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• Motivation: physical realizations of lattices 
with high flux density

• Relationship between different realizations 
of topological band structures:

• Particle entanglement spectrum as a probe 
for quantum Hall states in lattices

Outline

‣ Adiabatic continuation from Fractional Chern 
Insulators to Fractional Quantum Hall states 
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Magnetic flux through periodic potentials

• magnetic field in presence of crystal 
potentials in solid state systems

• cold atoms in `rotating’ optical lattices: �0 ∼ a n � 1

�0 � a n � 1

• Simulating Aharonov-Bohm flux by complex
hopping in tight binding optical lattices �0 � a n � 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

�0 � a n � 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) �0 ∼ L1/2

• Chern bands: Berry flux in reciprocal space 

�0 � a n � 1

C
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C
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Cold Atoms I: Optical Lattices with Complex Hopping

B

optical lattice + Raman lasers

H = −J
�

�α,β�

�
b̂†αb̂βe

iAαβ + h.c.
�
+

1

2
U
�

α

n̂α(n̂α − 1)− µ
�

α

n̂α

⇒ possibility to simulate Aharonov-
Bohm effect of magnetic field 
by  imprinting phases for 
hopping via Raman transitions

�

�
Aαβ = 2πnV

⇒ Bose-Hubbard with a magnetic field (! Lorentz force)

particle density                   vortex/flux density                       interaction nV U/JnV

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

experimental realisation:
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Cold Atoms I: Optical Lattices with Complex Hopping

‘anti-magic’ optical 
lattice for Yb

Gerbier & Dalibard, NJP 2010

Staggered Flux ‘Rectified’ Flux

Realized by group of I. Bloch:
Phys. Rev. Lett. 107, 255301 (2011). Experimental realization outstanding 

Can tune flux density!
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Cold Atoms II: Berry phases of optically dressed states

for N=2, consider Bloch sphere of unit vector

spacially varying optical coupling of N internal states (consider N=2)

H =
p2

2m
1̂ +

�
2

�
−∆ ΩR(r)

ΩR(r) ∆

�

Yblocal spectrum En(r) and dressed states: |Ψr�

adiabatic motion of atoms in space in the optical potential generates a Berry phase

nφ =
1

8π
�ijk�µνni∂µnj∂νnk

�n = �Ψr|�̂σ|Ψr�

Berry flux generated:

�

A
nφ d

2r =
Ω

4π

Total flux quanta 
= # times Bloch 
vector wraps sphere 

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011
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Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasers
yielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector               (b) Local density of Berry Flux       �n nφ

Nφ = 1

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)
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Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE 
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H =− t1
�

�rr��

�
â†râr + h.c.

�
− t2

�

��rr���

�
â†râre

iφrr� + h.c.
�

− t3
�

���rr����

�
â†râr + h.c.

�
+

U

2

�

r

n̂r(n̂r − 1)

Characteristic example: The Haldane Model

• tight binding model in real space on hexagonal lattice
• with fine-tuned hopping parameters: obtain flat lower band, e.g. values [D. Sheng, PRL (2011)]

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π

F.D.M. Haldane, PRL (1988), Neupert et al. PRL (2011)
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hαβ(k)u
n
β(k) = �n(k)u

n
α(k)

A(n,k) = −i
�

α

un∗
α (k)∇ku

n
α(k)

Bloch states

H =
�

k â
†
k,αhαβ(k)âk,β

• diagonalize Hamiltonian by Fourier transform

Topological (flat) bands in two-dimensions

• study Berry curvature in nth band:

Berry connection:

B(k) = ∇k ∧A(k)Berry curvature:

C = 1
2π

�
BZ d2kB(k)Chern number:
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Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBs

= tight binding model in reciprocal space with topological flat bands

real space reciprocal space

real space reciprocal space

N. R. Cooper, R. Moessner, arxiv:1208.4579

Flux 
Lattice

absorption of photons = momentum + state transfers
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Overview of underlying band structures

CBs

Lattices with 
homogeneous flux
(Hofstadter bands)

Flux 
Lattices

insertion of flux quanta 
through plaquettes [see Wu et al]

Magnetic Fields 
& Landau Levels

(vanishing overall flux)

+ Interactions
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Interaction driven phases in these bands

CBs

Lattices with
homogeneous flux

Flux Lattices
insertion of flux quanta 

through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C>1
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Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands 
   of all Chern numbers [Avron et al.]

