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We provide a complete and exact theoretical study of the dynamical structure factor of a two-
dimensional quantum spin liquid in gapless and gapped phases, as realized in Kitaev’s honeycomb model.
We show that there are direct signatures—qualitative and quantitative—of the Majorana fermions and
gauge fluxes emerging in this model. These include counterintuitive manifestations of quantum number
fractionalization, such as a neutron scattering response with a gap even in the presence of gapless
excitations, and a sharp component despite the fractionalization of electron spin. Our analysis identifies
new varieties of the venerable x-ray edge problem and explores connections to the physics of quantum
quenches.
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalization of electrons into unusual particles:
Majorana fermions [1], Laughlin quasiparticles [2], or
magnetic monopoles [3]. Their detection, however, is
fundamentally complicated by the lack of any local order,
such as, for example, the magnetization in a ferromagnet.
While there are now several instances of candidate topo-
logical spin liquids [4], their identification remains chal-
lenging [5]. The study of spin liquids has been central to
advancing our understanding of correlated phases of
quantum matter ever since Anderson’s proposal of the
resonating valence bond liquid state [6], which provided,
via the detour of high-temperature superconductivity, an
early instance of a fractionalized topological state [7,8].
More recent manifestations hold the promise of realizing
an architecture of quantum computing robust against
decoherence [9].
Investigations of such topological states are hampered by

the lack of suitable approaches, with numerical methods
limited to small system sizes, to models with a robust
excitation gap, or ones that avoid the sign problem in
quantumMonte Carlo calculations. A benchmark is offered
by the Kitaev model [1], which can be used as a repre-
sentative example of an entire class of quantum spin liquids
(QSL). While being a minimal model, it combines a raft
of desirable features. First, it is described by a simple
Hamiltonian involving only nearest-neighbor interactions
on the honeycomb lattice (Fig. 1), by virtue of which it is a
promising candidate for realization in materials physics
[10], or in cold atom implementations of quantum simu-
lators [11]. Second, it harbors two distinct topological
quantum spin liquid phases, with either gapless or gapped

Majorana fermion excitations. Finally, its solution can be
reduced to the problem of Majorana fermions hopping in
the background of an emergent static gauge field.
This remarkable feature permits, at least in principle,

even an analysis of the model’s dynamical properties, as
noted in a seminal paper by Baskaran and co-workers [12],
who pointed out an unexpected connection to the x-ray
edge problem [13], results of which were used to extract
asymptotic correlators of related models [14,15]. This
problem, whose tour de force exact solution was obtained
by Nozieres et al. [16], is one of the cornerstones of
condensed matter physics, linked to the discovery of
Anderson’s “orthogonality catastrophe” [17] and a foun-
dation for our understanding of local quantum quenches.

(a) (b)

FIG. 1 (color online). (a) The structure of the model on the
honeycomb lattice with two sublattices (labeled A and B) and
three bond directions (denoted x, y, z). The calculation of the
dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted.
(b) The ground state and dynamical phase diagrams of the model:
the phase with gapless fermion excitations fills the central triangle
while gapped phases occupy the three outer triangles. The
dynamical response Szzðq;ωÞ includes a contribution sharp in
ω in the dark red region, but not in the light green region.
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Dynamic structure factor of a 2D QSL - experiment

h¾x (t)¾x (0)i

ZnCu3(OD)6Cl2!

(herbertsmithite)

the free-Cu21 magnetic form factor. Here the measured data indicate
longer-range correlations than the nearest-neighbour singlet model.
Figure 3c depicts a line scan of the dynamic structure factor (integrated

over 1 # Bv # 7 meV) along the (0, K, 0) direction. The nearest-
neighbour singlet model does not account for the observed scattering
intensity at the (0, 2, 0)-type positions.
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Figure 2 | Inelastic neutron scattering measured along symmetry directions
and at high-symmetry locations. a, b, Intensity contour plots of the dynamic
structure factor as a function of Bv and Q for the (H, 0, 0) direction (a) and the
(H, H, 0) direction (b). These directions are indicated by the thick black lines on
the reciprocal space map shown in d. Along the (H, H, 0) direction, a broad
excitation continuum is observed over the entire range measured. The colour
bar shows the magnitude of Stot(Q, v) in barn sr21 eV21 per formula unit.
c, Energy dependence of Stot(Q, v) measured at high-symmetry reciprocal

