Adiabatic connection of Fractional Chern Insulators to Fractional Quantum Hall States

Gunnar Möller Cavendish Laboratory, University of Cambridge

ICM

GM & N. R. Cooper, Phys. Rev. Lett. **103**, 105303 (2009) Th. Scaffidi & GM, Phys. Rev. Lett. **109**, 246805 (2012) A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B **86**, 165314 (2012)

November 21, 2012, University of Leeds

The Leverhulme Trust

Cavendish Laboratory

 Motivation: physical realizations of lattices with high flux density

- Relationship between different realizations of topological band structures:
 - Adiabatic continuation from Fractional Chern Insulators to Fractional Quantum Hall states

• Particle entanglement spectrum as a probe for quantum Hall states in lattices

• magnetic field in presence of crystal potentials in solid state systems

Cold Atoms I: Optical Lattices with Complex Hopping

experimental realisation: optical lattice + Raman lasers

⇒ possibility to simulate Aharonov-Bohm effect of magnetic field by imprinting phases for hopping via Raman transitions

 \Rightarrow Bose-Hubbard with a magnetic field (\rightarrow Lorentz force)

$$\mathcal{H} = -J \sum_{\langle lpha, eta
angle} \left[\hat{b}^{\dagger}_{lpha} \hat{b}_{eta} e^{iA_{lphaeta}} + h.c.
ight] + rac{1}{2}U \sum_{lpha} \hat{n}_{lpha} (\hat{n}_{lpha} - 1) - \mu \sum_{lpha} \hat{n}_{lpha}$$
particle density n vortex/flux density $n_{
m V}$ interaction U/J

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

Cold Atoms I: Optical Lattices with Complex Hopping

Gerbier & Dalibard, NJP 2010

Cold Atoms II: Berry phases of optically dressed states

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

spacially varying optical coupling of N internal states (consider N=2)

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m}\hat{1} + \frac{\hbar}{2} \begin{pmatrix} -\Delta & \Omega_R(\mathbf{r}) \\ \Omega_R(\mathbf{r}) & \Delta \end{pmatrix}$$

local spectrum $E_n(r)$ and dressed states: $|\Psi_{\mathbf{r}}
angle$

Cold Atoms II: Berry phases of optically dressed states

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

spacially varying optical coupling of N internal states (consider N=2)

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m}\hat{1} + \frac{\hbar}{2} \begin{pmatrix} -\Delta & \Omega_R(\mathbf{r}) \\ \Omega_R(\mathbf{r}) & \Delta \end{pmatrix}$$

local spectrum $E_n(r)$ and dressed states: $|\Psi_{f r}
angle$

adiabatic motion of atoms in space in the optical potential generates a Berry phase

Λ

ω

 ${}^{1}S_{c}$

Cold Atoms II: Berry phases of optically dressed states

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Λ

ω

 Ω_{R}

 ${}^{1}S_{0}$

spacially varying optical coupling of N internal states (consider N=2)

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m}\hat{1} + \frac{\hbar}{2} \begin{pmatrix} -\Delta & \Omega_R(\mathbf{r}) \\ \Omega_R(\mathbf{r}) & \Delta \end{pmatrix}$$

local spectrum $E_n(r)$ and dressed states: $|\Psi_{f r}
angle$

adiabatic motion of atoms *in space* in the optical potential generates a Berry phase for N=2, consider Bloch sphere of unit vector $\vec{n} = \langle \Psi_{\mathbf{r}} | \hat{\vec{\sigma}} | \Psi_{\mathbf{r}} \rangle$ Berry flux generated: $n_{\phi} = \frac{1}{8\pi} \epsilon_{ijk} \epsilon_{\mu\nu} n_i \partial_{\mu} n_j \partial_{\nu} n_k$ Solid Angle Ω Region *A* Free Provide the two provided to the two pr

Cold Atoms II: Optical Flux Lattices

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

periodic optical Raman potentials are conveniently located by standing wave Lasers yielding an optical flux lattice of high flux density, here $n_{\phi}=1/2a^2$ (fixed)

Cold Atoms II: Optical Flux Lattices

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

periodic optical Raman potentials are conveniently located by standing wave Lasers yielding an optical flux lattice of high flux density, here $n_{\phi}=1/2a^2$ (fixed)

