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Answers

1 (a) [bookwork] The Lagrangian density is

L =
1

2
πa2ρψ̇2 − 1

2
πa2Kψ′2

The momentum conjugate to ψ is

φ =
∂L
∂ψ̇

= πa2ρψ̇.
[1]

The Hamiltonian density is

H = φψ̇ − L =
φ2

2πa2ρ
+

1

2
πa2Kψ′2

[2]

The Lagrangian equation of motion is

d

dt

∂L
∂ψ̇

+
d

dz

∂L
∂ψ′

=
∂L

∂ψ [1]

πa2ρψ̈ − πa2Kψ′′ = 0 [1]

Substituting in ψ = f(z − ct), we get

c2πa2ρf ′′ − πa2Kf ′′ = 0

which is a solution provided c =
√

K
ρ

. [1]
(b) [part bookwork part new calculation, particularly case 2,

though scale symmetry is on the example sheet.]
(1) The operation is a displacement of the whole fluid, ψ → ψ + b. [1]

This does not change ψ′ or ψ̇, so it does not change L or S. [1]
The corresponding conservation law is simply the equation of motion for ψ

d

dt

∂L
∂ψ̇

+
d

dz

∂L
∂ψ′

=
∂L

∂ψ
= 0

[1]
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which is a conservation law for the the total momentum:

Q1 =

∫
∂L
∂ψ̇

dz =

∫
πa2ρψ̇dz.

[1]

(2) The operation is a scaling of the wave-packet, ψ(z, t)→ ψ(bz, bt), which
for an infinitesimal transformation, b = 1 + ε, gives δψ = ε(tψ̇ + zψ′). [1]

Because of the second derivatives in each term, this shifts
L(z, t)→ b2L(bz, bt) but, by a simple change of dummy variables, Z = bz T = bt,
does not change S =

∫ ∫
Ldzdt. [1]

Applying Noether’s theorem, we have

d

dt

(
∂L
∂ψ̇

δψ

)
+

d

dz

(
∂L
∂ψ′

δψ

)
= δL

[1]

= ε(tL̇+ zL′ + 2L) [1]

=
d

dt
(tL) +

d

dz
(zL). [1]

which is a conservation law for the quantity

Q2 =

∫ (
∂L
∂ψ̇

δψ − tL
)
dz =

∫
πa2

2

(
t(ρψ̇2 +Kψ′2) + 2ρzψ̇ψ′

)
dz.

[1]

(c) [calculation]

Q1 =

∫ ∞
−∞

πa2ρψ̇dz = −
∫ ∞
−∞

cπa2ρf ′(z − ct)dz = −cπa2ρ [f(z − ct)]z=∞z=−∞ = 0
[1]

Q2 =

∫ ∞
−∞

πa2

2

(
t(2c2)− 2zc

)
ρf ′(z − ct)2dz

=

∫ ∞
−∞

πa2

2
(tc− z) 2cρf ′(z − ct)2dz

=

∫ ∞
∞

πa2zcρf ′(z)2dz

[2]
Which are both manifestly conserved.
(d) [New] L1 is not invariant under ψ(z, t)→ ψ(bz, bt), so Q2 is not

conserved. [1]
It is invariant under ψ → ψ + b, leading to conservation of a slightly modified

Q1 =

∫
∂L
∂ψ̇

dz =

∫
πa2ρ(z)ψ̇dz.

[1]
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L2 is invariant under ψ → ψ + b, so Q1 is still conserved, and since ∂L
∂ψ̇

is

unchanged, its form is also unchanged. [1]
The ψ′4 term transforms differently under ψ(z, t)→ ψ(bz, bt) so Q2 is no

longer conserved. [1]
L3 is no longer invariant under ψ → ψ + b, so Q1 is not conserved. [1]
The new term still transforms as L(z, t)→ b2L(bz, b, t) under

ψ(z, t)→ ψ(bz, bt) so Q3 is conserved but in a modified form since L has changed. [1]

2 (a) [bookwork] The general form for the Lagrangian of a relativistic
particle moving in and E-M field is

L = −mc2/γ − q(φ− v ·A). [1]

For the particle in the question, we have v = żẑ + ρ̇ρ̂+ ρθ̇θ̂. [1]
For the cylindrically symmetric magnetic field in the question, which has no

θ component, we can take A = A(ρ, z)θ̂ and φ = 0. [1]
The Lagrangian thus becomes

L = −mc2
√

1− ż2 + ρ̇2 + ρ2θ̇2

c2
+ qρθ̇A(ρ, z) .

