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THEORETICAL PHYSICS I

Answers

1 The action for a system consisting of a relativistic charged particle moving in
an electromagnetic field is given by

S = −
∫
mc2dτ −

∫
eAµdx

µ ,

where xµ = (ct,x), Aµ = (φ/c,A), and τ is the proper time.

(a) [book work] Derive the equations of motion in terms of the electric and
magnetic fields, given by E = −∇φ− ∂

∂t
A and B = ∇×A, respectively. [8]

——————
We start from dt = γdτ , where γ−2 = 1− v2/c2. We have that dxµ = dxµ

dt
dt

so that the lagrangian may be written as

L = −mc
2

γ
− e(φ−A · v) .

The Euler-Lagrange equation is

d

dt

(
∂L

∂v

)
=
∂L

∂x
.

Using
∂L

∂v
= γmv + eA

and
∂L

∂x
= −e∇φ+ ev∇ ·A ,

we get the Euler-Lagrange equation

d

dt
(γmv + eA) = −e∇φ+ ev∇ ·A .

Now, by the chain rule, d
dt
A(x, t) = ∂

∂t
A+ (v · ∇)A, such that this reduces to

d

dt
(γmv) = −e∇φ− e ∂

∂t
A + ev∇ ·A− (v · ∇)A
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or
d

dt
(γmv) = −e∇φ− e ∂

∂t
A + ev × (∇×A) .

Using the definitions of electric and magnetic fields, we obtain

d

dt
(γmv) = e(E + v ×B) .

——————

(b) [unseen calculation] Suppose that B = 0, that E is constant and that at
t = 0 the particle has velocity v0. Find the subsequent velocity of the particle. [5]

——————
When B = 0, we may integrate this equation directly to obtain

γmv = eEt+mγ0v0 ,

where v0 is the initial velocity and γ0 the corresponding value of γ. Taking the dot
product of this relation with itself, we find that

γ2v2/c2(= γ2 − 1) =
|eEt+mγ0v0|2

m2c2

such that

γ =

√
1 +
|eEt+mγ0v0|2

m2c2

and so

v =
eEt/m+ γ0v0√
1 + |eEt+mγ0v0|2

m2c2

.

——————

(c) [unseen calculation] Find the limiting velocity of the particle as t→∞. [3]
——————
As t→∞, we find that v → eE

|eE|c. No matter what velocity we start with

(provided its magnitude is less than c), the ultimate velocity is aligned with the
electric field, has magnitude c, and is aligned either parallel or anti-parallel to the
field, depending on whether the charge is positive or negative, respectively.

Note: an answer that simply states that c is the limiting velocity of any
particle subject to a constant force will receive 2 marks out of 3 because it does
not discuss the direction of the velocity.

——————

(d) [unseen calculation] Suppose that instead E = 0 (and generically B 6= 0).
Show that γ, and hence the total speed, are constant. [4]

——————
In this case, we must solve the equation

d

dt
(γmv) = ev ×B .
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If we first take the dot product with the velocity, then we find that

v · d
dt

(γmv) = mc2
dγ

dt
= 0 .

Hence γ and the speed are both constant. We thus may write the equation of
motion as dv

dt
= e

mγ
v ×B.

——————

(e) [unseen calculation, similar to non-relativistic case] Suppose now that
E = 0 and B is constant. Show that the time dependence of the perpendicular
velocity vector v⊥ = v −B (v·B)

B2 is periodic and find the period. [5]
——————
Now differentiate with respect to time again, to get that

d2v

dt2
=

e

mγ

dv

dt
×B =

(
e

mγ

)2

(v ×B)×B = −
(

e

mγ

)2

(vB2 −B(v ·B)) .

In terms of the perpendicular component v⊥ = v −B(v ·B/B2), we get, by
resolving components, that

d2v⊥
dt2

= −
(
eB

mγ

)2

v⊥

which represents periodic motion with period T = 2πmγ
eB

.
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2 A massless rod of length ` makes an angle θ(t) with the vertical, has a point
mass m at one end, and is in a constant gravitational field g = gŷ. The other end
of the rod is attached to a horizontal line with a frictionless hinge, and connected
to a point along the line by a massless spring of constant k and zero rest length, as
illustrated in the figure.

k(0,0) s(t)

m

x

y (x(t),y(t))

Let us call s(t) the instantaneous horizontal displacement of the hinge from the
origin (i.e., the fixed point of the spring).

(a) [book work] Introducing η(t) = s(t)/`, the coordinates of the mass can be
written as [2]

x = `η + ` sin θ y = ` cos θ .

