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Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains seven sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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(a) Explain what is meant by the adiabatic approximation in quantum
mechanics, stating a general condition for its validity. [6]

(b) The state of a system with a time dependent Hamiltonian H(t) may be
written in terms of the instantaneous eigenstates |ϕα(t)〉 of H(t)

|Ψ〉 =
∑
α

aα(t) exp

(
− i
~

∫ t

Eα(t′) dt′
)
|ϕα(t)〉 .

Show that the time dependent Schrödinger equation implies that the
amplitudes {aα(t)} obey

daα
dt

= −
∑
β

〈ϕα|
(
d

dt
|ϕβ〉

)
aβ exp

(
i

~

∫ t

[Eα(t′)− Eβ(t′)] dt′
)

[8]

(c) Consider a particle in the time-dependent infinite square well potential of
width L(t) at time t

V (x) =

{
0 0 < x < L(t)

∞ x < 0 or x > L(t).

Write the wavefunction in terms of the instantaneous eigenstates

Ψ(x, t) =

√
2

L(t)

∞∑
n=1

an(t) exp

(
− i
~

∫ t

En(t′) dt′
)

sin

(
nπx

L(t)

)
,

where En(t) = 1
2m

(
π~n
L

)2
. By finding 〈ϕn|

(
d
dt
|ϕp〉

)
, show that {an(t)} obey

dan
dt

=
L̇

L

∑
p 6=n

ap(−1)n+p
2np

p2 − n2
exp

(
i

~

∫ t

[En(t′)− Ep(t′)] dt′
)

[10]

(d) By using

an =

{
1 n = 1

0 n 6= 1

on the right hand side of these equations, and integrating, show that for
L(t) = vt, the probability to make a transition from n = 1 at time t = 0 to
n = 2 at time t is approximately

16

9

∣∣∣∣∫ t

0

exp(−iα/t′)
t′

dt′
∣∣∣∣2
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where α = 3π2~
2mv2

. [9]

Solution (a) Bookwork. Some variant of the conditions ~Ė � ∆E is
required, where Ė is the rate at which energies change and ∆E is their
separation. (b) This is a matter of substitution of the expansion into the
Schrödinger equation, followed by multiplying by 〈ϕα| to take the
component. (c) The computation of the matrix element is

〈ϕn| ∂t |ϕm〉 = − 2

L

mπL̇

L2

∫ L

0

x sin
nπx

L
cos

mπx

L

= − L̇
L

(−1)n+m
2nm

m2 − n2

(Time can be saved by realizing that you don’t have to differentiate the
normalization factor, as this contribution will vanish by orthogonality).
Substitution into the previous part yields the answer given. (d) First order
perturbation theory applied to the previous part gives

da2
dt

=
4

3t
exp

(
i

∫ t 3π2~
2mv2t′2

dt′
)
.

Integrating and taking the square modulus gives the result.
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(a) Define the propagator and explain why

K(x, t|x′, t′) =
∑
α

ϕα(x)ϕ∗α(x′)e−iEα(t−t
′)/~, t > t′

where Eα and ϕα(x) are respectively the eigenvalues and eigenfunctions of a
one dimensional Hamiltonian. [5]

(b) Using the above expression, find the propagator for a particle moving on
a ring of radius R, with Hamiltonian

H = − ~2

2mR2

d2

dθ2
,

where θ is the angle. Leave your result expressed as a sum. [7]

(c) Find all the classical trajectories starting from (θ′, t′) and finishing at
(θ, t). [7]

(d) Find the propagator from the path integral, expressing your result as a
sum over classical paths. You may use the result for the propagator in one
dimension

K(x, t|x′, t′) =

(
m

2iπ~(t− t′)

)1/2

exp

[
−m(x− x′)2

2i~(t− t′)

]
, t > t′.

[7]

(e) Use the identity

∞∑
p=−∞

exp
[
−α

2
(x+ 2πp)2

]
=

√
1

2πα

∞∑
q=−∞

exp

[
− q

2

2α
− iqx

]

to prove that the results of parts (b) and (d) are equal. [7]

Solution (a) Bookwork. (b) The normalized eigenfunctions are

ϕm(θ) =
eimθ√
2πR

with Em = ~2m2

2mR2 , m = 0,±1,±2, . . .. This gives the propagator

K(θ, t|θ′, t′) =
1

2πR

∞∑
m=−∞

exp [im(θ − θ′)− iEm(t− t′)/~]

(c) The classical trajectories have a constant velocity vp with
vpt/R = θ − θ′ + 2πp, where p = 0,±1,±2, . . ..
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(d) This gives

K(θ, t|θ′, t′) =

(
m

2iπ~(t− t′)

)1/2 ∞∑
p=−∞

exp

(
imv2p[t− t′]

2~

)

=

(
m

2iπ~(t− t′)

)1/2 ∞∑
p=−∞

exp

(
imR2[θ − θ′ + 2πp]2

2~(t− t′)

) (1)

(e) Use the identity with

α = −i imR2

~(t− t′)
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(a) At low energies, scattering from a spherically symmetric potential V (|r|)
is dominated by s-wave (l = 0) scattering. Explain why this implies that the
wavefunction takes the form

