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Dynamic structure factor of a 2D QSL - experiment

Observation of spin-excitation continuum — c.f. with sharp dispersive features for spin-waves

Interpretation in terms of fractionalization of spin degrees of freedom
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Integrated dynamic structure factor

T. Han, J. Helton, S. Chu, D. Nocera, J. Rodriguez-Rivera, Collin Broholm & Y. Lee, Nature 492, 406 (2012)

Dynamic structure factor at fixed energies



Outline

How one can test in experiment if one has a quantum spin-liquid ?

Shortage of experimental signatures due to lack of local order
Exotic quasiparticles do not couple directly to experimental probes

What are the signatures of emergent (fractionalised) excitations
In e.g. inelastic neutron scattering experiments ?

Kitaev model as a toy-model of a quantum spin liquid

Exact dynamic structure factor for an interacting 2D system

Interesting connections to quantum quenches

see a related work by Matthias Punk, Debanjan Chowdhury and Subir Sachdev, Nature Physics 10, 289 (2014)



Kitaev model

Ising-like Hamiltonian with anisotropic exchange on a honeycomb lattice

x—links y —links z—links

A. Kitaev, Ann. Phys. (2006)

Two spin-liquid phases: gapped and gapless

J.=1,J,=J,=0
gapped

gapless

Possible realization in cold atoms and magnetic materials ?
Duan, Demler, Lukin PRL (2003) in cold atoms, Jackeli, Khaliullin PRL (2009, 2010) in Iridates



Kitaev model. Exact solution

Many conserved quantities - local flux operators

. W, = 6%64626%66¢% Flux operators
20 o4
W,,H =0 and Wy, W] =0
1 5
The Hilbert space can be separated into sectors
corresponding to eigenvalues W, = =1
W2 =1

/5 - flux sectors

We have 2N sites and N plaquettes, so that Hilbert space dimension

within one flux sector is 22N/2N ~ 2N

Significant reduction of the Hilbert space dimension
Still need to diagonalize the Hamiltonian in the reduced space



Kitaev model. Exact solution

Introduce Majorana fermions Co j—1; Co 5 living on A, B sublattice /l\mt cell

N
By

gk> {djv&k} =0

which represent the “real” and “imaginary” part of a complex fermion

Majorana and complex fermions have the following properties
N2 AAL — A AL g ~Tv
c; =1, ¢jcp = —CxCj, JFk {a;,a,} =
For a complex fermion we can define a vacuum state such that

a;10) =0

(this is not possible for a Majorana fermion, so we use complex fermions in the calculations)

&;‘ — zbo‘ spin operators

A

here we introduced another 3 Majorana fermions per site b? which change fluxes



Kitaev model. Exact solution

Now we can write the Kitaev Hamiltonian in terms of Majorana fermions

for example, consider the term

/\m w .Ax ./\w/\ .Am/\x o A A . A Ve Ve
—Jy 05 0 = —Jpibiciibpcy = Jx(zbj by )iC;Cr = 1JpTU k), CiCr

bond operators U ;x), = ib; by

the Hamiltonian in terms of fluxes and Majorana fermions

H = E v, Uik, CiCk
jeAkEB,(jk)

Bond operators commute with each other and with the Hamiltonian

moreover f&%] k) — ] and we can block-diagonalize into sectors ’LL<j k) = +1

In each flux sector we obtain a quadratic Majorana fermion Hamiltonian



Kitaev model. Exact solution

Introduce two complex fermions by combining Majorana on the links

~ Y 1 7O QS A 1 A N
Xr — §(bjjk ™ Zbkjk) fr = §(CA,r +iCB,r)

The gauge field operators can now be written in terms of bond fermions
Uiy, = ib50R = 22X XY — 1
The eigenstates of the Hamiltonian can be written as a direct product

@) = |x) ®@|f)

flux sector matter sector
In the ground state there is 1 bond fermion on each bond % ;) = 1

The Hamiltonian is quadratic in terms of matter fermions



Kitaev model. Exact solution
The Hamiltonian can be written in a diagonal form
Hy =" |S(q)l(2afaq — 1)
q

where
S(q) = Jye' ™  J el 4 ], in the ground state a44|0) = 0

flux excitations are gapped
matter excitations are gapped or gapless

//\\>
N | K
\_/

/

e

J.=1,J,=J,=0 |
gapped "

gapless

matter excitation spectrum in the gapless phase



Dynamic structure factor

In an inelastic neutron scattering experiment one measures a
Fourier transform of a dynamic spin correlation function

S (t) = (0]67 (t)55(0)[0)

Our task is to calculate this function

: A A (O, o
on sublattice A: 7 ZCz(X(zﬁa T f(ij)a) <O|>A<a>2b\0> — Oup
on sublattice B: 07 = Ci (X (i), — X/is
J J (X<7“~7 ) o X <7a7>0é) Fluxes are static -> N.N. correlations only!