space locations. Data for Bv $ 1.5 meV were measured with Ef 5 5.1 meV,
whereas data for Bv # 1 meV were measured with Ef 5 3.0 meV for better
energy resolution (except those at C*, which were measured with
Ef 5 5.1 meV). Error bars, 1 s.d. Inset, energy dependence of Smag(Q, v) with
the non-magnetic scattering from the sample subtracted. Smag(Q, v) is
normalized to have units of eV21 per formula unit, consistent with the
magnetic structure factor defined in Supplementary Information. d, The
integrated areas in reciprocal space referred to a–c.
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Figure 3 | The measured dynamic structure factor along specific directions
in reciprocal space with comparison to the nearest-neighbour singlet model.
a, Smag(Q, v) along the (22, 1 1 K, 0) direction, indicated by the thick red line
on the reciprocal space map in d. Three energy transfers, Bv 5 2, 6 and 10 meV,
are shown. b, Smag(Q, v) along the (22, 1 1 K, 0) direction integrated over

1 # Bv # 11 meV. c, Smag(Q, v) along the (0, K, 0) direction, indicated by the
thick orange line on the reciprocal space map in d, integrated over
1 # Bv # 7 meV. The solid lines in b and c are the calculated equal-time
structure factors for uncorrelated nearest-neighbour singlets multiplied by
| F(Q) | 2. d, The trajectories in reciprocal space referred to in a–c. Error bars, 1 s.d.
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The observed Q dependence of the scattered intensity provides
important information on the ground-state spin correlations. The
scattering in reciprocal space has the shape of broadened hexagonal
rings centred at (0, 0, 0)- and (2, 0, 0)-type positions. All of the scans
that we have performed from Bv 5 1.5 to 11 meV show similar pat-
terns for the scattered magnetic intensity. The energy-integrated
dynamic structure factor over the integration range 1 # Bv # 9 meV
is plotted in Fig. 1d. This quantity serves as an approximation of the
equal-time structure factor. For comparison, a calculation of the equal-
time structure factor for a collection of uncorrelated nearest-neighbour
singlets on a kagome lattice is shown in Fig. 1e. To a first approxi-
mation, the observed magnetic signal resembles this calculation.
Therefore, the ground-state wavefunction of herbertsmithite has a
large component resembling randomly arranged nearest-neighbour
singlets, similar to a short-range resonating valence-bond state2,16,23.
However, it is also clear that the data have a narrower width in recip-
rocal space than does the model calculation. Thus, the spin–spin cor-
relations in herbertsmithite extend beyond nearest neighbours, as
further discussed below. The intensity in Fig. 1e corresponds to 1/8
of the total moment sum rule24. For the data, the integrated intensity
up to Bv 5 11 meV corresponds to 20(3)% of the total moment (where
the uncertainty represents 1 s.d.). This indicates that the excitations
extend up to much higher energies (a few multiples of J), and future
inelastic measurements up to these energies would be of great interest.

At the lowest measured energy transfers, we observe additional
features in the pattern of magnetic scattering. Figure 1c depicts the
intensity contour plot for Bv 5 0.75 meV, showing additional broad
peaks centred at (1, 0, 0) and equivalent positions (seen as the yellowish
spots near the centres of the low-Q Brillouin zones). The (1, 0, 0) posi-
tion does not correspond to a nuclear Bragg position for this cry-
stal structure. Additional scans taken with Bv between 0.25 and
1 meV confirm that this feature is generic to the low-energy transfers.
This peak is probably influenced by the weakly coupled Cu21 ions at

the interlayer Zn21 sites, which are believed to affect the low-energy
scattering25.

The scattering pattern’s overall insensitivity to energy transfer is
another remarkable feature of the data. Conventional spin-wave excita-
tions take the form of sharp surfaces of dispersion in Q–v space. Such
spin-wave excitations were indeed observed in the S 5 5/2 kagome
antiferromagnet KFe3(OH)6(SO4)2 (ref. 26). In herbertsmithite, no
surfaces of dispersion are observable in the low-temperature data.
The dependence of Stot(Q, v) on Bv and Q is plotted in Fig. 2 for
two high-symmetry directions in reciprocal space: the (H, 0, 0) direc-
tion (Fig. 2a) and the (H, H, 0) direction (Fig. 2b). These directions are
indicated by thick black lines in Fig. 2d. These plots show that the spin
excitations form a broad, continuous band (or a continuum), extending
up to the highest measured energy, 11 meV. This is direct evidence that
the excitations are fractionalized, forming a continuum in this two-
dimensional antiferromagnet.

