
NATURAL SCIENCES TRIPOS Part II

Wednesday 22 April 2020, 10.30 to 12.30

THEORETICAL PHYSICS 2

Answer all four questions.

The approximate number of marks allotted to each part of a question is
indicated in the right margin where appropriate.

The paper contains four sides and is accompanied by a booklet giving
values of constants and containing mathematical formulae which you
may quote without proof. (The booklet is available for separate down-
load.)

Please write answers in a manner that will
be suitable for scanning and uploading.

You will have 30 minutes after the end of the
examination to scan and upload the answers.

(See coversheet for further details.)
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1

1 A particle of mass M and energy E = ~2k2/2M scatters elastically from a
spherically symmetric potential V (r) which is zero for r > R0.

(a) State what is meant by partial wave analysis. Explain in general terms (without
mathematical detail) why scattering can be encoded in terms of phase shifts. [6]

(b) Writing the wavefunction for a particle with angular momentum quantum num-
bers ` and m` as

Ψ(r) = Y`,m`
(θ, φ)

u`(r)

r

where (r, θ, φ) are spherical polar co-ordinates, and Y`,m`
(θ, φ) is the spherical har-

monic, show that the function u`(r) satisfies [5][
− d2

dr2
+
`(`+ 1)

r2
+

2M

~2
V (r)

]
u`(r) = k2u`(r) .

[You may use ∇2 = 1
r2
∂r
(
r2 ∂

∂r

)
− L2

~2r2 where L2 is the squared total angular mo-
mentum operator.]

(c) Show that for ` = 0 the function u0(r) at large radii, r > R0, can be written as

u0(r) ∝ sin(kr + δ0) (?)

and explain the physical meaning of the phase shift δ0. [5]

A certain potential has a bound state for ` = 0 at an energy E = −EB with
EB positive.

(d) Show that for r > R0 the bound state wavefunction is of the form

uB0 (r) ∝ e−κr

and determine the value of κ. Hence show that, for EB � ~2/MR2
0 the bound state

wavefunction is mostly at r > R0. [4]

(e) Assuming EB � ~2/MR2
0, use orthogonality of the scattering state (?) with

uB0 (r), or otherwise, to determine the phase shift δ0 for low-energy scattering. [5][
Hint: In this limit, you can compute the overlap by considering R0 → 0 and
integrating the functions over r = 0→∞.

]

c ©
20

20
U

n
iv

er
si

ty
of

C
am

b
ri

d
ge

A

V7.1 (TURN OVER)



2

Solution 1. (a) – The potential must have spherical symmetry.
– Energy eigenstates can be classified in terms of angular momentum: Each angular
momentum channel scatters without change of angular momentum.
– Conservation of flux means that for the outgoing wave in a given angular momentum
channel can only differ from that with no scattering potential by a phase shift, conven-
tionally denoted e2iδ` . (Scattering is unitary.)
– There is one phase shift for each value of the total angular momentum `.

(b) The TISE at energy E = ~2k2/2M is

− ~2

2M
∇2ψ + V ψ =

~2k2

2M
ψ[

− 1

r2
∂r
(
r2∂r

)
+

L2

~2r2
+ V

]
ψ = k2ψ

L2Y`,m = ~2`(`+ 1)Y`,m

− 1

r2
∂r
(
r2∂r

) u`(r)
r

+
`(`+ 1)

r2
u`(r)

r
+ V (r)

u`(r)

r
= k2

u`(r)

r

Simple manipulations of the derivatives lead to requested result:[
− d2

dr2
+
`(`+ 1)

r2
+

2M

~2
V (r)

]
u`(r) = k2u`(r) .

(c) For r > R0

− d2

dr2
u0(r) = k2u0(r) .

The general solution is of the form

u0(r) ∝ sin(kr + δ0)

Some discussion of the interpretation of δ0 required could include points such as:
– For no potential, δ0 = 0, required such that u0/r is finite as r → 0.
– The scattering introduces non-zero δ. Writing as:

u0(r) ∝ e−ikr − e+ikr+2iδ0

we see that the phase shift is 2iδ0 on the outgoing wave.
– For low energy, k → 0, the phase shift can also be interpreted as a scattering length,
δ → −ka.

