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Overview

• Background: Topology and interactions in tight-binding models

• The role of band geometry in the Single Mode Approximation to 
quantum Hall liquids / fractional Chern insulators

• Role of band geometry for incompressible Hall liquids

screening of three target models
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Quantum Hall Effect in Periodic Potentials

• quantized Hall response in filled bands:
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• the Hofstadter spectrum provides bands of all Chern numbers

• filled bands in this spectrum yield a quantized Hall response

figure: Avron et al. (2003)

• Chern-number for periodic systems 

Thouless, Kohmoto, Nightingale, de Nijs 1982
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• Hofstadter model (solved 1976):  
tight-binding model for electrons in bands with 
finite Chern number
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Fractional Quantum Hall Effect in Periodic Potentials

• quantized Hall response in partially filled bands?

• THEORY: Kol & Read (1993)

• Confirmations for such states?
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Fractional Quantum Hall on lattices: Numerical Evidence

• interest in cold atom community 2000’s:  

• realisations of tight-binding models with complex hopping from light-matter coupling:
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• bosons with onsite U: many-body gap in the half-filled  
“synthetic Landau-level” persists to large flux density
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Fractional Quantum Hall on lattices with higher Chern-# bands

• bands of the Hofstadter model go beyond the continuum limit and support new classes of 
quantum Hall states

n
many-body gap predicted by CF theory �

n�

n = 1/7: O = |h CF|GSi|2 ' 0.56

n = 1/9: O = |h CF|GSi|2 ' 0.46

(N=5 particles)

numerical verification !
for what we would now  
call FCI states with ν=1!
• C=2 band!
• hardcore bosons
E

k
x

ky

C = �2
GM & NR Cooper, PRL 2009

theory:!
bosonic Hall states!
on the lattice
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Φ>0
Φ<0

Chern bands in more general tight binding models

• 2011: FQHE could naturally in models with spin-orbit coupling + interactions

Numerical confirmation:  D. Sheng; C. Chamon; N. Regnault & A. Bernevig, …

T. Neupert et al. K. Sun et al. E. Tang et al.

• Original proposal for IQHE without magnetic fields: Haldane (1988)

Chern numbers
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Stability of Fractional Chern Insulators

• single-particle dispersion - want flat bands

• band geometry - ideally want even Berry curvature

• shape of interactions - clear hierarchy of two-body energies desirable “Pseudopotentials”

• Full story: all three aspects contribute

many groups

finite size matter a lot - success by iDMRG A. Grushin et al.

Regnault, Bernevig; Dobardzic, Milovanovic, … 

Läuchli, Liu, Bergholtz, Moessner + other proposals

no systematic in-depth study of geometric measures This Talk!

How to decide which lattice models have stable fractional Chern Insulators?
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Band Geometry: Berry Curvature and Chern Number

Basic notations:

|k, bi = 1p
Nc

X

R

eik·(R+db)|R, bi sublattice index
b = 1, . . . ,N

Fourier transform:
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Which Berry Curvature?

Gauge invariance of the Bloch functions: one arbitrary U(1) phase for each k-point
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as this substitution yields a modified Berry curvature:

There is a unique choice such that the polarisation reduces to the correct semi-classical expression 

see, e.g. Zak PRL (1989) 
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Example single particle properties

an example: Hofstadter spectrum in magnetic unit cell of 7x1,n = 1/7, n� = 3/7
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GMP Algebra: Generating low-lying excitations

[⇢LLL(q),⇢LLL(q
0
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GMP algebra (w/LLL form factor):

S. M. GIRVIN, A. H. MacDONALD, AND P. M. PLATZMAN 33

wave vector, but exhibits a deep minimum at finite k.
This magneto-roton minimum is caused by a peak in s(k)
and is, in this sense, quite analogous to the roton
minimum in helium. ' We interpret the deepening of the
minimum in going from v= —,

' to v= —,
' to be a precursor

of the collapse of the gap which occurs at the critical den-
sity v, for Wigner crystallization. From Fig. 3 we see
that the minimum gap is very small for v& —,. This is
consistent with a recent estimate of the critical density,
v, =1/(6.5+0.5). Within mean-field theory, the Wigner
crystal transition is weakly first order and hence occurs
slightly before the roton mode goes completely soft. Fur-
ther evidence in favor of this interpretation of the roton
minimum is provided by the fact that the magnitude of
the primitive reciprocal-lattice vector for the crystal lies
close to the position of the magneto-roton minimum, as
indicated by the arrows in Fig. 3.
These ideas suggest the physical picture that the liquid

is most susceptible to perturbations whose wavelength
matches the crystal lattice vector. This will be illustrated
in more detail in Sec. XI.
Having provided a physical interpretation of the gap