In Fig. 2c and its inset, the energy dependences of Stot(Q, v) and
Smag(Q, v) are plotted for high symmetry Q positions as indicated in
the reciprocal space map in Fig. 2d. The scattered signal is rather flat for
2 # Bv # 10 meV but increases significantly with decreasing energy
transfer below Bv 5 1.5 meV. There is no indication of a spin gap
down to Bv 5 0.25 meV at the measured reciprocal space positions.

The magnetic intensity can be plotted as one-dimensional ‘line scans’
along specific directions in reciprocal space. In Fig. 3a, Smag(Q, v) is
shown along the (22, 1 1 K, 0) direction, indicated by the thick red line
on the reciprocal space map in Fig. 3d. Three energy transfers,Bv 5 2, 6
and 10 meV, are plotted, and there is no substantial change in the peak
width as a function of energy transfer. The width of these line scans,
determined by fits, can be found in Supplementary Fig. 3. In Fig. 3b,
Smag(Q, v) is integrated over 1 # Bv # 11 meV and compared with the
calculated equal-time Smag(Q, v) for uncorrelated nearest-neighbour
singlets. The solid line corresponds to the result of the uncorrelated
nearest-neighbour singlet model multiplied by jF(Q)j2, where F(Q) is
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Figure 1 | Inelastic neutron scattering from the spin excitations, plotted in
reciprocal space. a–c, Measurements were made at T 5 1.6 K on a single-
crystal sample of ZnCu3(OD)6Cl2. The dynamic structure factor, Stot(Q, v), is
plotted for Bv 5 6 meV (a) and Bv 5 2 meV (b) with Ef 5 5.1 meV and
Bv 5 0.75 meV (c) with Ef 5 3.0 meV. The background was measured with an
empty sample holder and subtracted. The diffuse scattering is mostly magnetic
in origin, because the phonon contribution to the signal is small (except near
the (2, 2, 0)-type positions, where the fundamental Bragg peaks are strong).
d, The magnetic part of the dynamic structure factor, Smag(Q, v), integrated

over 1 # Bv # 9 meV. e, Calculation of the equal-time structure factor,
Smag(Q), for a model of uncorrelated nearest-neighbour dimers. The intensity
corresponds to 1/8 of the total moment sum rule S(S 1 1) for the spins on the
kagome lattice. The data presented in a–c are expressed in barn sr21 eV21 per
formula unit, as shown by the left colour bars. The data presented in parts d and
e are dimensionless, with the scale given by the right colour bar. The Brillouin
zone boundaries are drawn in the figure for clarity; they correspond to the
conventional unit cell with parameters a 5 b 5 6.83 Å, c 5 14.05 Å,
a 5 b 5 90u and c 5 120u.
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Integrated dynamic structure factor

Observation of spin-excitation continuum — c.f. with sharp dispersive features for spin-waves

Dynamic structure factor at fixed energies

Interpretation in terms of fractionalization of spin degrees of freedom

T. Han, J. Helton, S. Chu, D. Nocera, J. Rodriguez-Rivera, Collin Broholm & Y. Lee, Nature 492, 406 (2012)



Outline

Shortage of experimental signatures due to lack of local order
Exotic quasiparticles do not couple directly to experimental probes

• Exact dynamic structure factor for an interacting 2D system

• How one can test in experiment if one has a quantum spin-liquid ?

• What are the signatures of emergent (fractionalised) excitations
in e.g. inelastic neutron scattering experiments ?

