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Answer all four questions.
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load.)
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1 A set of laser fields couple two electronic levels in an atom at position r =
(x,y), giving rise to a position-dependent effective potential

B sinh y el
V<T) — ‘/0 (eikx —sinh y)

expressed here in the basis of the two electronic levels.

Consider first the situation in which the atom is moved at a constant speed v
along the line y = 0, such that =(t) = (z,y) = (vt,0).

(a) Determine the instantaneous energies F(t) and instantaneous eigenstates |+, 7(t))
for a stationary atom at the position r(t) = (z,y) = (vt,0). [5]

(b) By expanding the wavefunction as

(1) = ci(O)]+, (1) + c- ()=, 7(1))

and using the time-dependent Schrodinger equation, show that the electronic state
of the atom will evolve adiabatically for ii|(—, r(t)| 4|+, 7(t)) < Vy. Use your results
from (a) to deduce the condition on velocity v for which adiabaticity holds. 8]

Now consider the atom to have a mass m, and to move freely in the z, y-plane
under the Hamiltonian

h?
H=—-—"V’®14+V
2mV ®1+V(r)

where 1 is the identity operator in the space of the two electronic levels and V(r) is
the optical potential described above, whose local eigenstates are |+, 7).
By expanding the wavefunction as

(7)) = i (r)[+,7) + 0 (r)[=7)

and making the adiabatic assumption, the time-independent Schrodinger equation,
H|¥(r)) = E|¥(r)) can be written as the two equations

(7] | g O V()| vl ) = Busr) ()

for the wavefunctions 14 (r) describing atoms in the two energy levels.

(c) Show that the equations (x) lead to effective Hamiltonians Hiv, (1) = EvL(r),
with

1 (h ?
Hy=—|(-V+hA, | +Vi(r)
2m \ 1
where Ay (1) = —i(£,r|V|£, 7). Deduce a general expression for Vi (7). 8]

(d) Outline the conditions under which the adiabaticity assumption leading to (x)
holds. [4]

(TURN OVER)



Solution 1. (a) On the line y =0

0 eikw
V(z,y =0) = Vo <eikx 0 >

The energies are Ey(x) = £Vj and the states are

£00) = 75 4 L)

ihly) = VIv)

d
ihé+|+,t>+ih6+%’+,t> = E+C+H—,t>
d
ihé_|—,t) +ihe——|—,t) = E_c_|—,t
zc\,>+zcdtl,) c_|—,t)
Taking (4, ¢| on these gives
ihes = BEycs —ihes (4ot S t) — ke (4, 8|2 1)
+ = +C+ +\T at' AR
o . d ) d
ihe_ = E_c_—zhc_(—,t\@|—,t>—zhc+<—,t|%]+,t>

Adiabatic provided the off-diagonal parts are negligible
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Bl 20 - 2O} < (By — B)/2= Vo

Use |—, z(t)) = % (_elikvt> to compute

d 1 1
%|—>$(t)> G <+Z~kveikvt>

from which < +, z|(d/dt)|—, z) = ikv/2.
Thus we need hvk/2 < Vjp, i.e.

VL &
2hk

(c)
2
(& |- 3o 92+ V| vkt = B
Expand out

(EHVEelE) = &IV [(Ves)lE) + V)]
= (£[E) Vs + 2E|VIE) - Vi + v (£|VZ]E)
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Define A1 = —i(£|V|%) to write

1 252
. [—thlei + vai “Ag — ﬁQ(i|V2|i)¢4 = Eyy

1

2m

h 2
(i—i-hAi) —hQ\AiP—hQ(i|V2|i> vy = FEiy

= Hypy = Eipg

_ 1 (h 2
withHy = — -V +hAL: + Vi
2m \ 1
h? 2 2
Valr) = Balr)— 5 (145 + (£I921£)0)

(d) We require that the off-diagonal elements are small compared to the energy spacing
of adiabatic levels. Credit will be given for this statement, and reasoned cases setting the
effective size of the off-diagonal elements.