(d) For r > R0 state of energy E = −EB satisfies

− d2

dr2
u0 = −κ2u0

with κ =
√

2MEB/~.
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The bound state solution must be of the form u0 ∝ e−κr, with the other wave e+κr

vanishing to allow normalization.
For EB � ~2

MR2
0

one has 1/κ � R0. Therefore most of the probability of the

boundstate lies outside of R0.

(e) The scattering wave must be orthogonal to this. For EB � ~2/MR2
0 we have 1/κ� R0

so most weight lies outside R0.
Orthogonality requires∫ ∞

R0'0

sin(kr + δ0)

r

e−κr

r
r2dr = 0

At low energy sin(kr + δ0) ' kr + δ0. Hence∫ ∞
0

(kr + δ0)e
−κrdr = 0

k/κ2 + δ0/κ = 0

δ0 = −k
κ
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2 (a) Write the density matrix in the {|↑〉, | ↓〉} basis for an ensemble of
spin-1/2 particles in each of the following situations:

(i) each particle is in the state |ψ〉 = 1√
2
(|↑〉+ i|↓〉);

(ii) an equal statistical mixture of states |↑〉 and |↓〉;
(iii)an equal statistical mixture of states 1√

2
(|↑〉+ |↓〉) and 1√

2
(|↑〉− |↓〉).

(b) Which of the above situations are physically distinct? What observable
can be measured to differentiate them? Find the expectation of this observable
from the three density matrices. [5]
The spin operators are described by Pauli matrices in the {|↑〉, |↓〉} basis:

Sx =
~
2

(
0 1
1 0

)
, Sy =

~
2

(
0 −i
i 0

)
, Sz =

~
2

(
1 0
0 −1

)
.


Two spin-1/2 particles interact via the Hamiltonian

H = −2J(S1 · S2/~2 + 1/4) .

Writing the time-evolution operator U(t) = e−iHt/~ in the basis of states {|↑↑〉,
|↑↓〉, |↓↑〉, |↓↓〉} gives the matrix

U(t) =


eiθ 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 eiθ

 ,

where θ ≡ Jt/~.

(c) Suppose we prepare the system in the state |↑↓〉 at t = 0. Find the density
matrix at time t using ρ(t) = U(t)ρ(0)U †(t). What pure state does it describe? [5]

(d) Find the reduced density matrix ρred(t) describing the first spin by tracing
over the latter. [4]

(e) Find the entanglement entropy Sent(t) from the eigenvalues of ρred. When
is the entanglement minimised, and maximised? What are the corresponding
states of the total system? [5]

Solution 2. (a) (i) Since every particle is in a pure state |ψ〉, the density operator is given
by

ρ = |ψ〉〈ψ| = 1

2
(|↑〉+ i|↓〉)(〈↑| − i〈↓|)

=
1

2
(|↑〉〈↑|+ |↓〉〈↓| − i|↑〉〈↓|+ i|↓〉〈↑|) ,
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which is represented in the {|↑〉, |↓〉} basis by the matrix ρ1 = 1
2

(
1 −i
i 1

)
.

(ii) For an equal statistical mixture of |↑〉 and |↓〉, the density operator is simply

ρ =
1

2
|↑〉〈↑|+ 1

2
|↓〉〈↓| ,

represented by the matrix ρ2 = 1
21, where 1 is the identity.

(iii) For an equal statistical mixture of |ψ±〉 ≡ (|↑〉 ± |↓〉)/
√

2, we have

ρ =
1

2
|ψ+〉〈ψ+|+

1

2
|ψ−〉〈ψ−| =

1

2
|↑〉〈↑|+ 1

2
|↓〉〈↓| ,

which is again represented by ρ3 = 1
21.

(b) Comparing the three density matrices, one finds that (i) is physically distinct from (ii)
and (iii). Situations (ii) and (iii) are physically identical as all measurements would yield
the same expectation in both.