• Interesting connections to quantum quenches 

• Kitaev model as a toy-model of a quantum spin liquid

see a related work by Matthias Punk, Debanjan Chowdhury and Subir Sachdev, Nature Physics 10, 289 (2014)



Kitaev model
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Ising-like Hamiltonian with anisotropic exchange on a honeycomb lattice

Two spin-liquid phases: gapped and gapless

Chapter 2

The model

Having seen some examples of how disorder can affect the properties of strongly correlated

electron systems, we leave the general introduction behind and now turn to the subject

of this thesis: the Kitaev honeycomb model. This chapter comes in three parts. The

first is a review and expansion of Kitaev’s work, describing the model and the technical

details leading to its exact solvability. The second is an exploration of the properties of the

clean system and proposals for experimental realisations of the Hamiltonian. Finally, we

anticipate the remainder of this thesis and provide an outline of the types of disorder that

we consider in the Kitaev model.
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Figure 2.1: (a) Three types of bond in the honeycomb lattice. (b) The site labels used

to define the non-dynamical observables W̃p. (c) Unit cell, primitive lattice vectors and
sublattice convention used through this thesis.

The model was introduced in a seminal work by Kitaev[52], where he described in great

detail many of its properties and particularly its use in topological quantum computation.

In general we shall be concerned, however, with its spin liquid behaviour. The Kitaev

28

Duan, Demler, Lukin PRL (2003) in cold atoms,  Jackeli, Khaliullin PRL (2009, 2010) in Iridates
Possible realization in cold atoms and magnetic materials ?

A. Kitaev, Ann. Phys. (2006)
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Kitaev model. Exact solution
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Many conserved quantities - local flux operators

W̃
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6 Flux operators

[W̃p, Ĥ] = 0 and [W̃p, W̃
0
p] = 0

The Hilbert space can be separated into sectors L{W̃p}
corresponding to eigenvalues

W̃ 2
p = 1

Wp = ±1

We have 2N sites and N plaquettes, so that Hilbert space dimension

within one flux sector is 22N/2N ⇠ 2N

Significant reduction of the Hilbert space dimension
Still need to diagonalize the Hamiltonian in the reduced space

Z2 - flux sectors



Kitaev model. Exact solution
Introduce Majorana fermions ĉ2j�1, ĉ2j living on A, B sublattice
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which represent the “real” and “imaginary” part of a complex fermion

ĉ2j = âj + â†j , ĉ2j�1 = i(â†j � âj)

ĉ2j = 1, ĉj ĉk = �ĉk ĉj , j 6= k

Majorana and complex fermions have the following properties

{âj , â†k} = �jk, {âj , âk} = 0

For a complex fermion we can define a vacuum state such that

âj |0i = 0

(this is not possible for a Majorana fermion, so we use complex fermions in the calculations)

�̂↵
j = ib̂↵j ĉj spin operators

here we introduced another 3 Majorana fermions per site b̂↵j which change fluxes



Kitaev model. Exact solution
Now we can write the Kitaev Hamiltonian in terms of Majorana fermions

for example, consider the term

bond operators ûhjki↵ = ib̂↵j b̂
↵
k

�J
x

�̂x

j

�x

k

= �J
x

ib̂x
j

c
j

ib̂x
k

ĉ
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= iJ
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x

ĉ
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k

the Hamiltonian in terms of fluxes and Majorana fermions

Ĥ =
X

j2A,k2B,hjki

iJ↵jk ûhjki↵ ĉj ĉk

Bond operators commute with each other and with the Hamiltonian

û2
hjki = 1moreover and we can block-diagonalize into sectors uhjki = ±1

In each flux sector we obtain a quadratic Majorana fermion Hamiltonian



Kitaev model. Exact solution

�̂↵
r =

1

2
(b̂

↵jk

j + ib̂
↵jk

k ) f̂r =
1

2
(ĉA,r + iĉB,r)

ûhjki↵ = ib̂↵j b̂
↵
k = 2�̂↵†

r �̂↵
r � 1

Introduce two complex fermions by combining Majorana on the links

The gauge field operators can now be written in terms of bond fermions

The eigenstates of the Hamiltonian can be written as a direct product

|�i = |�i ⌦ |fi
flux sector matter sector

In the ground state there is 1 bond fermion on each bond uhiji↵ = 1

The Hamiltonian is quadratic in terms of matter fermions



Kitaev model. Exact solution

Ĥf =
X

q

|S(q)|(2â†qâq � 1)

in the ground state âq|0i = 0S(q) = J
x

eiqn1 + J
y

eiqn2 + J
z

The Hamiltonian can be written in a diagonal form

where

6 

● With                                                 such that  
    
   and g.s. is the state without fermions  
 
● In the gapless phase spectrum of the hopping problem has two  
   Dirac cones.  
 