Representation in terms of Majorana fermions

Sg,jb( ) _ _Z<O|61Hotéz —i(Ho+V,)t J‘O> ab&(%J)NN

AN

here V, = —J,2ic;c; is alocal potential

Note that all correlators beyond nearest neighbour are zero
Baskaran et.al, PRL (2007)



Local quantum quench, X-ray edge problem

Spin-flip in the INS measurement fractionalizes into
two fluxes and a Majorana fermion

This leads to an abrupt change of a local potential for a
Majorana fermion - similar to X-ray edge problem

Singularities in X-ray absorption spectrum

At
N

localized level : >
O
: wc w

>®

power-law behaviour due to soft excitations

Alw) ~ (w—we)”

X-ray edge problem

Anderson orthogonality catastrophe Phys. Rev. Lett. 18, 1049 (1967)



Lehmann representation

Qualitative features of the dynamic response can be read-off
from the Lehmann representation

A states with two extra fluxes

Response is gapped due to the flux-gap A = By, — Lo

Jpy=J, =J.,, An~0.26J]

Above the flux gap the response reflects the nature of
the matter fermion ground state

H conserves fermion parity {Mg|é;|\) changes parity

There are two possibilities depending on the parity of the ground state !



Dynamical phase diagram

(I) If the ground states with and without flux have different parity
the first contribution to the response starts with (M |¢;|\o)

SO (w) ~ §(w — A) +two-particle response

(1) If the ground states |Mj) and |A\g) have the same parity
the first contribution to the response starts with  (My|¢;|Ag and 1 exc.)

single particle response, no delta-function

/liit cell D/i\ different parity

A
/ qualitatively, deep in the gapped phase
n, 11, the flipped flux binds one fermion on the
B

A-B bond -> change of parity

same parity

\f new dynamical phase diagram! Jj =, =0 J.=J. =0



Single-particle response

SiP(w) = =iy (Mole;|\)(A|e;| Mo) x 6(w — (Ex — Eo))di;0as
A

we are interested in the response in the green region of the phase diagram
note that | M) is the vacuum of & operators

the Hamiltonian H = ﬁg + Va Is quadratic, diag. via Bogoliubov transf.

single particle states are given by  |\) = IA)J; [ Ao)

g __"T * — *"T
two-flux ground state  |Ag) = [XTX]ie ;8 X" 7Y a

for example the overlap between two g.s. |<)\o \MOH — \/ |detX \

expansion of the exponent terminates - exact 1 quasi-particle contribution



Mapping to X-ray edge problem
Let us look at the expression
S%hm0 = —i{Mo|e™ ot e q9e ™ HoH VN0 o | M)
this can be written as

S;; = —i(Mo|é;(t)S(t,0)é;(0)| Mo)

here
&;(t) = etHotg,e—iHot V() = —2iJ.é;(t)é;(t)

and the S-matrix

A . A A t A
S(t,0) = eHotem i Ho+ Vo)t — Texp{—i [ dt'V,(¢')}
0

now transform to complex fermions



Mapping to X-ray edge problem

A general form in terms of complex fermions is
t

~ (Mo|(f(t) £ f3 (1)) Texp{—i [ dt'V.(t)}(f(0) + f5(0))|Mo)

0

here V, (t) = —4J, [fg (t)fo (t) — 1/2] is a local (on-site) potential

which is switched-on at time t=0
now we can use Wick theorem

note that one would expect anomalous terms in the expansion

however these terms vanish, e.g.  Fy = —i(Mo|T[f(¢)f(t)]|My) = 0

S*% (1) = i[G(t, 0) + G(0,1)]

G(t,0) = —i(Tf(t) fF(t)e="Jo &'V=0D | ay)

similar Green functions appear in the X-ray edge problem calculations



Mapping to X-ray edge problem
Expansion of the GF separates into connected and disconnected contributions

connected diagrams can be obtained from disconnected ones

need to solve a singular a singular integral equation

(4
GL(t.0) = Go(t,0) — 4. / 0t Go (1. £)Ga(t' . 0)
0
1

Exact solution by Nozieres De Dominicis in the case G (t) ~ "

in our calculation (Kitaev model) the behaviour of the bare GFis ~ Go(t) ~ —
complicated, and the asymptotics is of different form t
ND solution is not applicable, need to use general methods from the theory of
singular integral equations, see a classic book by Mushkeleshuvili

A simplified approach (with a potential switched on and off adiabatically) provides a
good approximation in our case (compared to the X-ray edge)



Dynamic structure factor (green phase)
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- Response is gapped - gap for gauge-flux
- Broad features

- Van-Hove singularities

- Band edge of matter fermions

many-particle contributions approx. 2.5%



Dynamic structure factor (green phase)

C different parity
6
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= 4 :
3 4 same parity
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e ——
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Dynamic structure factor (red phase)

- Response is gapped - gap for gauge-flux

- \ — $"(q=0.00) 1 - Delta-function response above the flux gap
0l — 100*s"(=0.)| | * Broad featu_res B
sl | - Van-Hove singularities
SR 1 - Band edge of matter fermions
o 1 - Anisotropic response
K 6 7 Sharp features in the response




Summary

Emergent quasiparticles show up as characteristic features

in the dynamic structure factor
flux gap and the features of Majorana fermion spectrum

New dynamical phase diagram
Sharp features in the response despite short-range correlations

Response in the presence of magnetic field, disorder, Heisenberg pert.

Raman response: J. Knolle, Gia-Wei Chern, D. L. Kovrizhin, R. Moessner, N. B. Perkins, arXiv:1406.3944
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