E

nφ

nφ

n

• Interactions stabilize fractional 
quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with 
additional pseudospin index
R. Palmer & D. Jaksch PRL 2006
L. Hormozi et al, PRL 2012

1

2

-1

-2
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Interrelations between different interacting problems

CBs

Lattices with
homogeneous flux

Flux Lattices

insertion of flux quanta 
through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

adiabatic continuation
(Wannier or Bloch basis)

addition of oscillatory
magnetic field density

leaves LLL intact:
should be adiabatic

adiabatically turning on
lattice confinement

X.-L. Qi (2011), Wu et al (2012), 
Scaffidi & Möller (2012),
Liu & Bergholtz (2012)

C>1
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Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction
• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier
   states (FCI), we can establish an exact mapping between their many-particle wavefunctions

|W (x, ky)� =
�

kx

f
(x,ky)
kx

|kx, ky�

1:1
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Qi’s Mapping

• Can introduce a canonical order of states with monotonously increasing position:

Ky = ky + 2πx = 2πj/Ly

j = ny + Lyx = 0, 1, ..., Nφ − 1

ky = 2πny/Ly

• Increase in position for ky " ky + 2! = Chern-number C, as

∂

∂ky
�X̂cg�|x = − 1

2π

∂θ(ky)

∂ky
=

� 2π

0
B(px, ky)dpx

Y-L Wu, A. Bernevig, N. Regnault, 
PRB (2012)

More on Wannier states:

Z. Liu & E. Bergholtz arxiv 2012
(see yesterday’s talk)
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Case study: Bosons with contact interactions
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FCIFQHE

• Magnitude of two-body matrix elements for delta interactions in the Haldane model

• System shown: two-body interactions for N = 6, Lx × Ly = 3× 4

Ktot
y = 0 Ktot

y = 4 Ktot
y = 8 Ktot
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to
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• Matrix elements differ in magnitude, but overall similarities are present
• Different block-structure due to non-conservation of linearized momentum Ky 

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

• Lack of translational invariance of matrix elements in momentum space
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|�Ψ(x)|Φ�|2 |PkGS |Ψ�|2
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1

Evaluating the accuracy of the Wannier states: Overlaps

• different Hamiltonians: FCI and FQHE ground states must differ
• can write both states in single Hilbert space with the same overall structure
 (indexed by Ky, enlarging the space for the torus)
• Can study adiabatic deformations between the two types of systems:

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

Overlap Weight in GS sector

FCI FCIFQHEFQHE

H(x) =
∆FCI

∆FQHE

(1− x)HFQHE + xHFCI

Bosons at 
ν = 1/2
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Adiabatic continuation in the Wannier basis
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• We confirm the Laughlin state is adiabatically connected to the groundstate of the 
half-filled topological flat band of the Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

• Clean extrapolation to the thermodynamic limit - (unlike overlaps)

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)
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Entanglement spectra and quasiparticle excitations

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

credit: Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B 
=> Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block 

Dominant (universal) eigenvalues of PES 
yield count of excited states - and their 
wavefunctions - from groundstate 
wavefunction only!

Laughlin, N=8, NA=4
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FCI: Adiabatic continuation of the entanglement spectrum

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

Dictionary:

Total #eigenvalues below entanglement gap 
= 804 + 800 + 800 + 800 + 800

Total #eigenvalues below entanglement gap 
= 4x(201 + 200 + 200 + 200 + 200)

Same number of 
states for all x

‘Infinite’ 
entanglement
gap for pure
Laughlin state

FQHE FCI

N = 10

NA = 5

Ktot
y

x

ktotT
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Conclusions on Mapping FCI wavefunctions

• Wavefunctions of FCI’s in the Wannier basis are similar but not 
identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at 
ν=1/2 using Qi’s mapping between Wannier basis and FQH eigenstates 

• FCI wavefunctions not very accurate for the Haldane model
  (higher overlaps in models with N>2 sublattices)

higher overlaps also by explicit gauge fixing, see:  
Wu, Regnault, Bernevig, PRB (2012)

T. Scaffidi, GM, arxiv:1207.3539 (PRL, in press)
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Idea: learn about PES using lattice FQHE states

B

H = −J
�

�α,β�

�
b̂†αb̂βe

iAαβ + h.c.
�
+

1

2
U
�

α

n̂α(n̂α − 1)− µ
�

α

n̂α

�

�
Aαβ = 2πnV

• in lattices pierced by homogeneous magnetic
flux, FQHE is well understood:
• continuum limit reduces to usual FQHE
• trial wavefunctions for continuum quantum 
  Hall states accurately describe lattice, also.

0 0.2 0.4 0.6 0.8 1
nV

-4

-2

0

2

4

E
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Symmetries of lattices in magnetic flux

• finite simulation cell: Lx x Ly, periodic boundary conditions

• finite simulation cell: Lx x Ly

• translation group reduced to magnetic translations
! can trivially translate magnetic unit cell enclosing an integer number of flux quanta

Lx

Ly

Nφ = 1

• choose to implement momenta only along ky (maybe reduced symmetry                     !)