 
 
 
 
● Gapless for  

Johannes Knolle, IMPRS Seminar 
2012 

 Exact Solution III 

S(q)

matter excitation spectrum in the gapless phase

flux excitations are gapped
matter excitations are gapped or gapless

gapped
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Dynamic structure factor
In an inelastic neutron scattering experiment one measures a 
Fourier transform of a dynamic spin correlation function

on sublattice A:

on sublattice B:

�̂↵
i = iĉi(�̂hiji↵ + �̂†

hiji↵)

�̂↵
j = ĉj(�̂hiji↵ � �̂†

hiji↵)

Our task is to calculate this function

h0|�̂†
a�̂b|0i = �ab

Sab
ij (t) = �ih0|eiĤ0tĉie

�i(Ĥ0+Va)tĉj |0i�ab�(ij)NN

Representation in terms of Majorana fermions

here V̂a = �Ja2iĉiĉj is a local potential

Note that all correlators beyond nearest neighbour are zero
Baskaran et.al, PRL (2007)

Fluxes are static -> N.N. correlations only!

Sab
ij (t) = h0|�̂a

i (t)�̂
b
j(0)|0i



Local quantum quench, X-ray edge problem

ar
X

iv
:1

30
8.

43
36

v1
  [

co
nd

-m
at

.st
r-e

l] 
 2

0 
A

ug
 2

01
3

Dynamics of a two-dimensional quantum spin liquid:
signatures of emergent Majorana fermions and fluxes

J. Knolle,1 D. L. Kovrizhin,1,2 J. T. Chalker,3 and R. Moessner1

1Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
2T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom, and

Imperial College London, London, SW7 2AZ, United Kingdom
3Theoretical Physics, Oxford University, 1, Keble Road, Oxford OX1 3NP, United Kingdom

(Dated: August 21, 2013)

Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the

A

B
z
x y

1n n2

Jx = Jz = 0

Jx = Jy = 0

Jy = Jz = 0

a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and

Spin-flip in the INS measurement fractionalizes into 
two fluxes and a Majorana fermion

This leads to an abrupt change of a local potential for a 
Majorana fermion - similar to X-ray edge problem

localized level

EF

X-ray edge problem 

Singularities in X-ray absorption spectrum

!

A(!)

Anderson orthogonality catastrophe Phys. Rev. Lett. 18, 1049 (1967)
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A(!) ⇠ (! � !c)
�

power-law behaviour due to soft excitations



Lehmann representation
Qualitative features of the dynamic response can be read-off 
from the Lehmann representation

Response is gapped due to the flux-gap

Sab
ij (!) = �i

X

�

hM0|ĉi|�ih�|ĉj |M0i ⇥ �(! � (E� � E0))�ij�ab

� = E�0 � E0

states with two extra fluxes

J
x

= J
y

= J
z

, � ⇠ 0.26J

Above the flux gap the response reflects the nature of 
the matter fermion ground state

Ĥ conserves fermion parity hM0|ĉi|�i changes parity

There are two possibilities depending on the parity of the ground state !



Dynamical phase diagram

If the ground states with and without flux have different parity
the first contribution to the response starts with hM0|ĉi|�0i

S(0)(!) ⇠ �(! ��)

|M0i andIf the ground states |�0i have the same parity
the first contribution to the response starts with

(I)

(II)
hM0|ĉi|�0 and 1 exc.i

single particle response, no delta-function

Chapter 2

The model

Having seen some examples of how disorder can affect the properties of strongly correlated

electron systems, we leave the general introduction behind and now turn to the subject

of this thesis: the Kitaev honeycomb model. This chapter comes in three parts. The

first is a review and expansion of Kitaev’s work, describing the model and the technical

details leading to its exact solvability. The second is an exploration of the properties of the

clean system and proposals for experimental realisations of the Hamiltonian. Finally, we

anticipate the remainder of this thesis and provide an outline of the types of disorder that

we consider in the Kitaev model.
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Figure 2.1: (a) Three types of bond in the honeycomb lattice. (b) The site labels used

to define the non-dynamical observables W̃p. (c) Unit cell, primitive lattice vectors and
sublattice convention used through this thesis.

The model was introduced in a seminal work by Kitaev[52], where he described in great

detail many of its properties and particularly its use in topological quantum computation.