dispersion and the magneto-roton minimum, we now ex-
amine how accurate the SMA is. Figure 4 shows the ex-
cellent agreement between the SMA prediction for the gap
and exact numerical results for small (%=6,7}systems re-
cently obtained by Haldane and Rezayi. Those authors
have found by direct computation that the single-mode
approximation is quite accurate, particularly near the ro-
ton minimum, where the lowest excitation absorbs 98% of
the oscillator strength. This means that the overlap be-
tween our variational state and the exact lowest excited
eigenstate exceeds 0.98. We believe this agreement con-
firms the validity of the SMA and the use of the
Laughlin-state static structure factor.
Near k =0 there is a small (-20%) discrepancy be-

tween b,sMA(0) and the numerical calculations. It is in-

v=1/3

L"S

Q. 10

0.05

VII. BACKFLOW CORRECTIONS

It is apparent from Fig. 4 that the SMA works extreme-
ly well—better, in fact, than it does for helium. '9 Why is
this so'? Recall that, for the case of helium, the
Feynman-Bijl formula overestimates the roton energy by
about a factor of 2. Feynman traces this problem to the
fact that a roton wave packet made up from the trial wave
functions violates the continuity equation

V (J)=0.
To see how this happens, consider a wave packet

P(ri, . . . , rpg)= I d2k g(k)pkP(r„. . . , r~),
(7.1)

(7.2)

where g(k) is some function (say a Gaussian) sharply
peaked at a wave vector k located in the roton minimum.
It is important to note that this wave packet is quasista-
tionary because the roton group velocity dhldk vanishes
at the roton minimum. Evaluation of the current density
gives the result schematically illustrated in Fig. 5(a). The
current has a fixed direction and is nonzero only in the re-
gion localized around the wave packet. This violates the
continuity equation (7.1} since the density is (approxi-
mately) time independent for the quasistationary packet.
The modified variational wave function of Feynman and
Cohen includes the backflow shown in Fig. 5(b}. This
gives good agreement with the experimental roton energy
and shows that the roton can be viewed as a smoke ring
(closed vortex loop).
A rather different result is obtained for the case of the

quantum Hall effect. The current density operator is

eA(rj }

teresting to speculate that the lack of dispersion near the
roton minimum may combine with residual interactions
to produce a strong pairing of rotons of opposite momen-
ta leading to a two-roton bound state of small total
momentum. This is known to occur in helium. For the
present case b, i~3(0) happens to be approximately twice
the minimum roton energy. Hence the two-roton bound
state which has zero oscillator strength could lie slightly
below the one-phonon state which absorbs all of the oscil-
lator strength. For v & —, the two-roton state will definite-
ly be the lowest-energy state at k =0. It would be in-
teresting to compare the numerical excitation spectrum
with a multiphonon continuum computed using the
dispersion curves obtained from the SMA.

0.00
O.Q 0.5 1.0 1.5 2.0 + p)+

eA(rj ) z5 (R—rj) (7.3)

FIG. 4. Comparison of SMA prediction of collective mode
energy for v= 3, 5, 7 with numerical results of Haldane and
Rezayi (Ref. 20) for v= —,. Circles are from a seven-particle
spherical system. Horizontal error bars indicate the uncertainty
in converting angular momentum on the sphere to linear
momentum. Triangles are from a six-particle system with a
hexagonal unit cell. Arrows have same meaning as in Fig. 3.
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(7.4)

(7.5)

Taking P and P to be any two members of the Hilbert
space of analytic functions described in Sec. IV, it is
straightforward to show that

Girvin, MacDonald and Platzman, PRB 
33, 2481 (1986).

| SMA
k i = ⇢̂k| 0i

• single mode approximation captures low-lying 
 neutral excitations in quantum Hall systems:

Repellin, Neupert, Papić, Regnault, Phys. Rev. B 90 (2014)SMA carries over to Chern bands: 

⇢̂k =
X

q

�̂†
k+q�̂qfor sp density operators
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Chern bands: generalised GMP algebra
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• consider band-projected density operators for general Chern bands:

• in general, the algebra of density operators does not close, i.e. 