Since the pure state |ψ〉 in (i) is an eigenstate of Sy, one can simply measure Sy to
distinguish it from the other two cases.

The expectation is given by 〈Sy〉 = Tr(ρSy). Using the matrices representing ρ and
Sy gives: (i) 〈Sy〉 = ~/2, (ii) 〈Sy〉 = 0, and (iii) 〈Sy〉 = 0.

(c) In the {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} basis, the initial state |↑↓〉 is described by the density
matrix

ρ(0) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

Hence, the time-evolved density matrix is given by (with θ ≡ Jt/~)

ρ(t) = U(t)ρ(0)U †(t)

=


eiθ 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 eiθ




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



e−iθ 0 0 0

0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iθ



=


0 0 0 0
0 cos2 θ −i sin θ cos θ 0
0 i sin θ cos θ sin2 θ 0
0 0 0 0

 .

From this expression, one can directly infer that ρ(t) describes a pure state |ψ(t)〉, i.e.,
ρ(t) = |ψ(t)〉〈ψ(t)|, where

|ψ(t)〉 = cos θ|↑↓〉+ i sin θ|↓↑〉 .

This is also found by applying the evolution operator U(t) to the initial state |↑↓〉.

(d) We write ρ(t) in operator form as

ρ(t) = cos2 θ|↑1↓2〉〈↑1↓2|+ sin2 θ|↓1↑2〉〈↓1↑2|+ i sin θ cos θ(|↓1↑2〉〈↑1↓2| − |↑1↓2〉〈↓1↑2|) ,
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where the explicit labels 1 and 2 help distinguish the two spins. Tracing over the second
spin, one finds the reduced density matrix describing the first,

ρred = 〈↑2|ρ(t) |↑2〉+ 〈↓2|ρ(t) |↓2〉
= cos2 θ|↑1〉〈↑1|+ sin2 θ|↓1〉〈↓1|

=

(
cos2 θ 0

0 sin2 θ

)
,

in the {|↑1〉, |↓1〉} basis.

(e) The entanglement entropy is given by

Sent = −tr[ρred log ρred] = −
∑

i
λi log λi ,

where λi are the eigenvalues of ρred. In our case, these are simply cos2 θ and sin2 θ. Thus,

Sent = − cos2 θ log(cos2 θ)− sin2 θ log(sin2 θ) .

Clearly, Sent is nonnegative as 0 ≤ cos2 θ, sin2 θ ≤ 1. It vanishes when either cos θ or sin θ
equals ±1, i.e., for θ ≡ Jt/~ = nπ/2, n = 0, 1, 2, . . . .

From (c), we find this minimum corresponds to a product state,

|ψ(t)〉 = ±|↑↓〉 or |ψ(t)〉 = ±i|↓↑〉 .

The entropy is maximised when cos2 θ = sin2 θ = 1/2, i.e., for θ = (2n+ 1)π/4, n =
0, 1, 2, . . . . This is apparent from symmetry and can be checked explicitly by substituting
cos2 θ = x and setting dSent/dx = 0, which gives x = 1/2 and Smax

ent = log 2.
From (c), such a situation corresponds to an equal superposition of |↑↓〉 and |↓↑〉 (a

Bell state),

|ψ(t)〉 = ± 1√
2

(|↑↓〉 ± i|↓↑〉) .
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3 (a) Consider a particle in a time-dependent harmonic well given by the
Hamiltonian

H(t) =
p2

2M
+

1

2
M(ω(t))2x2 .

Write the instantaneous Hamiltonian H(t) in terms of the ladder operators
a(t) and a†(t), where

a(t) =
1√
2

(
x

ξ(t)
+ i

ξ(t)

~
p

)
and ξ(t) ≡

√
~

Mω(t)
, (∗)

and state its eigenvalues. (You may directly quote the results.) [4]

(b) The particle is initially in the ground state |0〉 of H(t = 0). The frequency
ω(t) is ramped from ω0 to 2ω0 over an interval τ , i.e., ω(t) = ω0(1 + t/τ).
Without any calculation, argue what condition τ and ω0 must satisfy for the
ramp to be “slow” or adiabatic. What would be the final energy in this case? [4]

(c) By expressing x in terms of a0 and a†0, show that H(t) can be written as

H(t) = H0 +
1

4
~ω0

[(
ω(t)

ω0

)2
− 1

](
a0 + a†0

)2
,

where H0 is the Hamiltonian for t = 0 and a0 ≡ a(0).
[
Use (∗) at t = 0.