In general we shall be concerned, however, with its spin liquid behaviour. The Kitaev

28

qualitatively, deep in the gapped phase 
the flipped flux binds one fermion on the 
A-B bond -> change of parity
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the

A

B
z
x y

1n n2

Jx = Jz = 0

Jx = Jy = 0

Jy = Jz = 0

a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and

different parity

same parity

new dynamical phase diagram !

+ two-particle response



Single-particle response

Sab
ij (!) = �i

X

�

hM0|ĉi|�ih�|ĉj |M0i ⇥ �(! � (E� � E0))�ij�ab

we are interested in the response in the green region of the phase diagram

note that |M0i is the vacuum of â operators

the Hamiltonian Ĥ = Ĥ0 + V̂a is quadratic, diag. via Bogoliubov transf.

b̂� =
X

q

X⇤
�qâq + Y ⇤

�qâ
†
q

|�i = b̂†�|�0isingle particle states are given by

two-flux ground state |�0i = [X†X]
1
4 e�

1
2 â

†X⇤�1Y ⇤â†

expansion of the exponent terminates - exact 1 quasi-particle contribution

for example the overlap between two g.s. |h�0|M0i| =
p
|detX|



Mapping to X-ray edge problem

Szz
A0B0 = �ihM0|eiĤ0tĉA0e

�i(Ĥ0+V̂z)tĉB0|M0i

Let us look at the expression

this can be written as

Szz
ij = �ihM0|ĉi(t)Ŝ(t, 0)ĉj(0)|M0i

ĉi(t) = eiĤ0tĉie
�iĤ0t V̂z(t) = �2iJz ĉi(t)ĉj(t)

ˆS(t, 0) = eiĤ0te�i(Ĥ0+V̂z)t
= Texp{�i

Z t

0
dt0 ˆVz(t

0
)}

here

and the S-matrix

now transform to complex fermions



Mapping to X-ray edge problem
A general form in terms of complex fermions is

⇠ hM0|( ˆf(t)± f†
0 (t))Texp{�i

Z t

0
dt0 ˆVz(t

0
)}( ˆf(0)± f†

0 (0))|M0i

here V̂z(t) = �4Jz[f̂
†
0 (t)f̂0(t)� 1/2] is a local (on-site) potential

which is switched-on at time t=0

note that one would expect anomalous terms in the expansion

now we can use Wick theorem

however these terms vanish, e.g. F0 = �ihM0|T[f̂(t)f̂(t0)]|M0i = 0

Szz(t) = i[G(t, 0)±G(0, t)]

G(t, 0) = �ihTf̂(t)f̂†(t)e�i
R t
0 dt0V̂z(t

0)|M0i

similar Green functions appear in the X-ray edge problem calculations



Mapping to X-ray edge problem
Expansion of the GF separates into connected and disconnected contributions

connected diagrams can be obtained from disconnected ones

need to solve a singular a singular integral equation

Gc(t, 0) = G0(t, 0)� 4Jz

Z t

0
dt0G0(t, t

0)Gc(t
0, 0)

Exact solution by Nozieres De Dominicis in the case G0(t) ⇠
1

t

in our calculation (Kitaev model) the behaviour of the bare GF is 
complicated, and the asymptotics is of different form

G0(t) ⇠
1

t2

ND solution is not applicable, need to use general methods from the theory of 
singular integral equations, see a classic book by Mushkeleshvili

A simplified approach (with a potential switched on and off adiabatically) provides a 
good approximation in our case (compared to the X-ray edge)
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
⟨M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0⟩ after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0⟩ in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).
Despite the formal similarities between the time-dependent

correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac

many-particle contributions approx. 2.5%
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the

A
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z
x y

1n n2

Jx = Jz = 0

Jx = Jy = 0

Jy = Jz = 0

a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and

different parity

same parity

• Response is gapped - gap for gauge-flux!
• Broad features!
• Van-Hove singularities!
• Band edge of matter fermions
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
⟨M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0⟩ after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0⟩ in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).
Despite the formal similarities between the time-dependent

correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the

A
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z
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Jx = Jz = 0