PRL 106, 236804 (2011)	Selected for a Viewp PHYSICAL REVIE	oint in <i>Physics</i> W LETTERS	week ending 10 JUNE 2011	
Frac	tional Quantum Hall States	s at Zero Magnetic Field		
Titus N ¹ Condensed M. ² Department of Phy ³ Physi	eupert, ¹ Luiz Santos, ² Claudio Ch atter Theory Group, Paul Scherrer In: isics, Harvard University, 17 Oxford cs Department, Boston University, Be (Received 22 December 2010: p	amon, ³ and Christopher Mudry ¹ stitute, CH-5232 Villigen PSI, Switzerlan Street, Cambridge, Massachusetts 02138, oston, Massachusetts 02215, USA published 6 June 2011).	nd 3, USA	
PRL 1	06, 236803 (2011) PH	Selected for a Viewpoint in <i>Physics</i> YSICAL REVIEW LETTER	KS 10 JUNE	ding 2011
	Nearly	Flatbands with Nontrivial Top	ology	
	Kai Sun, ¹ Zhe ¹ Condensed Matter Theory Center a ² Kavli Institute for Theoretical H ³ Department of Physics, C (Pacaived 28 December 2010)	engcheng Gu, ² Hosho Katsura, ³ and S. Ind Joint Quantum Institute, Department of College Park, Maryland 20742, USA Physics, University of California, Santa Ba Gakushuin University, Mejiro, Toshima-ku, revised manuscript received 19 March 20	Das Sarma ¹ f Physics, University of Maryland, Irbara, California 93106, USA Tokyo 171-8588, Japan 114, published (Japan 2011)	
	PRL 106, 236802 (2011)	Selected for a Viewpoi PHYSICAL REVIEW	int in <i>Physics</i> V LETTERS	week ending 10 JUNE 201
	н	igh-Temperature Fractional	Quantum Hall States	
	¹ Department of Ph ² Institute for Ad	Evelyn Tang, ¹ Jia-Wei Mei, ^{1,2} an sysics, Massachusetts Institute of Techno dvanced Study, Tsinghua University, Ber (Received 14 December 2010: pul	nd Xiao-Gang Wen ¹ ology, Cambridge, Massachusetts 02 ijing, 100084, People's Republic of blished 6 June 2011)	139, USA China

PRL 106, 236804 (2011)	Selected for a Viewpo PHYSICAL REVIEW	bint in <i>Physics</i> W LETTERS	week ending 10 JUNE 2011		
F	ractional Quantum Hall States	at Zero Magnetic Field			
Titt ¹ Condense ² Department o ³ j	as Neupert, ¹ Luiz Santos, ² Claudio Cha d Matter Theory Group, Paul Scherrer Ins. Physics, Harvard University, 17 Oxford S Physics Department, Boston University, Bo. (Received 22 December 2010: pu	amon, ³ and Christopher Mudry ¹ titute, CH-5232 Villigen PSI, Switzerland Street, Cambridge, Massachusetts 02138, U ston, Massachusetts 02215, USA ablished 6 June 2011).	USA		
P	RL 106, 236803 (2011) PH Y	Selected for a Viewpoint in <i>Physics</i> SICAL REVIEW LETTERS	week ending 10 JUNE 201	1	
	Nearly 1 Kai Sun, ¹ Zhen ¹ Condensed Matter Theory Center an ² Kavli Institute for Theoretical Pr ³ Department of Physics, G (Provided 28 December 2010)	Flatbands with Nontrivial Topol ngcheng Gu, ² Hosho Katsura, ³ and S. Da and Joint Quantum Institute, Department of P College Park, Maryland 20742, USA hysics, University of California, Santa Barb cakushuin University, Mejiro, Toshima-ku, To revised manuscript received 19 March 2014	ogy as Sarma ¹ Physics, University of Maryland, ara, California 93106, USA okyo 171-8588, Japan Spublished Coloma 2011)		
t_2, λ_2	PRL 106, 236802 (2011)	Selected for a Viewpoint PHYSICAL REVIEW	t in <i>Physics</i> LETTERS	week ending 10 JUNE 2011	
	High-Temperature Fractional Quantum Hall States				
	¹ Department of Phy ² Institute for Ad	Evelyn Tang, ¹ Jia-Wei Mei, ^{1,2} and ysics, Massachusetts Institute of Technolo lvanced Study, Tsinghua University, Beijin (Received 14 December 2010; publi	l Xiao-Gang Wen ¹ gy, Cambridge, Massachusetts 02139 ng, 100084, People's Republic of Chi. ished 6 June 2011)	USA na	

