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Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains seven sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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(a) Explain what is meant by the adiabatic approximation in quantum
mechanics, stating a general condition for its validity. [6]

(b) The state of a system with a time dependent Hamiltonian H(t) may be
written in terms of the instantaneous eigenstates |ϕα(t)〉 of H(t)

|Ψ〉 =
∑
α

aα(t) exp

(
− i
~

∫ t

Eα(t′) dt′
)
|ϕα(t)〉 .

Show that the time dependent Schrödinger equation implies that the
amplitudes {aα(t)} obey

daα
dt

= −
∑
β

〈ϕα|
(
d

dt
|ϕβ〉

)
aβ exp

(
i

~

∫ t

[Eα(t′)− Eβ(t′)] dt′
)

[8]

(c) Consider a particle in the time-dependent infinite square well potential of
width L(t) at time t

V (x) =

{
0 0 < x < L(t)

∞ x < 0 or x > L(t).

Write the wavefunction in terms of the instantaneous eigenstates

Ψ(x, t) =

√
2

L(t)

∞∑
n=1

an(t) exp

(
− i
~

∫ t

En(t′) dt′
)

sin

(
nπx

L(t)

)
,

where En(t) = 1
2m

(
π~n
L

)2
. By finding 〈ϕn|

(
d
dt
|ϕp〉

)
, show that {an(t)} obey

dan
dt

=
L̇

L

∑
p 6=n

ap(−1)n+p
2np

p2 − n2
exp

(
i

~

∫ t

[En(t′)− Ep(t′)] dt′
)

[10]

(d) By using

an =

{
1 n = 1

0 n 6= 1

on the right hand side of these equations, and integrating, show that for
L(t) = vt, the probability to make a transition from n = 1 at time t = 0 to
n = 2 at time t is approximately

16

9

∣∣∣∣∫ t

0

exp(−iα/t′)
t′

dt′
∣∣∣∣2

where α = 3π2~
2mv2

. [9]
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(a) Define the propagator and explain why

K(x, t|x′, t′) =
∑
α

ϕα(x)ϕ∗α(x′)e−iEα(t−t
′)/~, t > t′

where Eα and ϕα(x) are respectively the eigenvalues and eigenfunctions of a
one dimensional Hamiltonian. [5]

(b) Using the above expression, find the propagator for a particle moving on
a ring of radius R, with Hamiltonian

H = − ~2

2mR2

d2

dθ2
,

where θ is the angle. Leave your result expressed as a sum. [7]

(c) Find all the classical trajectories starting from (θ′, t′) and finishing at
(θ, t). [7]

(d) Find the propagator from the path integral, expressing your result as a
sum over classical paths. You may use the result for the propagator in one
dimension

K(x, t|x′, t′) =

(
m

2iπ~(t− t′)

)1/2

exp

[
−m(x− x′)2

2i~(t− t′)

]
, t > t′.

[7]

(e) Use the identity

∞∑
p=−∞

exp
[
−α

2
(x+ 2πp)2

]
=

√
1

2πα

∞∑
q=−∞

exp

[
− q

2

2α
− iqx

]

to prove that the results of parts (b) and (d) are equal. [7]
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(a) At low energies, scattering from a spherically symmetric potential V (|r|)
is dominated by s-wave (l = 0) scattering. Explain why this implies that the
wavefunction takes the form

ψ(r) ∼ 1− a

r

outside the interaction region (i.e. the region where the scattering potential
is non-zero), where a is the scattering length. [6]

(b) A pair of scatterers have scattering lengths a1 and a2 and are located at
positions r1 and r2. The low energy wavefunction outside the interaction
region has the form

ψ(r) = eiki·r + c1
eik|r−r1|

k|r− r1|
+ c2

eik|r−r2|

k|r− r2|
,

where ki is the wavevector of the incoming particles, and k = |ki|. Find c1
and c2. [12]

(c) Far from the scatterers the wavefunction has the form

ψ(r) −−−→
r→∞

eiki·r + f(r̂)
eikr

r
,

where r̂ is a unit vector parallel to r. Find the scattering amplitude f(r̂) in
terms of c1 and c2. [6]