Correspondingly, the kinetic energy is given by [3]

T =
1

2
m

[(
`η̇ + `θ̇ cos θ

)2
+
(
`θ̇ sin θ

)2]
=

1

2
m`2

[
η̇2 + θ̇2 + 2θ̇η̇ cos θ

]
and the potential energy by [3]

V = −mg` cos θ +
1

2
k`2η2 .

We can then obtain the Lagrangian L = T − V , more conveniently rescaled
by a factor (m`2)−1: [2]

L =
1

2

[
η̇2 + 2η̇θ̇ cos θ + θ̇2

]
+
g

`
cos θ − 1

2

k

m
η2 ,

(b) [part book work, part new] To obtain the equations of motion of this
system we need to compute: [4]

∂L

∂η
= − k

m
η

d

dt

∂L

∂η̇
= η̈ +

d

dt
(θ̇ cos θ) = η̈ + θ̈ cos θ − θ̇2 sin θ
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and
∂L

∂θ
= −η̇θ̇ sin θ − g

`
sin θ

d

dt

∂L

∂θ̇
= θ̈ +

d

dt
(η̇ cos θ) = θ̈ + η̈ cos θ − η̇θ̇ sin θ

Finally, the generic equations of motion are: [1]{
η̈ + θ̈ cos θ − θ̇2 sin θ + k

m
η = 0

θ̈ + η̈ cos θ + g
`

sin θ = 0 .

If we assume that the dynamical variables and their derivatives are small,
the equations of motion expanded to linear order can be written as{

θ̈ + η̈ + ω2
0θ = 0

θ̈ + η̈ + ω2
1η = 0 ,

where ω2
0 = g/` and ω2

1 = k/m. [3]

(c) [new] The expanded equations of motion imply a proportionality relation
between η and θ: η = (ω2

0/ω
2
1)θ. [2]

Assuming a solution of the form θ(t) = θ0 sin(ωt), we have to require the
form η(t) = (ω2

0/ω
2
1)θ0 sin(ωt). The two equations above are then linearly

dependent on one another and they are satisfied only if

−ω2ω
2
0

ω2
1

− ω2 + ω2
0 = 0 ,

which gives ω2 = ω2
0ω

2
1/(ω

2
0 + ω2

1). [3]
In the limit k →∞, ω2

1 →∞ and η → 0, which in turn gives ω2 = ω2
0. This

is consistent with the expectation for a pendulum where the top hinge is fixed
(infinite spring stiffness), in the approximation of small oscillations. [2]
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3 (a) [bookwork] Explain why a total derivative term in the Lagrangian (or
Lagrangian density) of a dynamical system does not affect the equations of motion
and may be discarded. [4]

——————
A total derivative in the Lagrangian or Lagrangian density can be integrated

to give a contribution on the boundary on spacetime, so does not affect the
variations used to derive the equations of motion, which are taken to vanish on the
boundary.

——————

(b) [unseen calculation] A system is described by a real scalar field h(x, t) with a
Lagrangian density containing spacetime derivatives of h(x, t) up to and including
second order. Derive the corresponding Euler-Lagrange equations of motion. [10]

——————
The variation of the action may be written in terms of the Lagrangian

L(h, ∂µh, ∂µ∂νh) as

0 = δS =

∫
dxµδL =

∫
dxµ

[
δL
δh
δh+

δL
δ∂µh

δ∂µh+
δL

δ∂µ∂νh
δ∂µ∂νh

]
.

Integrating by parts and neglecting boundary contributions, we get,

0 =

∫
dxµ

[
δL
δh
− ∂µ

δL
δ∂µh

+ ∂µ∂ν
δL

δ∂µ∂νh

]
δh .

For this to vanish for arbitrary δh, we require that

0 =
δL
δh
− ∂µ

δL
δ∂µh

+ ∂µ∂ν
δL

δ∂µ∂νh
.

——————

(c) [unseen calculation] The height h(x, t) of a surface grown over the
x = (x1, x2) plane by random deposition of atoms is described by the action

S =

∫
d2x dt

(
∂h

∂t
− ν∇2h

)2

,

where ν is a positive constant. Find the Euler-Lagrange equation of motion
governing the dynamics of h(x, t). [7]

——————
It helps to first expand out the quadratic terms and to notice that (after

integration by parts and neglecting a trivial boundary term) the cross-term
−2νḣ∇2h = +2ν∇ḣ∇h = d

dt
(2ν(∇h)2) is a total derivative and may be discarded.

Next, one may either use the formula formula derived in the previous part, or,
more simply, just use the usual Euler-Lagrange equations, integrating by parts
where necessary in order that only first-order derivatives appear. Doing so, we find

δL
δḣ

= 2ḣ
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and
δL
δ∇h

= −2ν2∇∇2h

(where we have freely integrated by parts) in order to arrive at the equation of
motion

ḧ− ν2∇4h = 0.