ψ(r) ∼ 1− a

r

outside the interaction region (i.e. the region where the scattering potential
is non-zero), where a is the scattering length. [6]

(b) A pair of scatterers have scattering lengths a1 and a2 and are located at
positions r1 and r2. The low energy wavefunction outside the interaction
region has the form

ψ(r) = eiki·r + c1
eik|r−r1|

k|r− r1|
+ c2

eik|r−r2|

k|r− r2|
,

where ki is the wavevector of the incoming particles, and k = |ki|. Find c1
and c2. [12]

(c) Far from the scatterers the wavefunction has the form

ψ(r) −−−→
r→∞

eiki·r + f(r̂)
eikr

r
,

where r̂ is a unit vector parallel to r. Find the scattering amplitude f(r̂) in
terms of c1 and c2. [6]

(d) Find the total cross section in terms of c1 and c2. [9]

Solution (a) Bookwork. (b) Apply the boundary condition from part (a) at each
scatterer to give the pair of equations(

ika1 + 1 ka1ϕ
ka2ϕ ika2 + 1

)(
c1
c2

)
= −

(
ka1e

iki·r1

ka2e
iki·r2

)
(2)

where ϕ = eikr12
kr12

. The solution is(
c1
c2

)
=

1

k2a1a2ϕ2 − (ika1 + 1)(ika1 + 1)

(
ika2 + 1 −ka1ϕ
−ka2ϕ ika1 + 1

)(
ka1e

iki·r1

ka2e
iki·r2

)
(c) This is independent of the previous part. One needs only to approximate
eik|r−ri| ∼ eikre−ikr̂·ri to give

f(r̂) =
c1
k
e−ikr̂·r1 +

c2
k
e−ikr̂·r2

(d) The differential cross section is

dσ

dΩ
= |f(r̂)|2 = k−2|c1e−ikr̂·r1+c2e−ikr̂·r2|2 = k−2

[
|c1|2 + |c2|2 + 2Re c1c

∗
2e
−ikr̂·(r1−r2)

]
.
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Integrating over the unit sphere gives

σtot =
4π

k2

[
|c1|2 + |c2|2 + 2Re c1c

∗
2

sin kr12
kr12

]
.

The forward scattering amplitude is

f(r̂ = ki/|ki|) =
c1
k
e−iki·r1 +

c1
k
e−iki·r2

Verifying the optical theorem (not part of the question) is straightforward for
a1 = a2 by multiplying the original Eq. (??) by (c̄1, c̄2) to give

|c1|2 + |c2|2 + ka(i|c1|2 + i|c2|2 + 2ϕRe c̄1c2) = −kac̄1eiki·r1 − kac̄2eiki·r2 .

Taking the imaginary part immediately gives the optical theorem

σtot =
4π

k
Im f(r̂ = ki/|ki|)

It seems to be harder to see for a1 6= a2
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(a) Give the form of the density matrix in thermal equilibrium of a system
with Hamiltonian H in the canonical ensemble at temperature T . [4]

(b) For a harmonic oscillator

H =
p2

2m
+

1

2
mω2x2,

show that in thermal equilibrium the average kinetic energy and average
potential energy are equal at all temperatures. You may use the standard
result

x =

√
~

2mω

(
a+ a†

)
p = i

√
mω~

2

(
a† − a

)
with [a, a†] = 1. [8]

(c) Show that

〈x2〉 =
~

2mω
coth

(
~ω

2kBT

)
where 〈· · ·〉 denotes the quantum and thermal average. [10]

(d) Use the identity

exp
[
β (A+B) + β2 [A,B] /2 +O(β3)

]
= exp(βA) exp(βB)

to find the high temperature form of the density matrix 〈x|ρ|x′〉 in the
position representation, when the β2 and higher terms in the exponent on
the left hand side are neglected. [11]

Solution (a) ρ = exp(−βH)/Z, where the partition function Z = tr e−βH .
(b) Many ways to do this, but perhaps the simplest is to represent x and p in
terms of oscillator variables and note that since the density matrix is
diagonal in the oscillator basis, only terms with a†a or aa† contribute. Thus

〈T 〉 =
~ω
4
〈a†a + aa†〉 = 〈V 〉

(c) Now we actually have to evaluate one of these averages

〈x2〉 =
~

2mω
〈2N + 1〉

The average number is the Bose function∑
n ne

−β~ωn∑
n e
−β~ωn =

1

eβ~ω − 1
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(d) We are splitting the density matrix into two factors, one of which is
diagonal is position and the other was calculated in the lectures

〈x|ρ|x′〉 = Z−1 exp(−βmω2x2/2) 〈x| exp(−βp2/2m)|x′〉

= Z−1 exp(−βmω2x2/2)

(
m

2π~2β

)1/2

exp

[
−m(x− x′)2

2~2β

]
(3)

Normalization is a straightforward Gaussian integral

〈x|ρ|x′〉 =
(mω

2π~

)
exp(−βmω2x2/2) exp

[
−m(x− x′)2

2~2β

]

A
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5 A system of bosons moving on a ring of radius R is described by the
Hamiltonian H = H1 +H2, where

H1 =

∫ 2π

0

[
~2

2mR2

dψ†

dθ

dψ

dθ

]
dθ

is the single particle Hamiltonian and

H2 =
U

2

∫ 2π

0

ψ†ψ†ψψ dθ

describes interactions between the particles. ψ†(θ) and ψ(θ) satisfy[
ψ(θ), ψ†(θ′)

]
= δ(θ − θ′)[

ψ(θ), ψ(θ′)
]

=
[
ψ†(θ), ψ†(θ′)

]
= 0

(a) In the basis of angular momentum eigenstates

ϕl(θ) =
eilθ√
2π
, l = 0,±1,±2, . . .

