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• Motivation: physical realizations of lattices 
with high flux density

• Relationship between different realizations 
of topological band structures:

• Particle entanglement spectrum as a probe 
for quantum Hall states in lattices

Outline

‣ Adiabatic continuation from Fractional Chern 
Insulators to Fractional Quantum Hall states 
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Cold Atoms I: Optical Lattices with Complex Hopping

B

optical lattice + Raman lasers

H = −J
�

�α,β�

�
b̂†αb̂βe

iAαβ + h.c.
�
+

1

2
U
�

α

n̂α(n̂α − 1)− µ
�

α

n̂α

⇒ possibility to simulate Aharonov-
Bohm effect of magnetic field 
by  imprinting phases for 
hopping via Raman transitions

�

�
Aαβ = 2πnV

⇒ Bose-Hubbard with a magnetic field (! Lorentz force)

particle density                   vortex/flux density                       interaction nV U/JnV

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

experimental realisation:
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Cold Atoms I: Optical Lattices with Complex Hopping

‘anti-magic’ optical 
lattice for Yb

Gerbier & Dalibard, NJP 2010

Staggered Flux ‘Rectified’ Flux

Realized by group of I. Bloch:
Phys. Rev. Lett. 107, 255301 (2011). Experimental realization outstanding 

Can tune flux density!
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Cold Atoms II: Berry phases of optically dressed states

spacially varying optical coupling of N internal states (consider N=2)

H =
p2

2m
1̂ +

�
2

�
−∆ ΩR(r)

ΩR(r) ∆

�

Yblocal spectrum En(r) and dressed states: |Ψr�

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011
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2m
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ΩR(r) ∆

�
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Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Berry phases of optically dressed states

for N=2, consider Bloch sphere of unit vector

spacially varying optical coupling of N internal states (consider N=2)

H =
p2

2m
1̂ +

�
2

�
−∆ ΩR(r)

ΩR(r) ∆

�

Yblocal spectrum En(r) and dressed states: |Ψr�

adiabatic motion of atoms in space in the optical potential generates a Berry phase

nφ =
1

8π
�ijk�µνni∂µnj∂νnk

�n = �Ψr|�̂σ|Ψr�

Berry flux generated:

�

A
nφ d

2r =
Ω

4π

Total flux quanta 
= # times Bloch 
vector wraps sphere 

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011
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Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasers
yielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector               (b) Local density of Berry Flux       �n nφ

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)
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Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasers
yielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector               (b) Local density of Berry Flux       �n nφ

Nφ = 1

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)
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H =− t1
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Characteristic example: The Haldane Model

• tight binding model in real space on hexagonal lattice
• with fine-tuned hopping parameters: obtain flat lower band, e.g. values [D. Sheng, PRL (2011)]

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π

F.D.M. Haldane, PRL (1988), Neupert et al. PRL (2011)
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hαβ(k)u
n
β(k) = �n(k)u

n
α(k)

A(n,k) = −i
�

α

un∗
α (k)∇ku

n
α(k)

Bloch states

H =
�

k â
†
k,αhαβ(k)âk,β

• diagonalize Hamiltonian by Fourier transform

Topological (flat) bands in two-dimensions

• study Berry curvature in nth band:

Berry connection:

B(k) = ∇k ∧A(k)Berry curvature:

C = 1
2π

�
BZ d2kB(k)Chern number:
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Overview of underlying band structures

CBs

Lattices with 
homogeneous flux
(Hofstadter bands)

Flux 
Lattices

insertion of flux quanta 
through plaquettes [see Wu et al]

Magnetic Fields 
& Landau Levels

(vanishing overall flux)

+ Interactions
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Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands 
   of all Chern numbers [Avron et al.]