——————

(d) [unseen] What symmetries does the system possess? [4]
——————
The system is invariant under the discrete symmetry h→ −h,spacetime

translations, and under rotations of x.
——————
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4 Consider the Lagrangian density of 1-dimensional elastic rod with density
ρ = 1 and elastic constant κ = 1, namely

L =
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

,

where φ(x, t) is the local displacement field.

(a) [book work] The Euler-Lagrange equation of motion for the field φ(x, t) are
given by [3]

− ∂

∂x

∂L
∂φ′
− ∂

∂t

∂L
∂φ̇

= 0
∂2φ

∂x2
− ∂2φ

∂t2
= 0 .

(b) [book work] The total angular momentum tensor of the system is given by

Jµν =

∫
dx M0µν =

∫
dx
[
xµT 0ν − xνT 0µ

]
,

where Mλµν = xµT λν − xνT λµ and T µν is the stress energy tensor. [3]
In order to evaluate the stress energy tensor for the elastic rod described

above, we need the terms

∂L
∂∂0φ

= φ̇
∂L
∂∂1φ

= −φ′ ∂0φ = φ̇ ∂1φ = −φ′ ,

from which we obtain [2]

T 00 = φ̇2 − L = H T 01 = −φ̇φ′ T 10 = −φ̇φ′ T 11 = φ′
2

+ L = H .

By construction Jµν = Jνµ, and therefore we only need to compute J01 since
J00 = J11 = 0 and J10 = −J01. For the rod we obtain [1]

J01 =

∫
dx
[
−tφ′φ̇− xH

]
.

The stress-energy tensor is symmetric upon exchanging the indices µ and ν
because, for the choice of density and elastic constant equal to one another, the
system is relativistic invariant, which is a higher symmetry than just space-time
translations. As a result, ∂λM

λµν = 0 and the total angular momentum tensor is
the corresponding conserved charge. [1]

(c) [new] Consider adding a viscous damping term to the equation of motion of
the rod, γ∂t∂

2
xφ where γ is a positive constant. Substituting the Fourier transform

G(x, t) =

∫∫
G(k, ω) e−ikx−iωt

dk dω

(2π)2
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into the equation (
− ∂2

∂t2
+

∂2

∂x2
+ γ

∂

∂t

∂2

∂x2

)
G(x, t) = δ(x)δ(t)

we obtain ∫∫ [
ω2 − k2 + iγk2ω

]
G(k, ω) e−ikx−iωt

dk dω

(2π)2
= δ(x)δ(t) ,

which in turn gives [4]

G(k, ω) =
1

ω2 − k2 + iγk2ω
.

The denominator has roots [1]

ω1,2 = −iγk2/2±
√
k2 − k4γ2/4 .

(d) [new] Assuming that k2 < 4/γ2, the square root term in the roots is real and
both ω1,2 lie below the real ω axis, to the right and left of the imaginary ω axis,
respectively. [1]

To compute

G(k, t) =

∫
G(k, ω) e−iωt

dω

2π
=

∫
e−iωt

(ω − ω1)(ω − ω2)

dω

2π

we can use Cauchy integration provided we close the contour in the upper half
complex ω plane for t < 0, and in the lower half plane for t > 0 (indeed, the
exponential at the numerator is proportional to eIm(ω)t). Both poles are in the
lower half plane, which is consistent with causality: G(t < 0) = 0. [1]

For t > 0 we obtain [3]

G(k, t) = −i
[
e−iω1t

ω1 − ω2

+
e−iω2t

ω2 − ω1

]
=

2

ω1 − ω2

e−iω1t − e−iω2t

2i

= − e−γk
2t/2√

k2 − k4γ2/4
sin
(√

k2 − k4γ2/4 t
)
.

We can finally take the limit γ → 0,

G(k, t) = −sin (kt)

k
,

and compute

G(x, t) =

∫
G(k, t) e−ikx

dk

2π
= −

∫
sin (kt)

k
e−ikx

dk

2π
.
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(Note that we were able to replace sin(|k|t)/|k| with sin (kt) /k by taking
advantage of the fact that t > 0 and sin is an odd function of its argument.) [1]

Using the definition of the top hat function

1

π

∫ ∞
−∞

sin s

s
e−isx ds = TH(x) ,

we arrive at the result [2]

G(x, t) = − 1

2π

∫
sin s

s
e−isx/t ds = −1

2
TH

(x
t

)
.

This is consistent with the choice of initial conditions δ(x)δ(t): for t = 0, G(x, t)
does not vanish only at x = 0. Moreover, the edges of the support of G(x, t) are at
x/t = ±1, propagating in space as x(t) = ±t, namely with velocity 1 as expected
for an elastic rod that satisfies the condition ρ = κ. [2]

END OF PAPER
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