PRL 106, 236804 (2	Dill) PHYSICAL REVI	vpoint in <i>Physics</i> EW LETTERS	week ending 10 JUNE 2011		
	Fractional Quantum Hall Stat	tes at Zero Magnetic Field		è.	
¹ Ca ² Depart	Titus Neupert, ¹ Luiz Santos, ² Claudio (ndensed Matter Theory Group, Paul Scherrer ment of Physics, Harvard University, 17 Oxfor ³ Physics Department, Boston University, (Received 22 December 2010	Chamon, ³ and Christopher Mudry Institute, CH-5232 Villigen PSI, Swi rd Street, Cambridge, Massachusetts Boston, Massachusetts 02215, USA : published 6 June 2011)	i ¹ itzerland 02138, USA		
	PRL 106, 236803 (2011) P	Selected for a Viewpoint in Pl HYSICAL REVIEW LET	hysics F T E R S	week ending 10 JUNE 2011	
	Nearly Flatbands with Nontrivial Topology Kai Sun, ¹ Zhengcheng Gu, ² Hosho Katsura, ³ and S. Das Sarma ¹ ¹ Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA ² Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA ³ Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan (Becaused 28 December 2010: revised manuscript received 19 March 2011: publiched C June 2011)				
t ₂ ,λ ₂	PRL 106, 236802 (2011)	PHYSICAL REV	iewpoint in <i>Physics</i> VIEW LETTERS		week ending 10 JUNE 2011
	¹ Department of	High-Temperature Fracti Evelyn Tang, ¹ Jia-Wei Me Physics, Massachusetts Institute of	onal Quantum Hall Sta ei, ^{1,2} and Xiao-Gang Wen ¹ Technology, Cambridge, Massa	tes chusetts 02139, USA	
a, V	² Institute for	Advanced Study, Tsinghua Univers (Received 14 December 20	ity, Beijing, 100084, People's R 110; published 6 June 2011)	epublic of China	

PRL 106, 236804 (2	Image: Selected for a Vie 011) PHYSICAL REV	wpoint in <i>Physics</i> IEW LETTERS	week ending 10 JUNE 2011	(a) A	b)
	Fractional Quantum Hall Sta	ates at Zero Magnetic Field		X X	
¹ Ca ² Depart	Titus Neupert, ¹ Luiz Santos, ² Claudio ndensed Matter Theory Group, Paul Scherre ment of Physics, Harvard University, 17 Oxfo ³ Physics Department, Boston University (Received 22 December 201	Chamon, ³ and Christopher Mudry ¹ r Institute, CH-5232 Villigen PSI, Swit: ord Street, Cambridge, Massachusetts (b, Boston, Massachusetts 02215, USA 0; published 6 June 2011).	zerland D2138, USA	B	B
	PRL 106, 236803 (2011)	Selected for a Viewpoint in Phy PHYSICAL REVIEW LET	rsics TERS	week ending 0 JUNE 2011	
	Nea Kai Sun, ¹ ¹ Condensed Matter Theory Cent ² Kavli Institute for Theoretic ³ Department of Physic (Received 28 December 2	rly Flatbands with Nontrivial Zhengcheng Gu, ² Hosho Katsura, ³ at er and Joint Quantum Institute, Departm College Park, Maryland 20742, US val Physics, University of California, Sar cs, Gakushuin University, Mejiro, Toshim 010: revised manuscript received 10 Mar	Topology nd S. Das Sarma ¹ <i>vent of Physics, University of Maryla</i> <i>SA</i> <i>vta Barbara, California 93106, USA</i> <i>va-ku, Tokyo 171-8588, Japan</i> rch 2011 - publiched (Taga 2011)	nd,	(a)
, ¹ / ₂	PRL 106, 236802 (2011)	Selected for a Vie PHYSICAL REV	ewpoint in <i>Physics</i> IEW LETTERS	week endi 10 JUNE 2	ng 011
		G High-Temperature Fractio) nal Quantum Hall States		
	¹ Department of ² Institute fo	Evelyn Tang, ¹ Jia-Wei Mei f Physics, Massachusetts Institute of T or Advanced Study, Tsinghua Universit (Received 14 December 201	, ^{1,2} and Xiao-Gang Wen ¹ echnology, Cambridge, Massachus ty, Beijing, 100084, People's Reput 0; published 6 June 2011)	etts 02139, USA blic of China	