[1]

Outside the solenoid we have A = 0, inside we need A = Bρ/2 so that

∇×A = 1
ρ
∂(ρA)
∂ρ
ẑ = Bẑ. [1]

(b) [part bookwork part calcuation] Time invariance leads to
conservation of the Hamiltonian. [1]

In this case, the canonical momenta are

pz = γmż, pθ = γmρ2θ̇ + qρA, pρ = γmρ̇ [1]

so the Hamiltonian is

H = pz ż + pρρ̇+ pθθ̇ − L = γmc2,

i.e. the γ factor, or the particle speed, is a constant of the motion. [1]

Cylindrical symmetry leads to the conservation of pθ = γmρ2θ̇ + qρA. [1]

The particle starts at infinity with θ̇ = 0 and therefore pθ = 0, so it has θ̇ = 0
outside and θ̇ = − qB

2γm
inside. [1]

(c) [calculation] The z equation is

d

dt
pz =

∂L

∂z
=⇒ γmz̈ = 0 [1]

both inside and outside.
The ρ equation is
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d

dt
pρ =

∂L

∂ρ
=⇒ γmρ̈ = γmρθ̇2 +

{
0 outside

qρθ̇B inside. [1]

Inside the solenoid we have θ̇ = − qB
2γm

, so this equation becomes

γmρ̈ = −q
2B2

4γm
ρ.

[1]

Despite appearances ż is not a constant of the motion, since the potential V
is a function of z, changing when the particle enters the solenoid. Thus, although ż
is constant outside and inside the solenoid, it changes when the particle enters, as
we already know since γ is conserved but θ̇ changes. [1]

(d) [new form of familiar motion] Introducing ω = qB
2γm

, we can solve the
θ motion trivially to get

θ = −ωt . [1]

The ρ equation inside the cylinder is an SHM equation with the solution

ρ = ρ0 cos (ωt) . [1]

The z equation can be trivially integrated to get

z = vit [1]

for some velocity vi, which we find from conservation of γ as the particle enters the
solenoid, which requires,

v2 = v2i + ρ20ω
2 =⇒ vi =

√
v2 − ρ20ω2. [1]

Translating the ρ and θ results into Cartesians, we have
y = −ρ sin(θ) = ρ0 sin(2ωt)/2 and x = ρ cos(θ) = ρ0(cos(2ωt) + 1)/2. As we expect
for a charged particle in a uniform magnetic field, this motion is a helix with the
cyclotron frequency (2ω) that points along ẑ and has radius ρ0/2 and center at
ρ0/2. [3]

(e) [new] The particles are in the solenoid a time t = l/v, so they exit with

ρf = ρ0 cos (ωl/v) [1]

ρ̇ = −ρ0ω sin (ωl/v) [1]

Outside the solenoid, the particles move in a straight line, so they reach the z axis
after a further time T = ρf/ρ̇. [1]

In this time the particle travels a further distance along the z axis

f = vT =
v

ω
cot

(
ωl

v

)
.

[1]
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3 The Lagrangian density for a self-interacting, complex scalar field in 3+1
dimensions φ(r, t) is given by:

L = (∂µφ
∗) (∂µφ)− V (φ) ,

where ∂µ = ∂/∂xµ and V (φ) = −φ∗φ+ exp (λφ∗φ).

(a) [book work] The Hamiltonian density of the system is

H =
∂L
∂∂0φ

∂0φ+
∂L
∂∂0φ∗

∂0φ
∗ −L = (∂0φ

∗)(∂0φ) + (∇φ∗) · (∇φ)− φ∗φ+ exp (λφ∗φ) .