This requires:

- [ v < 1By - B

2m
2 .
— SV 'A—+‘ < |By — E_|[4]* where A_y = —i(—,r|V|+,7)

The second condition is essentially equivalent to the condition in (b)

i () ] + ()] < | By — B

with the instantaneous velocity 7(¢) denoting the local velocity %wivm\ /14|

(TURN OVER)
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2 The propagator for a quantum particle moving in one dimension is defined as
K(z,t|2', ) = 0@t — t){(z|U(t,t')|z")
where |z) are the position eigenstates, U(t,t’) is the time-evolution operator from

initial time ¢’ to final time ¢, and 6(t) is the Heaviside step function.

(a) Show that, for a Hamiltonian H(t) = —2 - 4 V(z,t), the propagator satisfies

2m dz?

9,
[iha - H(t)] K(x,t|x' t") =1ihé(t — t")o(x — ')
with the boundary condition that K (x,t|a’,t') =0 for ¢t < t'.

n? 42

For a simple harmonic oscillator, with Hamiltonian Hy = —5—4=

the propagator starting from 2’ =0 at ¢’ =0 is

/ mw .mw
K()(I', t|0, 0) = H(t) m exp <1§l‘2 cot wt) .

(b) Show that, in the presence of a time-dependent force, H = Hy — xF(t), the
solution to the equation in part (a) can be found, for 2’ = ¢’ = 0, by writing

+ smw?a?,

K (2,1]0,0) = Ko(x, 1]0,0) exp Gz, )/
with G(x,t) = A(t) + B(t)z, provided that

B(t) + weot(wt)B(t) = F(t).
Hence, find an expression for B(t).
[Hmt: multiply the differential equation by sin wt.]

(c) By making reference to the Feynman path integral formulation of quantum
mechanics, comment on the relation of these results to the classical trajectory.

[12]

8]



(© 2022 University of Cambridge

V7.1

Solution 2. (a) Note that the Heaviside function corresponds the boundary condition.
Inserting the expression for the propagator to the Schrodinger equation gives

[ihgt - H(t)] Ot — ') (z|U(t,¢)|a!) = ihd(t — ) {z|U(t, )2

AU (t, 1)

|2) = 0(t — ) H(t)(z[U (¢, 1) 2"),

upon employing 9;0(t —t') = 6(t —t'). The terms involving the Heaviside function cancels
when we use the fact that ;U = —3 HU. This gives

[ihaat — H(t)} Ot — ) (x|U (L, t)|2") = ihé(t — ) {(z|U(t,t')|z")

= ihd(t — t')(z|z) = ihd(t — t')d(xz — 2')
(b) For the simple harmonic oscillator, we have

[mgt - HO] Ko(z,10,0) = ihd(t)5(x),

which corresponds to the Schrodinger equation for ¢ > 0.
So, for the driven harmonic oscillator:

., 0 ; . 0K G /h oG
1ha — Hy+ :vF(t)] Koe'®/h = [lhato - HOKO] G/ — KOEe G/h
0
1P (200K00G Ko (0G\*| oy
2m | h Ox Ox K% \ Oz
dG oG 1 [9G\?
where, on the last line, we used
0Ky imw

W = KOT.I COt(LL)t)

For G(z,t) = A(t) + B(t)x, this gives
. . 1
—A — Bz —wzcot(wr)B — —B* + Fr=0.
2m
Equating terms for each power of x:
B(t)”

2m
B(t) +weot(wt)B(t) = F(t).

Aty =

(TURN OVER)
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Modifying the second line:

Bsin(wt) + wcos(wt)B(t) = F(t)sin(wt)
d . .
T [Bsin(wt)] = F(t)sin(wt)
]‘ ¢ / / 3 /

(¢) The path integral formulation expresses the propagator as the sum over all paths, x(t),
weighted by e?5=Ol/7 with S the action, and with x(t) satisfying the boundary conditions
x(t;) and z(ts) at initial and final times, ¢; and ty,

K~ / Da(t)eiSe O/
x(ti)%x(tf)

Since for the (driven) harmonic oscillator the action is at most quadratic in x(¢)
and #(t), by expanding z(t) = x(t) + dx(t) around the classical trajectory z.(t) — which
extremizes the action — this can be written exactly as

K ~ iSlza®]/h D (t)iSb=0)/n
0—0

where the remaining path integral of dx(¢) is independent of the initial and final positions.
Thus, the dependence on x(t;) and z(t) enters only through the prefactor e [war (D)/1
which is the classical action, determined on the classical trajectory.
The solution here is of this form: the content of the exponent is this classical action.
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3 A system of N bosons is described by the second-quantized Hamiltonian

H= [ar vt vy [[arartst v eV e

where ¢ (r) and '(r) are the field operators, and Vi(r, 7') is the two-body interac-
tion potential.