Characteristic example: The Haldane Model

F.D.M. Haldane, PRL (1988), Neupert et al. PRL (2011)

$$-t_3 \sum_{\langle\langle\langle \mathbf{rr}'\rangle\rangle\rangle} \left(\hat{a}_{\mathbf{r}}^{\dagger}\hat{a}_{\mathbf{r}} + h.c.\right) + \frac{U}{2} \sum_{\mathbf{r}} \hat{n}_{\mathbf{r}} (\hat{n}_{\mathbf{r}} - 1)$$

- tight binding model in real space on hexagonal lattice
- with fine-tuned hopping parameters: obtain flat lower band, e.g. values [D. Sheng, PRL (2011)]

$$t_1 = 1, t_2 = 0.60, t_2 = -0.58$$
 and $\phi = 0.4\pi$

Topological (flat) bands in two-dimensions

• diagonalize Hamiltonian by Fourier transform

$$\mathcal{H} = \sum_{\mathbf{k}} \hat{a}_{\mathbf{k},\alpha}^{\dagger} h_{\alpha\beta}(\mathbf{k}) \hat{a}_{\mathbf{k},\beta}$$

Bloch states

$$h_{\alpha\beta}(\mathbf{k})u_{\beta}^{n}(\mathbf{k}) = \epsilon_{n}(\mathbf{k})u_{\alpha}^{n}(\mathbf{k})$$

• study Berry curvature in n^{th} band:

Berry connection: $\mathcal{A}(n, \mathbf{k}) = -i \sum_{\alpha} u_{\alpha}^{n*}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k})$

Berry curvature: $\mathcal{B}(k) =$

$$\mathcal{B}(k) =
abla_{\mathbf{k}} \wedge \mathcal{A}(k)$$

Chern number:
$$C = \frac{1}{2\pi} \int_{BZ} d^2 \mathbf{k} \, \mathcal{B}(\mathbf{k})$$

CBs = tight binding model in *real* space with topological flat bands *real* space *reciprocal* space

University of Leeds, November 21, 2012

real space

absorption of photons = momentum + state transfers

real space

reciprocal space

Lattices with homogeneous flux (Hofstadter bands)

(vanishing overall flux)

insertion of flux quanta through plaquettes [see Wu et al]

Lattices with homogeneous flux (Hofstadter bands)

Flux Lattices

CBs

(vanishing overall flux)

insertion of flux quanta through plaquettes [see Wu et al]

Lattices with homogeneous flux (Hofstadter bands)

Flux Lattices

CBs

(vanishing overall flux)

insertion of flux quanta through plaquettes [see Wu et al]

Lattices with homogeneous flux (Hofstadter bands)

Flux Lattices

Magnetic Fields & Landau Levels

CBs

(vanishing overall flux)

insertion of flux quanta through plaquettes [see Wu et al]

Lattices with homogeneous flux (Hofstadter bands)

Flux Lattices

+ Interactions

Magnetic Fields & Landau Levels

Gunnar Möller

University of Leeds, November 21, 2012

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands of all Chern numbers [Avron et al.]

E

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands of all Chern numbers [Avron et al.]

- Interactions stabilize fractional quantum Hall liquids in these bands!
- CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL's with additional pseudospin index

R. Palmer & D. Jaksch PRL 2006 L. Hormozi et al, PRL 2012

E

- existence of a gap & groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold

- existence of a gap & groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold

[D. Sheng]

- existence of a gap & groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold [D. Sheng]

"Fractional Chern Insulators (FCI)" [N. Regnault & A. Bernevig, PRX 'II]

- existence of a gap & groundstate degeneracy [checkerboard lattice]
- chern number of groundstate manifold [D. Sheng]

"Fractional Chern Insulators (FCI)" [N. Regnault & A. Bernevig, PRX 'II]

• Strong numerical evidence for QHE physics, but no clear organising principle for different lattice models