]
[4]

(d) Use this expression to find the final energy expectation 〈H(τ)〉 for a sudden
ramp, where the particle has no time react. Why is this energy different from
that in the adiabatic case?

[
Note: a0|0〉 = 0 and [a(t), a†(t)] = 1.

]
[5]

(e) At any point during the ramp, the state |ψ(t)〉 can be written as a super-
position of the instantaneous energy eigenstates |n〉t,

|ψ(t)〉 =
∞∑
n=0

cn(t)|n〉t ,

where the states are ordered in increasing energy. Assuming we start from the
ground state at t = 0, which of the coefficients cn(t) will always be zero? Use
symmetry arguments (no calculation required). [3]

(f) Use the time-dependent Schrödinger equation and the result

d|n〉t
dt

=
~ω0

2τ

∑
m 6=n

t〈m|
[
a(t) + a†(t)

]2|n〉t
En(t)− Em(t)

|m〉t

to write the equation of motion for the coefficients in the form

dcm(t)

dt
= Am(t)cm(t) +

∑
n 6=m

Bmn(t)cn(t) .

You do not need to evaluate inner products. Compare the frequency scales in
Am and Bmn to explain how the adiabaticity condition is recovered. [5]
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Solution 3. (a) The same transformation was used for the time-independent harmonic os-
cillator to express the Hamiltonian in terms of ladder operators. Hence, the instantaneous
Hamiltonian can be written as

H(t) =
[
a†(t)a(t) + 1/2

]
~ω(t) ,

which has eigenvalues En(t) = (n+ 1/2)~ω(t), n = 0, 1, 2, . . . .

(b) For the sweep to be “slow” or adiabatic, the interval τ must be sufficiently large.
The only other timescale is 1/ω0, which governs the dynamics of the unperturbed system.
Thus, adiabaticity requires τ � 1/ω0, or ω0τ � 1.

For an adiabatic sweep, the particle stays in the instantaneous ground state. So the
final energy is just the ground state energy of the final Hamiltonian, which is E0(τ) = ~ω0.

(c) Adding Eq. (∗) and its Hermitian conjugate at t = 0, one finds

x =

√
~

2Mω0

(
a0 + a†0

)
.

Using this expression, the instantaneous Hamiltonian can be written as

H(t) =

[
p2

2M
+

1

2
Mω2

0x
2

]
+

1

2
M
[
(ω(t))2 − ω2

0

]
x2

= H0 +
1

2
M
[
(ω(t))2 − ω2

0

] [ ~
2Mω0

(
a0 + a†0

)2]
= H0 +

1

4
~ω0

[(
ω(t)

ω0

)2
− 1

](
a0 + a†0

)2
.

(d) For a sudden ramp, the particle has no time to react, so the final state is the same as
the initial state, |0〉. Hence, the final energy is given by

〈0|H(τ)|0〉 = 〈0|H0|0〉+
3

4
~ω0 〈0|

(
a0 + a†0

)2|0〉
=

1

2
~ω0 +

3

4
~ω0 〈0|a20 + a†20 + a†0a0 + a0a

†
0|0〉 .

The first three operators in the matrix element give zero, as a0|0〉 = 0 = 〈0|a†0. The last

term is simplified using the commutator [a0, a
†
0] = 1, yielding

〈0|H(τ)|0〉 =
1

2
~ω0 +

3

4
~ω0 〈0|a†0a0 + 1|0〉

=
1

2
~ω0 +

3

4
~ω0 =

5

4
~ω0 .