E

nφ

nφ

n

• Interactions stabilize fractional 
quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with 
additional pseudospin index
R. Palmer & D. Jaksch PRL 2006
L. Hormozi et al, PRL 2012

1

2

-1

-2
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Interrelations between different interacting problems

CBs

Lattices with
homogeneous flux

Flux Lattices

insertion of flux quanta 
through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

adiabatic continuation
(Wannier or Bloch basis)

addition of oscillatory
magnetic field density

leaves LLL intact:
should be adiabatic

adiabatically turning on
lattice confinement

X.-L. Qi (2011), Wu et al (2012), 
Scaffidi & Möller PRL (2012),
Liu & Bergholtz PRB (2013)

C>1
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Numerical evidence for “Fractional Chern Insulators”

• Strong numerical evidence for QHE physics, but no clear organising principle for different lattice models 

• Finite size scaling of gap  

“Fractional Chern Insulators (FCI)” [N. Regnault & A. Bernevig, PRX ’11]

• Particle Entanglement Spectra : count of 
excitations matches FQHE (here - Laughlin state) 

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• chern number of groundstate manifold [D. Sheng]
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Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/4�0

• Single particle states are analytic functions in symmetric gauge �A =
1

2
�r ∧ �B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1
m

=
�

i<j

(zi − zj)
me−

�
i |zi|

2/4�0e.g. Laughlin:



Gunnar Möller University of Leeds, November 21, 2012

Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/4�0

• Single particle states are analytic functions in symmetric gauge �A =
1

2
�r ∧ �B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1
m

=
�

i<j

(zi − zj)
me−

�
i |zi|

2/4�0e.g. Laughlin:

• Wavefunctions are nice! Can understand many features

" Quasiparticle excitations: charge / statistics" Incompressibility

" Correlations / You name the observable...



Gunnar Möller University of Leeds, November 21, 2012

Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/4�0

• Single particle states are analytic functions in symmetric gauge �A =
1

2
�r ∧ �B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1
m

=
�

i<j

(zi − zj)
me−

�
i |zi|

2/4�0e.g. Laughlin:

• Wavefunctions are nice! Can understand many features

" Quasiparticle excitations: charge / statistics" Incompressibility

" Correlations / You name the observable...

Can we construct 
wavefunctions

 for
Chern Insulators?
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FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction
• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier
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Wannier states in Chern bands

H =
�

k â
†
k,αhαβ(k)âk,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =
1√
N

�

R

eik·(R+δα)c†R,α

hαβ(k)u
n
β(k) = �n(k)u

n
α(k)

• construction of a Wannier state at fixed ky

A(n,k) = −i
�

α

un∗
α (k)∇ku

n
α(k)

Hamiltonian

Eigenstates

Berry connection

|W (x, ky)� =
χ(ky)√

Lx

�

kx

e−i
� kx
0 Ax(px,ky)dpx × eikx

θ(ky)
2π × e−ikxx|kx, ky�

Fourier transform
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• construction of a Wannier state at fixed ky in gauge with 

A(n,k) = −i
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n
α(k)

Hamiltonian

Eigenstates

Berry connection

Fourier transform

|W (x, ky)� =
χ(ky)√

Lx

�

kx

e−i
� kx
0 Ax(px,ky)dpx × eikx

θ(ky)
2π × e−ikxx|kx, ky�

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity 
of WF in ky # ky + 2!

Berry connection indicates change
of phase due to displacement in BZ

Ay = 0

ky-dependent phase 
factor, or `gauge’

More on gauge of Wannier orbitals: Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)
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Wannier states in Chern bands

• construction of a Wannier state at fixed ky in gauge with 

Fourier transform

|W (x, ky)� =
χ(ky)√

Lx

�

kx

e−i
� kx
0 Ax(px,ky)dpx × eikx

θ(ky)
2π × e−ikxx|kx, ky�

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity 
of WF in ky # ky + 2!

Berry connection indicates change
of phase due to displacement in BZ

Ay = 0

• or, more simply we can think of the Wannier states as the eigenstates of the position operator

X̂cg|W (x, ky)� = [x− θ(ky)/2π]|W (x, ky)�

• role of polarization: displacement of centre of mass of the Wannier state

X̂cg = lim
qx→0

1

i

∂

∂qx
ρ̄qx

θ(ky) =

� 2π

0
Ax(px, ky)dpx
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��rr���

�
â†râre

iφrr� + h.c.
�

− t3
�

���rr����

�
â†râr + h.c.