Understanding Fractional Quantum Hall states

• Single particle states are analytic functions in symmetric gauge

$$\phi_m \propto z^m e^{-|z|^2/4\ell_0}$$

$$\vec{A} = \frac{1}{2}\vec{r} \wedge \vec{B}$$
$$z_j = x_j + iy_j$$

• Many particle states are still analytic functions - can write explicitly!

e.g. Laughlin:
$$\Psi_{
u=rac{1}{m}} = \prod_{i < j} (z_i - z_j)^m e^{-\sum_i |z_i|^2/4\ell_0}$$

Understanding Fractional Quantum Hall states

• Single particle states are analytic functions in symmetric gauge

$$\phi_m \propto z^m e^{-|z|^2/4\ell_0}$$

$$\vec{A} = \frac{1}{2}\vec{r} \wedge \vec{B}$$
$$z_j = x_j + iy_j$$

• Many particle states are still analytic functions - can write explicitly!

e.g. Laughlin:
$$\Psi_{\nu=\frac{1}{m}} = \prod_{i < j} (z_i - z_j)^m e^{-\sum_i |z_i|^2/4\ell_0}$$

- Wavefunctions are nice! Can understand many features
- Incompressibility
 Quasiparticle excitations: charge / statistics
- Correlations / You name the observable...

Understanding Fractional Quantum Hall states

• Single particle states are analytic functions in symmetric gauge

$$\phi_m \propto z^m e^{-|z|^2/4\ell_0}$$

$$\vec{A} = \frac{1}{2}\vec{r} \wedge \vec{B}$$
$$z_j = x_j + iy_j$$

• Many particle states are still analytic functions - can write explicitly!

e.g. Laughlin:
$$\Psi_{\nu=\frac{1}{m}} = \prod_{i < j} (z_i - z_j)^m e^{-\sum_i |z_i|^2/4\ell_0}$$

- Wavefunctions are nice! Can understand many features
- Incompressibility
 Quasiparticle excitations: charge / statistics
- Correlations / You name the observable...

Can we construct wavefunctions for Chern Insulators?

• Proposal by X.-L. Qi [PRL '11]: Get FCI Wavefunctions by mapping single particle orbitals

- Proposal by X.-L. Qi [PRL '11]: Get FCI Wavefunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the x-direction
- keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

$$|W(x,k_y)\rangle = \sum_{k_x} f_{k_x}^{(x,k_y)} |k_x,k_y\rangle$$

- Proposal by X.-L. Qi [PRL '11]: Get FCI Wavefunctions by mapping single particle orbitals
- Idea: use Wannier states which are localized in the x-direction
- keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

$$|W(x,k_y)\rangle = \sum_{k_x} f_{k_x}^{(x,k_y)} |k_x,k_y\rangle$$

• Qi's Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

• Qi's Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

$$\begin{aligned} \mathcal{H} &= \sum_{\mathbf{k}} \hat{a}_{\mathbf{k},\alpha}^{\dagger} h_{\alpha\beta}(\mathbf{k}) \hat{a}_{\mathbf{k},\beta} & \text{Hamiltonian} \\ h_{\alpha\beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k}) &= \epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) & \text{Eigenstates} \\ \mathcal{A}(n,\mathbf{k}) &= -i \sum_{\alpha} u_{\alpha}^{n*}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) & \text{Berry connection} \end{aligned}$$

$$\alpha = 3$$

$$\alpha = 1$$

$$\alpha = 2$$

$$c_{\mathbf{k},\alpha}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot(\mathbf{R}+\boldsymbol{\delta}_{\alpha})} c_{\mathbf{R},\alpha}^{\dagger}$$

• construction of a Wannier state at fixed k_y

$$|W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x}$$

$$e^{-ik_x x}|k_x,k_y
angle$$

Fourier transform

$$\begin{aligned} \mathcal{H} &= \sum_{\mathbf{k}} \hat{a}_{\mathbf{k},\alpha}^{\dagger} h_{\alpha\beta}(\mathbf{k}) \hat{a}_{\mathbf{k},\beta} & \text{Hamiltonian} \\ h_{\alpha\beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k}) &= \epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) & \text{Eigenstates} \\ \mathcal{A}(n,\mathbf{k}) &= -i \sum_{\alpha} u_{\alpha}^{n*}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) & \text{Berry connection} \end{aligned}$$

$$\alpha = 3$$

$$\alpha = 1$$

$$\alpha = 2$$

$$c_{\mathbf{k},\alpha}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot(\mathbf{R}+\boldsymbol{\delta}_{\alpha})} c_{\mathbf{R},\alpha}^{\dagger}$$