This energy is higher than that in the adiabatic case because the sudden ramp excites
transitions to higher energy levels. After the ramp, the particle is no longer in the final
ground state, but in a superposition of ground and excited states.
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(e)
– The Hamiltonian is always symmetric about the origin (x = 0), i.e., has a definite parity.
So it cannot couple even and odd wavefunctions, and parity is conserved.
– The particle is initially in the ground state which has an even wavefunction, so it will
always have even parity.
– Therefore, the amplitudes of all odd states will be zero, i.e., cn(t) = 0 for n = 1, 3, 5, . . . .

(f) Applying the time-dependent Schrödinger equation to the expansion in terms of the
instantaneous eigenstates |n〉t, one finds

i~
d

dt

∑
n

cn(t)|n〉t = H(t)
∑
n

cn(t)|n〉t ,

or i~
∑
n

[
dcn(t)

dt
|n〉t + cn(t)

d|n〉t
dt

]
=
∑
n

En(t)cn(t)|n〉t .

Taking inner product with t〈m| and using orthonormality of eigenstates give

i~
[
dcm(t)

dt
+
∑
n

t〈m
∣∣∣ d
dt

∣∣∣n〉t cn(t)

]
= Em(t)cm(t) .

We then substitute Em = (m+1/2)~ω(t) and the expression provided for d|n〉t/dt, finding
the equations of motion

dcm(t)

dt
= Am(t)cm(t) +

∑
n 6=m

Bmn(t)cn(t) ,

with the coefficients

Am(t) = −i
(
m+

1

2

)
ω(t) and Bmn(t) =

ω0

2τω(t)

t〈m|
[
a(t) + a†(t)

]2|n〉t
m− n

.

Since ω(t) ∼ ω0, the frequency scales of Am and Bmn are given by ω0 and 1/τ , respectively.
Adiabaticity requires Bmn � Am =⇒ 1/τ � ω0, or ω0τ � 1, as found in (b).
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4 The Hamiltonian for a set of interacting bosons is Ĥ = Ĥkin + Ĥint where

Ĥkin = − ~2

2M

∫
d3r ψ̂†(r)∇2ψ̂(r) ,

Ĥint =
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r) .

and the bosonic field operators, ψ̂†(r) and ψ̂(r), satisfy [ψ̂(r), ψ̂†(r′)] = δ3(r − r′) ,
[ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0 .

(a) The plane-waves φk(r) = 1√
V
eik·r provide an orthonormal basis of single-particle

states in a system of volume V . Show that the creation and annihilation operators for
these states, denoted by â†k and âk, satisfy [âk, â

†
k′ ] = δk,k′ , [âk, âk′ ] = [â†k, â

†
k′ ] = 0 ,

and that [8]

Ĥkin =
∑
k

~2|k|2

2M
â†kâk .

(b) Show that the interaction energy Ĥint can be written in terms of the density
operator ρ̂(r) ≡ ψ̂†(r)ψ̂(r), by combining both two-body and one-body terms. [4]

(c) Show that the Fourier transform of the density operator, ρ̂q ≡
∫
d3rρ̂(r)e−iq·r,

may be written [3]

ρ̂q =
∑
p

â†p−qâp .

Starting from the exact groundstate, |GS〉, approximate descriptions of the
low-energy excitations of Ĥ can be constructed by the variational states

|Ψq〉 =
1√
Sq

ρ̂q|GS〉 ,

with ρ̂q the Fourier transform of the density operator and Sq a normalization factor.
The variational energy can be shown to be

∆q =
1

2Sq

〈GS|
[
ρ̂†q,
[
Ĥ, ρ̂q

]]
|GS〉 .

(d) Show that |Ψq〉 is orthogonal to |GS〉 for q 6= 0, provided |GS〉 describes a state
of uniform particle density. [2]

(e) Explain why
[
Ĥint, ρ̂q

]
= 0. Hence show that[

Ĥ, ρ̂q

]
= −~2

M

∑
k

k · q â†k−q/2âk+q/2 .