[e⇢q, e⇢k] 6= F (k,q)e⇢k+q

• intuitive consequences for FQH states:

e⇢q ⌘ P↵e
iq·brP↵ =

X

k

NX

b=1

u↵⇤
b (k+ q/2)u↵

b (k� q/2)�↵†
k+q/2�

↵
k�q/2can generate many distinct eigenstates 

‣ no finite, closed set of low-energy excitations corresponding to the GMP single mode states

‣ 

‣ strong violation of the algebra should signal an unstable, gapless phase
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Conditions for closure of the generalised GMP algebra I
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• conditions for closure can be derived in long-wavelength expansion
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Conditions for closure of the generalised GMP algebra II

iii)((closure(at(all(orders(if

D(k) ⌘ det g↵(k)� B↵(k)2

4
= 0

• if i), ii) and iii) are met, one obtains a generalised GMP algebra:

[e⇢q, e⇢k] = 2ie
P

µ,⌫ g↵
µ⌫qµk⌫ sin

✓
B↵

2
q ^ k

◆
e⇢q+k

• under stronger variant of condition iii) the algebra reduces exactly to the GMP algebra, namely if

T (k) ⌘ tr g↵(k)� |B↵(k)| = 0;

• Current study: test how violations of the closure constraints correlate with gap

R. Roy, arxiv:1208.2055 (PRB 2014); Parameswaran, Roy, Sondhi C. R. Physique (2013)
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Target models to examine

• Hamiltonian: bosonic states with on-site interactions — defined independent of specific lattice

2Gbody(contact 3Gbody(contact

⌫ =
1

2
Laughlin ⌫ = 1MooreGRead

• lattice geometries to consider:

Haldane(model Kagomé(model Ruby(laOce(model
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• Location of max gap for bosonic and fermionic Laughlin agrees with min RMS B 
• Band geometry “interpolates” between bosonic, fermionic statistics 
• For this model, quantum metric does not provide info beyond that supplied by 

curvature.

Haldane Model with t3=0

Laughlin: Bosons

Laughlin: Fermions

Curvature

Gap

Jackson, GM, Roy, arxiv:1408.0843; cf. Dobardzic, Milovanovic and Regnault, PRB 2013)
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• position of maximum gap appears to be compromise between minimising 
curvature fluctuations and metric trace inequality (also seen in fermionic Laughlin)
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Haldane Model: Effects of quantum metric for M=0, t3>0
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a2
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➂t2 + i�2

t1 + i�1

Kagome lattice model
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• Approximately linear trend which holds from min RMS B point all the way to 
the phase boundary (gap closure) 

• Significant scatter, though, which may be explained by quantum metric

Full parameter space for Kagome Model: Gap vs. RMS B

• Randomly sample points in parameters space of t1(=1), t2, λ1, λ2

• Gap data for the bosonic Laughlin state
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• Considering models at surfaces of fixed σc, the violation of the metric trace 
equality ⟨T⟩ is highly correlated with the many-body gap

Kagome Model: “Shells” of constant RMS Curvature

TS Jackson, G. Möller, R. Roy “Geometric stability of topological lattice phases”, arxiv:1408.0843
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• Similar linear dependence of gap on RMS B as seen in Kagome model

Ruby Lattice Model: Gap vs RMS Curvature



Gunnar Möller Würzburg, February 2015

• Even clearer results for influence of metric trace inequality ⟨T⟩ 
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Ruby Lattice  Model: “Shells” of constant RMS Curvature

Models with many sub lattices can approximate Landau level physics more closely



• Parameters yielding max gap are always in lower-left corner 
• Demonstrates relevance of both band-geometric quantities

Model Comparison: Gaps vs. RMS B and trace inequality
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Gunnar Möller Würzburg, February 2015

Conclusions

• Band geometry provides useful information about stability of 
fractional Chern insulators

• Berry curvature O(k2) is the dominant effect (as previously known)!
• Trace of the quantum metric O(k3) provides further information

• Statistically, band geometry is strongly correlated with many-body gap

• But: it is only one of three factors, so not the only important measure

useful for quick exploration of available parameter space

Related works:  Adiabatic continuity T. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

FCI in the Hofstadter model GM & N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009)

TS Jackson, G. Möller, R. Roy “Geometric stability of topological lattice phases”, arxiv:1408.0843



Quantifying degree of correlation on shells of const. RMS B — 
Spearman ρ monotonicity test
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• Nonparametric statistic which is sensitive to any monotonic relationship 
• Perfect correlation for ρ = ±1, no correlation at ρ = 0 
• Find siginifcant, robust negative correlation between gap and metric 

inequality on all isosurfaces of constant RMS B, demonstrating importance 
of trace inequality as a subleading influence on the gap
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• Looking at (correct) RMS B alone shows 
two branches 

• Pattern holds in both bosonic Laughlin and 
bosonic Moore-Read states
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vary%λ1,%all%other%par’s%zero

NN-only Kagome Model: Gap vs. RMS B and Tr G

from: Wu, Bernevig & Regnault, PRB (2012)this%work

• Branches distinguished by including information about metric trace inequality



Geometry & gap for new parametrization of Haldane-t3
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• Now have large range of parameters with uniform curvature 
• Minimum trace inequality in distinct location from min RMS B