(a) State the set of commutation relations that the field operators satisty.

(b) Hence show that
oio). [[ar (Gouie)) )| = -9 F)

where F'(r) commutes with ¢(7) and vanishes at large |r|.

(c) Write down a second-quantized form for the total momentum operator, P. By
employing appropriate commutation relations, and assuming that ¢(r) and ' (r)
vanish at large |r|, show that the total momentum P is conserved when V; = 0 and
Va(r, 1) = Va(lr —r').

You may use the facts that [AB,C| = A[B,C] + [A,C]B; [A, BC| = B[A,C] +
[A, B|C; and d|r|/dr = r/|r|.

(d) Defining the current density operator as

= L)Vl - (Vo))

© 2mi

J(r)

show that the particle density p(r) = ¥'(r)1(r) satisfies the continuity equation

dp
5 TV I =0,

in the Heisenberg picture.

(e) How would each of the above answers be affected if the particles were fermions
instead of bosons?

(TURN OVER)

2]

8]

8]

[4]
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Solution 3. (a)

(b) Integrate by parts:
/dr Vi (r )) F(r') = —/dr'@ZJT(r’)VT/F(r’)

o). [ar (Fot ) )| = = [ [wi). 0 0)] )

(¢c) Momentum operator is P = —ih [ dryf(r) Vi (r).

- j; dr de’ [V, () V), 61 () 9,0 0)
S
4y [ drarart [wle) w0 Vallr = /)0l r), 01 () Vs )

~~

O

First commutator gives zero upon using integration by parts where the boundary
terms vanish:

o = - / / dr dr' V20 (r) [6(r), 6 () V()| + [01 (), 0 () Ve ()] F2(r)
= — //dr dr's(r — ') {V%W(r) V() + Vot (r) - V?w(ﬂ}
=~ [ar{Viie) V.00 - Vi) V) -

Similarly, the second commutator reduces to

Doc//drdrvz\r— |)‘ |

where both Va(|r — 7'|) and its derivative Vj(|r — 7/|) are symmetric functions, while

h changes sign upon changing r and r’. Therefore, the integral vanishes and the total

momentum is conserved

dP
a0
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(d) Following the algebra in part (c) but for p(r) = ' (r)y(r):

dp(r) i
at ﬁ[H’p ]
i 2
~h 2hm/ ar [V,41(r) - V() 01 (r) ()
+% / drVi(r)[Wf (r)e (r), &1 ()0 ()]

g [ drdrate ) (Bt e ). o )

The one-body interaction term vanishes as density at two different points commute
upon integration:

3 [ @i =) {uimei) - i } o
Similarly, the two-body interaction term vanishes:
o= [arara (w6 [0l ), 0] 6y () + )l ) [0, T o)
= / dr dr'Vad(r’ — ") { =u (ot (r)u (e () + o et e rw () }

i / dr dr'Vas(r — ") {—wT(r”)¢T(r’)1p(r')w(7’) + M(rw*(r’)wr’)wr”)}
= 0.

What is left is the continuity equation:

i 2
W= 25 arstr ) [ V2l r) o) — () V2(r) )
_ 2iml (V2 r) - w(r) — o1 (1) V2e(r)
- _v,-J.

(e) They would not change except for (a) where for fermions:
{w(r), ¢ (r)} = o(r — ')

{¥(r),¢(r)} =0
{wi(r). 9 (r)} =0

(TURN OVER)
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4 The equation of motion for the density operator of a quantum system is

% (t) = fil [p(t), H) +~Lp(t)]

where H is the Hamiltonian and
1
Llp] = LpLT — 3 (L'Lp+ pL'L)

describes dissipative coupling to an external environment via some operator L.

(a) Show that the above equation of motion for p(t) leaves Tr[p(t)] time-independent.
[ You may use the fact that Tr{AB] = Tr{BA].]