• construction of a Wannier state at fixed k_y in gauge with $\mathcal{A}_y=0$

$$|W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x} e^{-i\int_0^{k_x} \mathcal{A}_x(p_x,k_y)dp_x} \times$$

'Parallel transport' of phase

Berry connection indicates change of phase due to displacement in BZ

Fourier transform

$$\begin{aligned} \mathcal{H} &= \sum_{\mathbf{k}} \hat{a}_{\mathbf{k},\alpha}^{\dagger} h_{\alpha\beta}(\mathbf{k}) \hat{a}_{\mathbf{k},\beta} & \text{Hamiltonian} \\ h_{\alpha\beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k}) &= \epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) & \text{Eigenstates} \\ \mathcal{A}(n,\mathbf{k}) &= -i \sum_{\alpha} u_{\alpha}^{n*}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) & \text{Berry connection} \end{aligned}$$

• construction of a Wannier state at fixed
$$k_y$$
 in gauge with $\;\mathcal{A}_y=0\;$

$$\alpha = 3$$

$$\alpha = 1$$

$$\alpha = 2$$

$$c_{\mathbf{k},\alpha}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot(\mathbf{R}+\boldsymbol{\delta}_{\alpha})} c_{\mathbf{R},\alpha}^{\dagger}$$

 $|W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x} e^{-i\int_0^{k_x} \mathcal{A}_x(p_x,k_y)dp_x} \times e^{ik_x\frac{\theta(k_y)}{2\pi}} \times e^{-ik_xx} |k_x,k_y\rangle$

'Parallel transport' of phase

Berry connection indicates changeensures periodicityof phase due to displacement in BZof WF in $k_y \rightarrow k_y + x_y$

'Polarization' Fourier transform ensures periodicity of WF in $k_y \rightarrow k_y + 2\pi$

$$\begin{aligned} \mathcal{H} &= \sum_{\mathbf{k}} \hat{a}_{\mathbf{k},\alpha}^{\dagger} h_{\alpha\beta}(\mathbf{k}) \hat{a}_{\mathbf{k},\beta} & \text{Hamiltonian} \\ h_{\alpha\beta}(\mathbf{k}) u_{\beta}^{n}(\mathbf{k}) &= \epsilon_{n}(\mathbf{k}) u_{\alpha}^{n}(\mathbf{k}) & \text{Eigenstates} \\ \mathcal{A}(n,\mathbf{k}) &= -i \sum_{\alpha} u_{\alpha}^{n*}(\mathbf{k}) \nabla_{\mathbf{k}} u_{\alpha}^{n}(\mathbf{k}) & \text{Berry connection} \end{aligned}$$

• construction of a Wannier state at fixed k_y in gauge with $\mathcal{A}_y=0$

$$\alpha = 3$$

$$\alpha = 1$$

$$\alpha = 2$$

$$c_{\mathbf{k},\alpha}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot(\mathbf{R}+\boldsymbol{\delta}_{\alpha})} c_{\mathbf{R},\alpha}^{\dagger}$$

$$|W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x} e^{-i\int_0^{k_x} \mathcal{A}_x(p_x,k_y)dp_x} \times e^{ik_x\frac{\theta(k_y)}{2\pi}} \times e^{-ik_xx} |k_x,k_y\rangle$$

ky-dependent phase factor, or `gauge'

'Parallel transport' of phase Berry connection indicates change of phase due to displacement in BZ 'Polarization' Fourier transform ensures periodicity of WF in $k_y \rightarrow k_y + 2\pi$

More on gauge of Wannier orbitals: Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)

Wannier states in Chern bands

• construction of a Wannier state at fixed k_y in gauge with $\mathcal{A}_y=0$

$$W(x,k_y)\rangle = \frac{\chi(k_y)}{\sqrt{L_x}} \sum_{k_x} e^{-i\int_0^{k_x} \mathcal{A}_x(p_x,k_y)dp_x} \times e^{ik_x\frac{\theta(k_y)}{2\pi}} \times e^{-ik_xx} |k_x,k_y\rangle$$