If λ ≤ 0, the energy diverges to negative infinity for uniform fields with φ∗φ→∞
and the Lagrangian theory becomes intractable. Therefore one must choose λ > 0. [2]

Since the derivative terms in the Hamiltonian are always non-negative, they
can be minimised separately from V (φ) by choosing a field φ = φ0e

iθ that is
uniform throughout space time. We are then left with the task of finding the
minima of V (φ) = −φ2

0 + exp(λφ2
0). Considering

dV/dφ0 = −φ0 + λφ0 exp(λφ2
0) = 0, we see that φ0 = 0 is the minimum for λ ≥ 1,

whereas for λ < 1 the minima are given by

exp(λφ2
0) = 1/λ ,

i.e., φ0 =
√
− ln(λ)/λ. The Lagrangian density is symmetric upon global phase

changes, and so are the minima of the energy. Therefore, when λ ∈ (0, 1) we have
an infinitely degenerate set of minima φ = φ0e

iθ with φ0 =
√
− ln(λ)/λ and

θ ∈ [0, 2π). [4]

(b) [part book work, part new] Expanding about the chosen minimum,
φ =

√
− ln(λ)/λ+ χ and φ∗ =

√
− ln(λ)/λ+ χ∗, the derivative terms in the

Lagrangian density give straightforwardly (∂µχ
∗) (∂µχ). We then expand the

potential to second order,

− (φ0 + χ∗) (φ0 + χ) = −φ2
0 − φ0 (χ+ χ∗)− χ∗χ

exp [λ (φ0 + χ∗) (φ0 + χ)] = exp
[
λφ2

0

]
exp [λφ0 (χ+ χ∗)] exp [λχ∗χ]

' exp
[
λφ2

0

] [
1 + λφ0 (χ+ χ∗) +

λ2φ2
0

2
(χ+ χ∗)2

]
[1 + λχ∗χ]

' exp
[
λφ2

0

] [
1 + λφ0 (χ+ χ∗) +

λ2φ2
0

2
(χ+ χ∗)2 + λχ∗χ

]
+O(χ3)

Using the fact that φ2
0 = − lnλ/λ, λφ2

0 = − lnλ, and exp [λφ2
0] = 1/λ, summing the

two terms above gives

V (φ) ' lnλ+ 1

λ
− lnλ

2
(χ+ χ∗)2 +O(χ3) .
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Finally, the Lagrangian density to second order takes the form

L = (∂µχ
∗) (∂µχ) +

lnλ

2
(χ+ χ∗)2 ,

up to an irrelevant constant. [6]
Upon spontaneously breaking a continuous symmetry, we find that the

fluctuations of a complex scalar field about one of the minima depend only on the
real part of the fluctuating field, χ∗ + χ. Upon writing χ = χ1 + iχ2, we see that
the real scalar field χ1 is massive (note that λ < 1 and therefore lnλ < 0), whereas
the field χ2 is massless. The appearance of such soft mode is typical of the
breaking of a continuous symmetry and takes the name of Goldstone mode. [2]

(c) [book work] When the complex scalar field is coupled to an electromagnetic
gauge field as described in the question, the massless Goldstone mode is absorbed
by the electromagnetic field and disappears. In return, the electromagnetic field
acquires a mass. This phenomenon is called the Higgs mechanism. [3]

(d) [new] The new term in the potential:

V (φ) = −1

2

(
φ∗2 + φ2

)
− φ∗φ+ exp (λφ∗φ) ,

breaks the continuous symmetry of a global phase change, but retains the discrete
symmetry φ↔ φ∗ (complex conjugation) and (φ, φ∗)→ (−φ,−φ∗). [2]

Following the hint, we rewrite the first two terms in the potential as
−(φ∗ + φ)2/2, and substitute φ = φ0e

iθ to obtain:

V (φ) = −2φ2
0 cos2 θ + exp

(
λφ2

0

)
.

Taking derivatives with respect to θ and φ0 we find:{
−4φ0 cos2 θ + 2λφ0 exp (λφ2

0) = 0
−4φ2

0 cos θ sin θ = 0

where φ0 = 0 is always a solution for all θ. In addition, we see that when
sin(2θ) = 0, other solutions may be present if 2 cos2 θ = λ exp(λφ2

0). One readily
verifies that θ = π/2, 3π/2 can be discarded, and that θ = 0, π are indeed the
minima of V (φ) for φ0 =

√
ln(2/λ)/λ, provided that λ ∈ (0, 2). [2]

When λ < 2, the system chooses one of the minima at low energies and
breaks the complex conjugation symmetry spontaneously. Expanding about the
minimum φ0 =

√
ln(2/λ)/λ for convenience, and using the earlier results for the

expansion of the exponential term, we obtain:

V (φ) ' const.− 2φ0 (χ∗ + χ)− 1

2
(χ∗ + χ)2

+ eλφ
2
0λφ0 (χ∗ + χ) + eλφ

2
0
λ2φ2

0

2
(χ∗ + χ)2 + eλφ

2
0 λχ∗χ

'
(

ln
2

λ
− 1

2

)
(χ∗ + χ)2 + 2χ∗χ ,

A
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where we used the fact that λφ2
0 = ln(2/λ) and exp(λφ2

0) = 2/λ. [3]
Substituting χ = χ1 + iχ2, we see that V (φ) = 4 ln(2/λ)χ2

1 + 2χ2
2. In the

broken symmetry phase (λ < 2) both modes have a finite positive mass. Indeed,
no Goldstone mode is expected since the symmetry that has been broken
spontaneously is discrete and not continuous. [1]

4 A charged particle radiates energy at a rate proportional to the square of its
acceleration, ẍ2. For periodic motion, this is equivalent to the action of a force

...
x

on the particle. If we consider simple harmonic oscillations in one dimension, the
equation of motion can then be written as

ẍ+ x− ε...x = f(t) ε ∈ R ,

where f(t) is an external driving force.
(a) [book work] The equation of motion can be solved introducing the real

time Green’s function G(t− t′), [1][
d2

dt2
+ 1− ε d

3

dt3

]
G(t− t′) = δ(t− t′) ,

such that x(t) =
∫
G(t− t′)f(t′) dt′. Given the Fourier transform convention

G(t− t′) =

∫
G(ω) e−iω(t−t

′) dω

2π
,

one obtains x(ω) = G(ω)f(ω) and [−ω2 + 1− iεω3]G(ω) = 1, whereby [3]

G(ω) =
1

−ω2 + 1− iεω3
.

G(t− t′) is the solution to the equation of motion (namely, the response of
the system) given a driving force that acts at a single instant in time, t = t′.
Causality therefore demands that G(t− t′) = 0 for t < t′. [2]

The integral

G(t− t′) =

∫
G(ω) e−iω(t−t

′) dω

2π

can be computed via Cauchy integration. The contour ought to be closed in the
upper half complex ω plane for t < t′ and in the lower half plane for t > t′. Since
the Cauchy integral vanishes whenever no poles are enclosed, causality demands
that G(ω) has no poles in the upper half plane. [2]

(b) [1998-99 exam] The two poles for ε = 0 are ω
(0)
1,2 = ±1 (solutions of

−ω2 + 1 = 0). [2]
Following the hint, we substitute the general solution ω1,2 ' ±1 + α1,2 into

the equation and we expand to leading order in |α1,2| ∼ |ε|:

−ω2
1,2 + 1− iεω3

1,2 ' ∓2α1,2 ∓ iε = 0 .
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Therefore, α1,2 = −iε/2 and the two poles for small |ε| are ω1,2 ' ±1− iε/2. [5]
[part 1998-99 exam, part textbook] Firstly, we note that both poles

shift either in the upper or lower half plane depending on the sign of ε. Causality
requires them to move in the lower half plane, and therefore ε > 0. (Notice – not
for marking – that ε < 0 in the equation of motion corresponds instead to a dipole
absorbing energy rather than radiating it.) [3]

The case of the damped simple harmonic oscillator discussed in the lecture
notes has a damping term γẋ in the equation of motion, with γ > 0 corresponding
to the physical case of damping (rather than pumping energy into the system,
γ < 0). First order dissipative terms (γẋ) have therefore the opposite sign with
respect to third order dissipative terms (−ε...x ). [2]

(c) [1998-99 exam] Substituting ω3 ' α3/ε into the equation as suggested,

−ω2
3 + 1− iεω3

3 ' −
α2 + iα3

ε2
= 0 ,

we see that α3 = i is a solution, to leading order (the constant term is negligible
with respect to the diverging contributions ∝ 1/ε). [3]

The third pole ω3 ' i/ε appears in the upper half plane for ε > 0, thence
violating causality. [2]
(Notice – not for marking – that radiative energy emission from an accelerating
charged particle is a relativistic effect, and we have already seen in the lecture
notes how relativistic terms in the equation of motion can be incompatible with
non-relativistic causality conditions. See for instance the case of a relativistic vs.
non-relativistic quantum particle.)

END OF PAPER
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