�
+

U

2

�

r

n̂r(n̂r − 1)

An example: The Haldane Model

• tight binding model on hexagonal lattice
• with fine-tuned hopping parameters: obtain flat lower band

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π
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Conventions for numerical evaluation

Real Space Reciprocal Space

G1 = 2πex/L1 sin(γ)

G2 = 2π[− cot(γ)ex + ey]/L2

v1 = sin(γ)ex + cos(γ)ey

v2 = ey

nx = 0 Lx − 1

Ly − 1

ny = 0

un
β(k+ LiGi) = un

β(k)• choose ‘periodic’ gauge with Bloch functions:

A few remarks:

An
x(q1, q2) = � log [un∗

α (q1, q2)u
n
α(q1 + 1, q2)]• use discretized Berry connection

� kx

0
Ax(px, ky)dpx →

q1(kx)�

q̃1=0

An
x(q̃1, q2)

• discretize its integrals by the 
rectangle rule 
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Qi’s Mapping

• Can introduce a canonical order of states with monotonously increasing position:

Ky = ky + 2πx = 2πj/Ly

j = ny + Lyx = 0, 1, ..., Nφ − 1

ky = 2πny/Ly

• Increase in position for ky # ky + 2! = Chern-number C, as

∂

∂ky
�X̂cg�|x = − 1

2π

∂θ(ky)

∂ky
=

� 2π

0
B(px, ky)dpx

Y-L Wu, A. Bernevig, N. Regnault, 
PRB (2012)

More on Wannier states:

Z. Liu & E. Bergholtz, PRB 2013
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Case study: Bosons with contact interactions

Hint ∝

�

i<j

δ(ri − rj)

• Landau level momentum 
conserved:

• Linearized momentum

H =
�

j1,j2,j3,j4

Vj1j2;j3j4 ĉ
†
j1
ĉ†j2 ĉj3 ĉj4

 expand Hamiltonian in single-particle orbitals 
(finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lx
j1+j2, j3+j4

Ky = ky + 2πx = 2πj/Ly

kmax
y = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, PRL (2012)
[arxiv:1207.3539]
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Case study: Bosons with contact interactions

Hint ∝

�

i<j

δ(ri − rj)

• Landau level momentum 
conserved:

• Linearized momentum

H =
�

j1,j2,j3,j4

Vj1j2;j3j4 ĉ
†
j1
ĉ†j2 ĉj3 ĉj4

 expand Hamiltonian in single-particle orbitals 
(finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lx
j1+j2, j3+j4

Different conservation laws 
# Problems live in different Hilbert spaces 

Ky = ky + 2πx = 2πj/Ly

kmax
y = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, PRL (2012)
[arxiv:1207.3539]
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Matrix elements in the Wannier basis

Hint ∝

�

i<j

δ(ri − rj)

Ky = ky + 2πx = 2πj/Ly

H
FCI =

�

ky1,ky2,ky3,ky4
x1,x2,x3,x4

ky1+ky2=ky3+ky4

ĉ†W (ky1,x1)
ĉ†W (ky2,x2)

ĉW (ky3,x3)ĉW (ky4,x4)

�

kx1,kx2,kx3,kx4
kx1+kx2=kx3+kx4

f
∗(x1,ky1 )
kx1

f
∗(x2,ky2)
kx2

f
(x3,ky3)
kx3

f
(x4,ky4)
kx4

�

a=A,B

u∗a
α0
(k1)u

∗a
α0
(k2)u

a
α0
(k3)u

a
α0
(k4)

Vj1j2;j3j4
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Case study: Bosons with contact interactions
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FCIFQHE

• Magnitude of two-body matrix elements for delta interactions in the Haldane model

• System shown: two-body interactions for N = 6, Lx × Ly = 3× 4

Ktot
y = 0 Ktot

y = 4 Ktot
y = 8 Ktot

y = 0 Ktot
y = 4 Ktot

y = 8

K
to

t
y

=
0

K
to

t
y

=
4

K
to

t
y

=
8

K
to

t
y

=
0

K
to

t
y

=
4

K
to

t
y

=
8

• Matrix elements differ in magnitude, but overall similarities are present
• Different block-structure due to non-conservation of linearized momentum Ky 