'Parallel transport' of phase'Polarization'Fourier transformBerry connection indicates change
of phase due to displacement in BZensures periodicity
of WF in $k_y \rightarrow k_y + 2\pi$

• or, more simply we can think of the Wannier states as the eigenstates of the position operator

$$\hat{X}^{cg} = \lim_{q_x \to 0} \frac{1}{i} \frac{\partial}{\partial q_x} \bar{\rho}_{q_x} \qquad \qquad \hat{X}^{cg} |W(x, k_y)\rangle = [x - \theta(k_y)/2\pi] |W(x, k_y)\rangle$$

• role of polarization: displacement of centre of mass of the Wannier state

$$\theta(k_y) = \int_0^{2\pi} \mathcal{A}_x(p_x, k_y) dp_x$$

An example: The Haldane Model

$$\mathcal{H} = -t_1 \sum_{\langle \mathbf{rr}' \rangle} \left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} + h.c. \right) - t_2 \sum_{\langle \langle \mathbf{rr}' \rangle \rangle} \left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} e^{i\phi_{\mathbf{rr}'}} + h.c. \right) - t_3 \sum_{\langle \langle \langle \mathbf{rr}' \rangle \rangle \rangle} \left(\hat{a}_{\mathbf{r}}^{\dagger} \hat{a}_{\mathbf{r}} + h.c. \right) + \frac{U}{2} \sum_{\mathbf{r}} \hat{n}_{\mathbf{r}} (\hat{n}_{\mathbf{r}} - 1)$$

- tight binding model on hexagonal lattice
- with fine-tuned hopping parameters: obtain flat lower band

$$t_1 = 1, t_2 = 0.60, t_2 = -0.58$$
 and $\phi = 0.4\pi$

Conventions for numerical evaluation

Real Space

 $\mathbf{v}_1 = \sin(\gamma)\mathbf{e}_x + \cos(\gamma)\mathbf{e}_y$ $\mathbf{v}_2 = \mathbf{e}_y$

 $n_x = 0 \qquad L_x - 1$ $\mathbf{G}_1 = 2\pi \mathbf{e}_x / L_1 \sin(\gamma)$ $\mathbf{G}_2 = 2\pi [-\cot(\gamma)\mathbf{e}_x + \mathbf{e}_y] / L_2$

Reciprocal Space

A few remarks:

• choose 'periodic' gauge with Bloch functions:

$$u_{\beta}^{n}(\mathbf{k} + L_{i}\mathbf{G}_{i}) = u_{\beta}^{n}(\mathbf{k})$$

 $A_{x}^{n}(q_{1}, q_{2}) = \Im \log \left[u_{\alpha}^{n*}(q_{1}, q_{2}) u_{\alpha}^{n}(q_{1}+1, q_{2}) \right]$

 $\int_0^{k_x} \mathcal{A}_x(p_x, k_y) dp_x \to \sum_{\tilde{q}_1=0}^{q_1(k_x)} \mathcal{A}_x^n(\tilde{q}_1, q_2)$

• use discretized Berry connection

• discretize its integrals by the rectangle rule

 $L_{\eta} - 1$

 $n_{\mu} = 0$

• Can introduce a canonical order of states with monotonously increasing position:

$$k_y = 2\pi n_y / L_y$$

$$K_y = k_y + 2\pi x = \frac{2\pi j}{L_y}$$

$$j = n_y + L_y x = 0, 1, \dots, N_\phi - 1$$

• Increase in position for $k_y \rightarrow k_y + 2\pi$ = Chern-number C, as

$$\frac{\partial}{\partial k_y} \langle \hat{X}^{cg} \rangle |_x = -\frac{1}{2\pi} \frac{\partial \theta(k_y)}{\partial k_y} = \int_0^{2\pi} \mathcal{B}(p_x, k_y) dp_x$$

More on Wannier states:

Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)