(b) Show that for a two-level quantum system one can parameterise p(t) in terms
of three quantities p;—,, .(t) as

o) =31+ 3 pltlor,

Z'Zfﬂ,y,z

where 1 is the 2 x 2 identity matrix and o, , . are the Pauli matrices.

: : 01 0 —i 1 0
The Pauli matrices are o, = (1 0) Oy = (i 0) 0z = (O _1) : ]

Consider a two-level system, with Hamiltonian H = hAc, and dissipator
L = o_, where o4 = 0, L ioy,.

(¢) Show that the equation of motion for p,(t) is

p- = —4yp. —27.

[ You may use: [01,0m) = 2i€1mn0y, 040 = 2(1 4+ 0,),0_04 = 2(1 — 0.), and
0_0,0L =0_0y04 =0, 0_0,0, =2(1— az).]

(d) Given that the remaining equations of motion are p, = —2Ap, —2vp, and p, =

2Ap,—2vp,, determine the steady state density operator to which the system evolves
at long times, t — oco. How is it related to the eigenstates of the Hamiltonian?

The equation of motion is extended to include a second dissipator, as
Cp(0) =+ Io. H] +7L15] + 4 L[]
with £'[p] of the same form as L[p] but with L = o_ replaced by L' = 0, = 0, +i0_.

(e) For what value of 7'/~ does the steady state density operator, at t — oo, describe
thermal equilibrium at temperature 77

[You may use: 0_0,04 = 0y0,0_ =0, 0y0,0_ = —=2(1+ az).}

[4]
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Solution 4. (a)

d i

= Tlo] = $TelpH — Hp| +yT[LpLT = (1/2)(L'Lp + pLTL)]
- %Tr[pH — pH] +~Te[LTLp — (1/2)(L' Lp + L1 Lp)]
= 0

using cyclic permutation of operators within the trace.

(b) We use the facts that: p is a 2 x 2 matrix; p is hermitian; its trace is 1. This leaves
only three real parameters that are free to be chosen

_ (1/2+pz p:c_ipy>
pz+ipy 1/2—p,
Equivalently, the three Pauli matrix exhaust the traceless 2 x 2 Hermitian matrices.

(c) Weuse L = o_ and LT = o to get the full equation of motion

. . 1 1
pioi = 1A[oi,0:]+ 5y0-04 — 17(2040-)

+ypio_oioy — %Pi(0+0'—(71' +oi010-)
= iAoy, 0,] — 270,

+ypio_oioy — %,07;<O'+0'_O'Z' + 004 0_)

where we have used oyo_ = 2(1+40,) and o_oy = 2(1 — 0,) from the hints.
Now, using 0_0,0 = 0_oyo4 = 0 and 0_0,01 = 2(1 — 0,) we find that the
equation of motion for the coefficient of o, depends on only p,, i.e.
P00, = 0—2v0,
+7pz(2(1 = 02) = 2(1 + 02)02)
= =270, +vp.(2—20, — 20, —2)

Note that there are no contributions from the time derivatives of p,0, and p,o.. Hence,
equating the coefficient of o, we get

pz = —4ypz —27.

(d) Given the other equations, we see that there are steady states with p, = p, = 0 and
—2v —4vyp, =0, i.e. p, = —1/2. Hence

o ()

(TURN OVER)
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This is a pure state. It corresponds to the energy eigenscate of the Hamiltonian
with energy —AA. Thus for A > 0 this is the groundstate. For A < 0 it is the excited
state.

€ Ada tln the reViOuS deriVatiOn, Nnow fOl“ ! and L, leadS to an a.ddltlonal term 111
ptng p Y
P20

+y'o. + v ps(oy0.0- —(1/2) {U—U+Uz}+
=+270, + 7' ps(-2(1 + 0.) — 20.(1 — 02))
=270, —4v'p.o.

Hence the new equation of motion is

pr = —4yp. — 2y —4y'p. + 29
1 (Y=
== \v 14
1 <’y' O)
Y+ \0 v
At thermal equilibrium

1 [eBrA 0
_ ,—BH _
p=e /ZZ< 0 etBrA )

The new steady state is

which leads to
p(t = 00)=1/2+ p,o, =

so et2PhA — ~/ /~ Thus

[y = o—2hA kT