ψ(θ) may be expressed

ψ(θ) =
∞∑

l=−∞

ϕl(θ)al,

where al annihilates a particle in state l. By considering only states l = 0
and 1, show that the Hamiltonian takes the form

H = Ea†1a1 +
U

4π

[
a†0a

†
0a0a0 + a†1a

†
1a1a1 + 4a†1a

†
0a0a1

]
and identify E . [10]

(b) Find the energy of the product state

|N0, N1〉 =
1√

N0!N1!

(
a†0

)N0
(
a†1

)N1

|VAC〉 .

[6]

(c) Show that in the state

|χ〉 =
1√
N !

[
cos

χ

2
a†0 + sin

χ

2
a†1

]N
|VAC〉 .

the occupation of the states l = 0 and 1 follows a binomial distribution, with
average occupancies N0 = N cos2(χ/2) and N1 = N sin2(χ/2). [10]
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(d) Show that for a large number of particles N , the expectation value of the
energy per particle is approximately

E(χ)/N = E sin2(χ/2) +
nU

2

[
1 +

1

2
sin2 χ

]
,

where n = N/(2π) is the density. [7]

Solution (a) This is a question of substituting the expansion in terms of a†l ,

al and integrating over θ

H =
∑
l

Ela
†
lal +

U

4π

∑
l1+l2=l3+l4

a†l1a
†
l2
al3al4

where El = ~2l2
2mR2 . Thus E = E1, and careful counting of the number of

interaction terms with two 0’s and two 1’s is required. (b) This is a
straightforward expectation value

E(N0, N1) = EN1 +
U

4π
[N0(N0 − 1) +N1(N1 − 1) + 4N0N1.]

(c) Expanding out |χ〉 gives the contribution to the state |N0, N1〉 as

1√
N !

N !

N0!N1!
cosN0(χ/2) sinN1(χ/2)(a†0)

N0(a†1)
N1 |VAC〉 =√

N !

N0!N1!
cosN0(χ/2) sinN1(χ/2) |N0, N1〉 .

Thus the probability of having (N0, N1) is

N !

N0!N1!
cos2N0(χ/2) sin2N1(χ/2),

i.e. binomial with p0 = cos2(χ/2), p1 = sin2(χ/2)

(d) This is a matter of realizing that for large N , we can replace
occupancies by their mean values Nl → N̄l = Npl

A
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6 Consider 2× 2 complex matrices of the form

M =

(
α β
β∗ α∗

)
, |α|2 − |β|2 = 1

(a) Explain why these matrices form a Lie group. [6]

(b) By considering M close to the identity M = 1 + m + · · · , show that an
element m of the Lie algebra of this group may be written

m = λm1 + µm2 + νm3

where λ, µ, and ν are real, and

m1 =
1

2

(
0 1
1 0

)
, m2 =

1

2

(
0 −i
i 0

)
, m3 =

i

2

(
1 0
0 −1

)
.

Find the commutation relations of the ma. [11]

(c) A pair of bosons (or oscillator variables) a†, a and b†, b satisfying the
usual commutation relations are used to define

K1 =
1

2

[
a†b† + ab

]
, K2 = − i

2

[
a†b† − ab

]
, K3 =

1

2

[
a†a + bb†

]
.

Show that iKa for a = 1, 2, 3 have the same commutation relations as the ma

in the previous part. [8]

(d) Relate C = K2
3 −K2

1 −K2
2 to the number of a and b quanta, and explain

why it commutes with the Ka. [8]

Solution (a) Main thing is to verify that M1M2 satisfies the above property
if M1 and M2 do. A good answer would also point out that the existence of
an inverse follows from unit determinant.

(b) Expanding M near the identity

M = 1 +

(
ε δ
δ∗ ε∗.

)
Further, the determinant condition in the infinitesimal gives ε imaginary.
Matrices of this form may be written in terms of the basis given. The
commutation relations are

[m1,m2] = m3

[m3,m1] = −m2

[m2,m3] = −m1

(c) The commutation relations are

[K1, K2] = −iK3

[K3, K1] = iK2

[K2, K3] = iK1
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so that the commutation relations of the iKa coincide with those of the ma

i.e. they form a unitary representation. (d) We have

C = K2
3 −K2

1 −K2
2 =

1

4

(
[Na −Nb]

2 − 1
)

In this form the fact that C commutes is obvious, as K1,2 only add and
remove quanta in pairs.
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END OF PAPER
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