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]

• Lack of translational invariance of matrix elements in momentum space

V (�ri − �rj) ∝ δ(�ri − �rj)

lnVαα� lnVαα�
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Reduced translational invariance in Ky

• A closer look at some short range hopping processes

K
y

K
y

K
y

• for FCI: hopping amplitudes depend on position of centre of mass / Ky

Center of mass position

|V
|2

0 2 4 6 8 10
0

0.5

1

K1
y +K2

y
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Interpolating in the Wannier basis

• Can write both states in single Hilbert space with the same overall structure
 (indexed by Ky) and study the low-lying spectrum numerically (exact diagonalization)

• Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

H(x) =
∆FCI

∆FQHE

(1− x)HFQHE + xHFCI

FQHE of Bosons at

ν = 1/2

x = 0 x = 1

Laughlin state Same topological phase?

Half filled band of the 
(flattened) Haldane-model

B

• Here: look at half-filled band for bosons
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|�Ψ(x)|Φ�|2 |PkGS |Ψ�|2

0 0.2 0.4 0.6 0.8 1x
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N=6, 4 x 3
N=8, 4 x 4
N=10,4 x 5

0 0.2 0.4 0.6 0.8 1x
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1

Evaluating the accuracy of the Wannier states: Overlaps

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Overlap Weight in GS sector

FCI FCIFQHEFQHE

Bosons at 
ν = 1/2

• Can write both states in single Hilbert space with the same overall structure
 (indexed by Ky) and study the low-lying spectrum numerically (exact diagonalization)

• Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

H(x) =
∆FCI

∆FQHE

(1− x)HFQHE + xHFCI



Gunnar Möller University of Leeds, November 21, 2012

Adiabatic continuation in the Wannier basis
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FQHE FCI

• Spectrum for N=10:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]
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Adiabatic continuation in the Wannier basis
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• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]
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Adiabatic continuation in the Wannier basis
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• We confirm the Laughlin state is adiabatically connected to the groundstate of the 
half-filled topological flat band of the Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

• Clean extrapolation to the thermodynamic limit - (unlike overlaps)

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]
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Entanglement spectra and quasiparticle excitations

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

credit: A. Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B 
=> Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block 

Dominant (universal) eigenvalues of PES 
yield count of excited states - and their 
wavefunctions - from groundstate 
wavefunction only!

Laughlin, N=8, NA=4
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=> Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block 

Dominant (universal) eigenvalues of PES 
yield count of excited states - and their 
wavefunctions - from groundstate 
wavefunction only!

Laughlin, N=8, NA=4
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FCI: Adiabatic continuation of the entanglement spectrum

|Ψ� =
�

�

�

i

e−ξ�,i/2|ΨA
�,i� ⊗ |ΨB

�,i�

Dictionary:

Total #eigenvalues below entanglement gap 
= 804 + 800 + 800 + 800 + 800

Total #eigenvalues below entanglement gap 
= 4x(201 + 200 + 200 + 200 + 200)

Same number of 
states for all x

‘Infinite’ 
entanglement
gap for pure
Laughlin state

FQHE FCI

N = 10

NA = 5

Ktot
y

x

ktotT

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]
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Finite size behaviour of entanglement gap

• The entanglement gap remains open for all values of the interpolation parameter k
• Finite size scaling behaviour encouraging, but analytic dependency on system size unknown

FQHE FCI
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-
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N = 6,4×3
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Conclusions: FCI wavefunctions from Wannier states

• Wavefunctions of FCI’s in the Wannier basis are similar but not 
identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at 
ν=1/2 using Qi’s mapping between Wannier basis and FQH eigenstates 

• FCI wavefunctions not very accurate for the Haldane model
  (higher overlaps in models with N>2 sublattices)

higher overlaps also by explicit gauge fixing, see:  
Wu, Regnault, Bernevig, PRB (2012)

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]