Jx = Jy = 0

Jy = Jz = 0

a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and
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• Response is gapped - gap for gauge-flux!
• Broad features!
• Van-Hove singularities!
• Band edge of matter fermions!
• Anisotropic response
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
⟨M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0⟩ after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0⟩ in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).
Despite the formal similarities between the time-dependent

correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the
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Jx = Jz = 0

Jx = Jy = 0

Jy = Jz = 0

a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and

different parity

same parity

• Response is gapped - gap for gauge-flux!
• Delta-function response above the flux gap!
• Broad features!
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Summary

flux gap and the features of Majorana fermion spectrum

• New dynamical phase diagram

• Sharp features in the response despite short-range correlations

• Response in the presence of magnetic field, disorder, Heisenberg pert.
Raman response: J. Knolle, Gia-Wei Chern, D. L. Kovrizhin, R. Moessner, N. B. Perkins, arXiv:1406.3944

• Emergent quasiparticles show up as characteristic features
in the dynamic structure factor
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
⟨M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0⟩ after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0⟩ in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).
Despite the formal similarities between the time-dependent

correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalisation of electrons into unusual particles: Majo-
rana fermions [1], Laughlin quasiparticles [2] or magnetic
monopoles [3]. Their detection, however, is fundamentally
complicated by the lack of any local order, such as, for
example, the magnetisation in a ferromagnet. While there
are now several instances of candidate topological spin liq-
uids [4], their identification remains challenging [5]. Here,
we provide a complete and exact theoretical study of the
dynamical structure factor of a two-dimensional quantum
spin liquid in gapless and gapped phases. We show that
there are direct signatures – qualitative and quantitative –
of the Majorana fermions and gauge fluxes emerging in
Kitaev’s honeycomb model. These include counterintu-
itive manifestations of quantum number fractionalisation,
such as a neutron scattering response with a gap even in
the presence of gapless excitations, and a sharp component
despite the fractionalisation of electron spin. Our analysis
identifies new varieties of the venerable X-ray edge prob-
lem and explores connections to the physics of quantum
quenches.

The study of spin liquids has been central to advancing
our understanding of correlated phases of quantum matter
ever since Anderson’s proposal of the resonating valence bond
(RVB) liquid state [6], which provided, via the detour of high-
temperature superconductivity, an early instance of a fraction-
alised topological state [7, 8]. More recent manifestations
hold the promise of realising an architecture of quantum com-
puting robust against decoherence [9].

Investigations of such topological states are hampered by
the lack of suitable approaches, with numerical methods lim-
ited to small system sizes, to models with a robust excitation
gap, or ones that avoid the sign problem in quantum Monte
Carlo. A benchmark is offered by the Kitaev model [1], which
can be used as a representative example of an entire class of
quantum spin liquids (QSL). While being a minimal model, it
combines a raft of desirable features. First, it is described by
a simple Hamiltonian involving only nearest-neighbor inter-
actions on the honeycomb lattice (Fig. 1), by virtue of which
it is a promising candidate for realisation in materials physics
[10], or in cold atom implementations of quantum simulators
[11]. Second, it harbours two distinct topological quantum
spin liquid phases, with either gapless or gapped Majorana
fermion excitations. Finally, its solution can be reduced to the
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Jx = Jz = 0

Jx = Jy = 0
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a b

Figure 1. The Kitaev honeycomb model. (a) The structure of the
model on the honeycomb lattice with two sublattices (labeled A and
B) and three bond directions (denoted x, y, z). The calculation of
the dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted. (b)
The ground state and dynamical phase diagrams of the model: the
phase with gapless fermion excitations fills the central triangle while
gapped phases occupy the three outer triangles. The dynamical re-
sponse Szz(q,ω) includes a contribution sharp inω in the red region,
but not in the green region.

problem of Majorana fermions hopping in the background of
an emergent static gauge field.

This remarkable feature permits, at least in principle, even
an analysis of the model’s dynamical properties, as noted in a
seminal paper by Baskaran and co-workers [12], who pointed
out an unexpected connection to the X-ray edge problem [13],
results of which were used to extract asymptotic correlators of
related models [14, 15]. This problem, whose tour de force ex-
act solution was obtained by Nozieres et.al. [16], is one of the
cornerstones of condensed matter physics, linked to the dis-
covery of Anderson’s ‘orthogonality catastrophe’ [17], and a
foundation for our understanding of local quantum quenches.