Deduce an expression for the variational energy ∆q. [8][
You may use the following identity without proof:

[AB,CD] = A[B,C]D + AC[B,D] + [A,C]DB + C[A,D]B

]
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Solution 4. (a) Under the change of basis

a†k =

∫
φk(r)ψ†(r)d3r

ak =

∫
φ∗k(r)ψ(r)d3r

Therefore [
ak, a

†
k′

]
=

∫ ∫ [
ψ(r), ψ†(r′)

]
φ∗k(r)φk′(r′)d3rd3r′

=

∫
φ∗k(r)φk′(r)d3r

= δk,k′

using the fact the states are orthonormal. The cases
[
a†k, a

†
k′

]
= [ak, ak′ ] = 0 follow

similarly using the fact that field operators commute.
Inverting the change of basis

ψ†(r) =
∑
k

φ∗k(r)a†k

ψ(r) =
∑
k

φk(r)ak

gives

Ĥkin = − ~2

2M

∫
d3r

∑
k,k′

φ∗k(r)a†k

[
−k′2

]
φk′(r)ak′

= − ~2

2M

∑
k,k′

[
−k′2

]
a†kak′δk,k′ using orthogonality

=
∑
k

~2|k|2

2M
â†kâk

(b) The operator appearing inside the integral of Hint may be rewritten

ψ†(r)ψ†(r′)ψ(r′)ψ(r) = ψ†(r)ψ(r)ψ†(r′)ψ(r′)− ψ†(r)ψ(r′)δ(r − r′)

= ρ(r)ρ(r′)− δ(r − r′)ρ(r)

(c)

ρ̂q ≡
∫
d3rρ̂(r)e−iq·r =

∫
d3r

∑
p,k

φ∗p(r)a†pφk(r)ake
−iq·r

=
1

V

∫
d3r

∑
p,k

a†pake
i(k−p−q)·r

=
∑
p,k

a†pδk,p+q =
∑
k

a†k−qak
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(d)

〈GS|Ψq〉 ∝ 〈GS|ρq|GS〉 =

∫
d3r〈GS|ρ̂(r)|GS〉e−iq·r

But...〈GS|ρ̂(r)|GS〉 = Const. for constant density state

⇒
∫
d3r〈GS|ρ̂(r)|GS〉e−iq·r ∝ δq,0

i.e. the overlap vanishes for q 6= 0

(e) We have shown above that Ĥint can be written in terms of ρ(r). It therefore must
commute with ρ(r) and therefore also with ρq

First commutator:

[H, ρq] = [Hkin, ρq] =
~2

2M

∑
p,k

k2
[
a†kak, a

†
p,−qap

]
a†kaka

†
p,−qap − a

†
p,−qapa

†
kak = δk,p−qa

†
kap − δk,pa

†
p,−qak

⇒ [Hkin, ρq] =
~2

2M

∑
k

k2
(
a†kak+q − a†k,−qak

)
=

~2

2M

∑
k

[|k − q/2|2 − |k + q/2|2]a†k−q/2ak+q/2

= −~2

M

∑
k

k · q a†k−q/2ak+q/2

Second commutator: [
ρ†q, [Hkin, ρq]

]
= − ~2

M

∑
p,k

k · q
[
a†pap,−q, a

†
k−q/2ak+q/2

]
a†pap,−qa

†
k−q/2ak+q/2 − a

†
k−q/2ak+q/2a

†
pap,−q = a†pak+q/2δk−q/2,p−q − a

†
k−q/2ap,−qδp,k+q/2

⇒
[
ρ†q, [Hkin, ρq]

]
= −~2

M

∑
k,p

k · q
[
a†pak+q/2δk−q/2,p−q − a

†
k−q/2ap,−qδp,k+q/2

]
= − ~2

M

∑
k

k · q
[
a†k+q/2ak+q/2 − a

†
k−q/2ak−q/2

]
= − ~2

M

∑
k

{(k − q/2) · q − (k + q/2) · q} a†kak

=
~2|q|2

M

∑
k

a†kak

But
∑

k a
†
kak is the total number operator, N . Therefore,

∆q =
~2|q|2

2M

N

Sq
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END OF PAPER
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