fermionic statistics into account?

fermionic operators anticommute

Different formulations:

- P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, Phys. Rev. A 81, 010303(R) (2010)
- C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, Phys. Rev. A 81, 052338 (2010)
- C. Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303(R) (2010)
- P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009)
- T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009)
- Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, arXiv:0907.5520
- P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010)
- I. Pizorn, F. Verstraete, Phys. Rev. B 81, 245110 (2010)
- Z.-C. Gu, F. Verstraete, X.-G. Wen. arXiv:1004.2563

The swap tensor

Replace crossing by swap tensor

$$\longrightarrow \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Use **parity** preserving tensors: $T_{i_1i_2...i_M} = 0$ if $P(i_1)P(i_2)...P(i_M) \neq 1$

Example

Bosonic tensor network

Fermionic tensor network

Simple rules!

Same computational cost!

Outlook

Improvements of tensor networks methods

Conclusion: Tensor network algorithms

- Variational ansatz where the accuracy can be systematically controlled
- Simulate bosonic, (frustrated) spin and fermionic systems

- ✓ ID: State-of-the-art (MPS, DMRG)
- ✓ **2D**:A lot of progress in recent years!
 - **★** iPEPS can outperform state-of-the-art variational methods!
 - \star cMPS (not discussed) evolving as state of the art for fractional QHE

Tensor networks yield promising routes to solve challenging open problems in 2D