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THEORETICAL PHYSICS 2

Answer three questions only. The approximate number of marks allotted to
each part of a question is indicated in the right margin where
appropriate. The paper contains seven sides and is accompanied by a
booklet giving values of constants and containing mathematical
formulae which you may quote without proof.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 Consider a spin-1/2 in a time varying field, described by the Hamiltonian

H (t) = Ω0Sz +
ΩR

2

(
S+e−iωt + S−eiωt

)
,

where S± = Sx ± iSy, and Si = h
2σi, i = x, y, z, with σi the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(a) Write the state of the system |Ψ (t)〉 in the form

|Ψ (t)〉 = exp
(
−iωtSz/h

)
|ΨR(t)〉

and show that |ΨR(t)〉 obeys the equation

ih
d |ΨR(t)〉

dt
= HRabi |ΨR〉

where
HRabi = (Ω0 − ω) Sz + ΩRSx .[

You might find it useful to write the Hamiltonian as a 2 × 2 matrix.
]

[7]

(b) Find the eigenvalues of HRabi and describe the complete time evolution of the
corresponding eigenstates (you don’t need to find the eigenstates explicitly). [8]

(c) Find the evolution of the phase of the eigenstates of HRabi after time 2π/ω .

Considering the adiabatic limit ω �
√
Ω2

0 + Ω2
R, interpret your result in terms of

Berry’s phase. [9]

(d) Explain how your answers to (a), (b), and (c) would be modified if we have
spin-s, rather than spin-1/2. [9]
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2 In one dimension, the propagator K (x, t |x′, t′) is the solution of the equation[
ih
∂

∂t
− H

]
K (x, t |x′, t′) = ihδ(x − x′)δ(t − t′) and

K (x, t |x′, t′) = 0 for t < t′,

where H is the Hamiltonian. The momentum space propagator is defined by

K (x, t |x′, t′) =
1

2πh

∫ ∞

−∞

dpdp′ K (p, t |p′, t′) exp
(
ipx/h − ip′x′/h

)
.

(a) Show that the propagator for a free particle is

Kfree(x, t |x′, t′) = θ(t − t′)
(

m
2iπh(t − t′)

)1/2

exp
[
−

m(x − x′)2

2ih(t − t′)

]
[7]

(b) Now consider a particle moving in a linear potential, described by the
Hamiltonian

H = −
h2

2m
∂2

∂x2 + αx.

Find the equation satisfied by K (p, t |p′, t′) and verify that the solution is

K (p, t |p′, t′) = θ(t − t′)δ(p − p′ + α[t − t′]) exp



i
(
p3 − p′3

)
6αmh


 .

[8]

(c) Use the result of part (b) to obtain K (x, t |x′, t′) for a particle moving in a linear
potential. [9]

(d) By computing the classical action for a trajectory (x′, t′) → (x, t), show that
the same result follows from the path integral. [9]
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3 A particle is initially in a plane wave state eik ·r and interacts with a scattering
potential V (r ). Its wavefunction is a solution of the Lippmann–Schwinger equation

ψk (r ) = eik ·r −
m

2πh2

∫
d3r′

eik |r−r ′ |

|r − r′|
V (r′)ψk (r′).

(a) Show that the differential cross-section in the (first) Born approximation is

dσ(θ,φ)
dΩ

=
�����

m

2πh2

∫
d3r e−iq·rV (r )

�����
2

where q = k f − k is the momentum transfer, and k f is the final momentum,
pointing in a direction specified by spherical coordinates (θ,φ). [7]

(b) Use this result to show that the total cross-section in the Born approximation is

σtotal =
m2

πh4

∫
d3r d3r′V (r )V (r′)

sin k |r − r′|

k |r − r′|
eik ·(r−r ′)

[8]

(c) By iterating the integral equation a second time find the second Born
approximation to the scattering amplitude. [9]

(d) Show that the results of parts (b) and (c) are consistent with the optical
theorem

Im f (θ = 0) =
kσtotal

4π
,

where f (θ,φ) is the scattering amplitude. [9]
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4 A product state of a system of identical bosons or fermions is described in terms of
single particle states ϕα (r ), occupation numbers Nα, and creation and annihilation
operators a†α, aα. The field operator has the form

ψ (r ) ≡
∑
β

ϕβ (r )aβ,

while the density operator is
ρ̂(x) ≡ ψ†(x)ψ (x).