0 0.2 0.4 0.6 0.8 1
nV

-4

-2

0

2

4

E

kmax
y < Ly
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Target phase 1: Laughlin state for bosons at !=1/2

• reference: Laughlin state in the continuum (torus geometry)

F.D.M. Haldane, PRB (1985)

(10,9,9,10,9,9,10,9,9,10,9,9)

ν = 1/2, Nφ = 12
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ξ
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N=6, NA=3, N
Φ

=12, Laughlin

(a)
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ξ
Ky

T,A

N=6, NA=3, N
Φ

=12, V0+ 0.3 V2

(b)

model wavefunction: V̂ =
�

δ(�ri − �rj) ≡ V̂0 finite range interaction: V̂ = V̂0 + 0.3V̂2

infinite entanglement gap finite entanglement gap

• count of entanglement eigenstates = count of QH wavefct. with Nφ = ν−1NA + ν−1NB� �� �
∆Nφ

count per sector (N=6, NA=3):

Ψ(z1, . . . , zN ) =
�

i<j

ϑ

�
zi − zj
Ly

����i
Lx

Ly

�2

Fc.m.(Z)e−
1
2

�
i x

2
i /l

2
B

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).
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Target phase 1: Laughlin state (bosons)

• contact interactions U on lattice, filling factor                                    ,  vary lattice geometryν = N/Nφ = 1/2
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(c)

does not match 
(discuss later)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

(10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9) (28, 28, 28, 28)

(28, 28, 28, 28)

NL(ky) =
�

KT
y

δky,(KT
y modKmax

y ) N T (KT
y )

• PES satisfy QH counting with ‘folding rule’
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Robustness of topological order
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• energy gap vs entanglement gap
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• decrease of entanglement gap at large U from admixture of states in higher bands!

nφ = 1/6

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).
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Stability of the Laughlin state
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entanglement gap

• previous study of Chern number C=1/2+1/2 of groundstate manifold as indicator of Laughlin 
state: difficult to calculate M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin, PRA (2007)

• entanglement gap: same answer, but quantitative + much easier to calculate

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

• N=5 fixed
• vary geometry
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PES as a signature of competing states
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• need to understand ‘outlier’, still at

study variation of PES under number 
NA of particles in particle partition

d=2 low lying states

second gap encompassing d’=Nϕ states: LLL basis!

ν = N/Nφ = 1/2

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).
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Signatures of Condensed States in the PES
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• invariance of low-lying level degeneracy in PES under variation of NA: d=2

ΨN =

�
�

i

φiâ
†
i

�N

|vac.�

• this is a signature of a condensed state, e.g. pure condensate:

! same wavefunction for all values of N = condensate wavefunction φi

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

• (near) degenerate low-lying entanglement eigenvalues for condensates

! special case of NA =1 : reduced density matrix = single particle DM ρ1 = �ĉ†i ĉj�

! signature of discrete symmetry breaking! See GM & N. R. Cooper, PRA (2010)

• here: translational symmetry breaking = density wave state
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Target phase 2: Moore-Read state for bosons at !=1

 0

 0.02

 0.04

 0  5

(E
 -

 E
0
)/

 U

Kx + Nx Ky

N = 6, Lx = 6, Ly = 6, k =2

 0

 0.01

 0.02

 0  5

(E
 -

 E
0
)/

 U

Kx + Nx Ky

N = 6, Lx = 6, Ly = 6, k =1, U/t = 0.1

• easy to stabilize with 3-body interactions • 2-body contact interactions:

×2
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• robust entanglement gap
• match count of MR: (7,6,6,7,6,6) • count of MR qh’s reproduced

(7,6,6,7,6,6)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).
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Extent of Moore-Read phase for 2-body interactions
A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).
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Entanglement gap

• study behaviour when two-body interaction strength U is tuned
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• entanglement gap provides proxy for overlap

• robust entanglement gap gives indication that Moore-
Read phase can be stabilized by two-body interactions

• finite size effects of the energy spectrum are strong: 
Energy spectrum not nearly as clear as PES

• collapse of energy gap at Uc ~ 1.25t ! LL mixing
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Conclusions

• Flux lattices of cold atomic gases provide multiple opportunities to 
realise flat Chern bands in the near future

• Adiabatic continuation yields a robust tool for identifying correlated 
phases in Chern bands by association with FQHE physics

• PES is a reliable tool for identifying correlated phases:

T. Scaffidi, GM, arxiv:1207.3539 (PRL, in press)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

‣ topological states: universal quasihole count
‣ entanglement gap clear signature of the stability of topological properties
‣ condensed phases: conservation of low-lying structure for different cuts
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