Z. Liu & E. Bergholtz, PRB 2013

Case study: Bosons with contact interactions

T. Scaffidi, GM, PRL (2012)

Gunnar Möller

Case study: Bosons with contact interactions

Gunnar Möller

$$\mathcal{H}_{int} \propto \sum_{i < j} \delta(r_i - r_j)$$

$$K_y = k_y + 2\pi x = 2\pi j / L_y$$

$$\mathcal{H}^{FCI} = \sum_{\substack{k_{y1}, k_{y2}, k_{y3}, k_{y4} \\ x_1, x_2, x_3, x_4 \\ k_{y1} + k_{y2} = k_{y3} + k_{y4}} \hat{c}^{\dagger}_{W(k_{y1}, x_1)} \hat{c}^{\dagger}_{W(k_{y2}, x_2)} \hat{c}_{W(k_{y3}, x_3)} \hat{c}_{W(k_{y4}, x_4)}$$

$$\mathcal{H}^{FCI} = \sum_{\substack{k_{y1}, k_{y2}, k_{y3}, k_{y4} \\ k_{y1} + k_{y2} = k_{y3} + k_{y4}}} \hat{c}^{\dagger}_{W(k_{y1}, x_1)} \hat{c}^{\dagger}_{W(k_{y2}, x_2)} \hat{c}_{W(k_{y3}, x_3)} \hat{c}_{W(k_{y4}, x_4)}$$

$$V_{j_1 j_2; j_3 j_4} \left\{ \sum_{\substack{k_{x1}, k_{x2}, k_{x3}, k_{x4} \\ k_{x1} + k_{x2} = k_{x3} + k_{x4}}} \int_{a = A, B} u^{*a}_{\alpha_0}(\mathbf{k_1}) u^{*a}_{\alpha_0}(\mathbf{k_2}) u^{a}_{\alpha_0}(\mathbf{k_3}) u^{a}_{\alpha_0}(\mathbf{k_4}) \right\}$$

٦

Case study: Bosons with contact interactions

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]

- B
- Magnitude of two-body matrix elements for delta interactions in the Haldane model

 $V(\vec{r_i} - \vec{r_j}) \propto \delta(\vec{r_i} - \vec{r_j})$

- System shown: two-body interactions for $\ L_x imes L_y = 3 imes 4$
- Matrix elements differ in magnitude, but overall similarities are present
- Different block-structure due to non-conservation of linearized momentum K_y
- Lack of translational invariance of matrix elements in momentum space

Reduced translational invariance in K_y

• A closer look at some short range hopping processes

 \bullet for FCI: hopping amplitudes depend on position of centre of mass / K_y

- Can write both states in single Hilbert space with the same overall structure (indexed by K_y) and study the low-lying spectrum numerically (exact diagonalization)
- Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

$$\mathcal{H}(x) = \frac{\Delta_{\rm FCI}}{\Delta_{\rm FQHE}} (1-x) \mathcal{H}^{\rm FQHE} + x \mathcal{H}^{\rm FCI}$$

• Here: look at half-filled band for bosons

Evaluating the accuracy of the Wannier states: Overlaps

- Can write both states in single Hilbert space with the same overall structure (indexed by K_y) and study the low-lying spectrum numerically (exact diagonalization)
- Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

$$\mathcal{H}(x) = \frac{\Delta_{\rm FCI}}{\Delta_{\rm FQHE}} (1-x) \mathcal{H}^{\rm FQHE} + x \mathcal{H}^{\rm FCI}$$

Adiabatic continuation in the Wannier basis

• Spectrum for N=10:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Adiabatic continuation in the Wannier basis

• Spectrum for N=10:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv: 1207.3539]

Adiabatic continuation in the Wannier basis

• Spectrum for N=10:

• Gap for different system sizes & aspect ratios:

- We confirm the Laughlin state is adiabatically connected to the groundstate of the half-filled topological flat band of the Haldane model
- Clean extrapolation to the thermodynamic limit (unlike overlaps)

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv: 1207.3539]

Entanglement spectra and quasiparticle excitations

Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B
 => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

Entanglement spectra and quasiparticle excitations

Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B
 => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

FCI: Adiabatic continuation of the entanglement spectrum

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Finite size behaviour of entanglement gap

- The entanglement gap remains open for all values of the interpolation parameter k
- Finite size scaling behaviour encouraging, but analytic dependency on system size unknown

• Wavefunctions of FCI's in the Wannier basis are similar but not identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at v=1/2 using Qi's mapping between Wannier basis and FQH eigenstates

• FCI wavefunctions not very accurate for the Haldane model (higher overlaps in models with N>2 sublattices)

higher overlaps also by explicit gauge fixing, see: Wu, Regnault, Bernevig, PRB (2012)

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]