(d) Find the total cross section in terms of c1 and c2. [9]
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(a) Give the form of the density matrix in thermal equilibrium of a system
with Hamiltonian H in the canonical ensemble at temperature T . [4]

(b) For a harmonic oscillator

H =
p2

2m
+

1

2
mω2x2,

show that in thermal equilibrium the average kinetic energy and average
potential energy are equal at all temperatures. You may use the standard
result

x =

√
~

2mω

(
a+ a†

)
p = i

√
mω~

2

(
a† − a

)
with [a, a†] = 1. [8]

(c) Show that

〈x2〉 =
~

2mω
coth

(
~ω

2kBT

)
where 〈· · ·〉 denotes the quantum and thermal average. [10]

(d) Use the identity

exp
[
β (A+B) + β2 [A,B] /2 +O(β3)

]
= exp(βA) exp(βB)

to find the high temperature form of the density matrix 〈x|ρ|x′〉 in the
position representation, when the β2 and higher terms in the exponent on
the left hand side are neglected. [11]
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5 A system of bosons moving on a ring of radius R is described by the
Hamiltonian H = H1 +H2, where

H1 =

∫ 2π

0

[
~2

2mR2

dψ†

dθ

dψ

dθ

]
dθ

is the single particle Hamiltonian and

H2 =
U

2

∫ 2π

0

ψ†ψ†ψψ dθ

describes interactions between the particles. ψ†(θ) and ψ(θ) satisfy[
ψ(θ), ψ†(θ′)

]
= δ(θ − θ′)[

ψ(θ), ψ(θ′)
]

=
[
ψ†(θ), ψ†(θ′)

]
= 0

(a) In the basis of angular momentum eigenstates

ϕl(θ) =
eilθ√
2π
, l = 0,±1,±2, . . .

ψ(θ) may be expressed

ψ(θ) =
∞∑

l=−∞

ϕl(θ)al,

where al annihilates a particle in state l. By considering only states l = 0
and 1, show that the Hamiltonian takes the form

H = Ea†1a1 +
U

4π

[
a†0a

†
0a0a0 + a†1a

†
1a1a1 + 4a†1a

†
0a0a1

]
and identify E . [10]

(b) Find the energy of the product state

|N0, N1〉 =
1√

N0!N1!

(
a†0

)N0
(
a†1

)N1

|VAC〉 .

[6]

(c) Show that in the state

|χ〉 =
1√
N !

[
cos

χ

2
a†0 + sin

χ

2
a†1

]N
|VAC〉 .

the occupation of the states l = 0 and 1 follows a binomial distribution, with
average occupancies N0 = N cos2(χ/2) and N1 = N sin2(χ/2). [10]

(d) Show that for a large number of particles N , the expectation value of the
energy per particle is approximately

E(χ)/N = E sin2(χ/2) +
nU

2

[
1 +

1

2
sin2 χ

]
,

where n = N/(2π). [7]
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6 Consider 2× 2 complex matrices of the form

M =

(
α β
β∗ α∗

)
, |α|2 − |β|2 = 1

(a) Explain why these matrices form a Lie group. [6]

(b) By considering M close to the identity M = 1 + m + · · · , show that an
element m of the Lie algebra of this group may be written

m = λm1 + µm2 + νm3

where λ, µ, and ν are real, and

m1 =
1

2

(
0 1
1 0

)
, m2 =

1

2

(
0 −i
i 0

)
, m3 =

i

2

(
1 0
0 −1

)
.

Find the commutation relations of the ma. [11]

(c) A pair of bosons (or oscillator variables) a†, a and b†, b satisfying the
usual commutation relations are used to define

K1 =
1

2

[
a†b† + ab

]
, K2 = − i

2

[
a†b† − ab

]
, K3 =

1

2

[
a†a + bb†

]
.

Show that iKa for a = 1, 2, 3 have the same commutation relations as the ma

in the previous part. [8]

(d) Relate C = K2
3 −K2

1 −K2
2 to the number of a and b quanta, and explain

why it commutes with the Ka. [8]
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