The possibility of accessing dynamical properties of spin-
liquids is of particular importance as these contain infor-
mation on fractionalised quasiparticles, and their theoretical
study is topical in view of recent neutron scattering inves-
tigations of candidate QSL compounds [5, 18, 19]. Indeed,
the S = 1/2 spinons in the Heisenberg chain were most im-
pressively visualised [20, 21] by an analysis of experiments
based on the exact Bethe-ansatz solution, specific to one di-
mension. Our work provides this information in complete de-
tail for the first time for a fractionalised quantum spin liquid in
more than one dimension. Through the connections to quan-
tum quenches and the physics of Majorana Fermions which
appear in our discussion, it cements the central role played
by the Kitaev model for our understanding of correlated and
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Figure 2. The exact dynamical structure factor of the Kitaev spin liquids. Total dynamical structure factor S(q,ω) =
∑

a
Saa(q,ω) and

the inequivalent components Saa(0,ω), as would be measured in inelastic neutron scattering and electron spin resonance, respectively, eval-
uated for three points in the phase diagram: (a+b) the symmetric point (Jx=Jy=Jz); (c+d) a gapless asymmetric point (Jx=Jy , Jz=0.7Jx)
and (e+f) a gapped point (Jx=Jy=0.15Jz ). Top: S(q,ω) on a logarithmic colour scale as a function of ω along the cutMΓKM through the
Brillouin zone. Bottom: dynamical susceptibility Saa(0,ω) for a = z, x at the same values of the exchange. Comparison with the adiabatic
response as explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution
to the response, present only in the region of the dynamical phase diagram coloured red in Fig. 1b. The insets to panels (b) and (d) show the
density of states of the matter fermions.

only about 2.5% of the signal at the symmetric point arises
from multi-particle contributions (see supplementary mate-
rial) in stark contrast to the case of the Heisenberg chain [20],
where the corresponding number is almost 30%.
For (II) [Figs. 2 e and f], in striking opposition, the response

includes a finite-weight δ-function component in ω at the dif-
ference ∆ in ground state energies, since the corresponding
matrix element is finite. It is a remarkable and unexpected
finding that – despite fractionalisation – the INS response has
a component sharp in energy (displayed in Fig. 3 b). Note
that the location in the phase diagram of the dynamical transi-
tion at which this sharp response appears is distinct from the
ground state phase boundary: it lies entirely within the gapless
phase (Fig. 1 b).
Discussion. Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
⟨M0|ĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉj |M0⟩ after the
latter has evolved for time t under a different Hamiltonian Ĥa.
The broad features of the resulting response of the Majorana
fermions above ∆ are a result of this quench. Quite surpris-
ingly, this can be well approximated by replacing the instan-
taneous flip of the bond by an adiabatic, rather than sudden,
switching-on of the potential V̂a. This amounts to replacing
|M0⟩ in Eq. (4) by the Majorana ground state in the presence
of the fluxes. One can show that in the limit of low energies,
the matter fermion eigenstates are, in fact, insensitive to the

flux addition, so that the resulting approximation (dashed line,
Fig. 2 b) becomes exact as ω approaches∆.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
(Fig. 2 b and d). Response is substantial over the entire single-
particle band width (shifted in energy by∆), with linear onset
above the gap. However, as a qualitative signature of the ef-
fect of gauge fluxes on matter fermion dynamics, the response
is far from being simply proportional to the density of states.
Instead, the peak in the latter at 2Jz due to the van Hove sin-
gularity [see inset to Fig. 2 b] yields a dip in the response.
Away from the symmetric point there are two van Hove sin-
gularities in the density of states, and in addition there is a
distinct response for differently orientated spin pairs, showing
one or two minima in the corresponding dynamical suscepti-
bility (Fig. 2 d).
Despite the formal similarities between the time-dependent

correlator Eq. (3) and the X-ray edge problem, the physics
arising from it is quite different. First, depending on the ex-
change Ja one can study a local quantum quench in either
gapless or gapped phases, the latter not presenting the pos-
sibility of low-energy fermionic excitations. Second, for in-
equivalent values of Ja the correlators for different spin com-
ponents are different. Third, theMajorana fermions in our cal-
culation arise due to fractionalisation of spin degrees of free-
dom as emergent particles. Fourth, they have not number, but
only parity conservation, and their dispersion exhibits Dirac