(a) Show that in a product state the density-density correlation function has the
form (with the plus sign for bosons and minus sign for fermions)

Cρ(r ,r′) ≡
〈
: ρ(r ) ρ(r′) :

〉
= 〈ρ(r )〉

〈
ρ(r′)

〉
± g(r ,r′)g(r′,r ).

Here : · · · : denotes normal ordering, 〈ρ(r )〉 is the expectation value of the density,
and

g(r ,r′) =
∑
α

Nαϕ
∗
α (r )ϕα (r′)

is the single particle density matrix. The term with both creation and both
annihilation operators corresponding to the same state may be neglected in the
limit of a large system. [10]

(b) Assuming that g(r ,r′) → 0 as |r − r′| → ∞, find the ratio

Cρ(r ,r )
lim

|r−r ′ |→∞
Cρ(r ,r′)

for both bosons and fermions. [4]

(c) Now find the form of the three point correlation function

C (3)
ρ (r1,r2,r3) ≡ 〈: ρ(r1)ρ(r2)ρ(r3) :〉,

expressing your answer in terms of 〈ρ(r )〉 and g(r ,r′).
[15]

(d) Find the ratio

C (3)
ρ (r ,r ,r )

lim
|r1−r2 |→∞
|r1−r3 |→∞
|r2−r3 |→∞

C (3)
ρ (r1,r2,r3)

for both bosons and fermions. [4]
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5 Consider a system of N bosons, each of which can occupy only two states: |↑〉 and
|↓〉. We can introduce creation and annihilation operators a†s , as, with s =↑,↓, to add and
remove particles from the two states.

(a) Show that the operators

Sx =
h
2

(
a†
↑
a
↓

+ a†
↓
a
↑

)
Sy = −i

h
2

(
a†
↑
a
↓
− a†
↓
a
↑

)
Sz =

h
2

(
a†
↑
a
↑
− a†
↓
a
↓

)
obey the angular momentum (SU (2)) commutation relations. [7]

(b) Show that S2 ≡ S2
x + S2

y + S2
z can be expressed in terms of N , the total number

of bosons, and find the relationship between the spin quantum number s and N . [8]

(c) A totally symmetric wavefunction of N bosons can be written asΨ(s1s2···sN ),
where the round brackets denote the operation of symmetrisation:

Ψ(s1s2···sN ) =
1

N!

∑
P

ΨsP1sP2···sPN ,

and the sum is over all permutations of N objects. How many independent
components are needed to describeΨ(s1s2···sN )? Interpret this result in terms of
angular momentum states. [5]

(d) What are the defining properties of the Lie group SU (2)? [3]

(e) Under an element U of SU (2), the components ψs of a one boson state
transform as ψ → Uψ. If φs and χs are the components of two one boson states,
show that the quantity φ↑ χ↓ − φ↓ χ↑ is invariant under SU (2) transformations.

[10]
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6 The one dimensional Klein–Gordon equation has the form



(
ih
∂

∂t
− V (x)

)2

+ c2h2 ∂
2

∂x2 − m2c4

ψ(x, t) = 0,

where V (x) is an external potential.
(a) When V (x) = 0, a general solution of the Klein–Gordon equation can be
written

ψ(x, t) =
∑

k

√
1

2ωk

[
ak exp (i [k x − ωkt]) + b†k exp (−i [k x − ωkt])

]
,

where ωk =
√

k2c2 + m2c4/h2. How is this solution modified when V (x) = V0? [6]

(b) Consider the potential step

V (x) =

V0 x > 0
0 x < 0

.

Find the transmission and reflection amplitudes for an incoming plane wave of
energy E > mc2 incident from x < 0. [9]

(c) Paying careful attention to the analytic structure of the reflection and
transmission amplitudes, describe their behaviour in the three regimes

I : E > V0 + mc2

I I : V0 − mc2 < E < V0 + mc2

I I I : E < V0 − mc2,

assuming V0 > 2mc2. [12]

(d) What is the physical interpretation of the behaviour in regime III? [6]

END OF PAPER
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