THEORETICAL PHYSICS I

Answers

1 A bead with mass M slides, without friction, along an infinite fixed coil which constrains the bead's cylindrical coordinates, $\left(r_{B}, \theta_{B}, z_{B}\right)$, to be $\left(a, \theta_{B}, b \theta_{B}\right)$. A massless spring with zero natural length and spring constant k connects the bead to an unconstrained particle with mass m and cylindrical coordinates (r, θ, z).
(a) [book work] If the free particle is at coordinates (r, θ, z), and the bead is at θ_{B}, show that the Lagrangian for the system is:

$$
\begin{aligned}
L= & \frac{1}{2} m\left(\dot{r}^{2}+\dot{z}^{2}+r^{2} \dot{\theta}^{2}+\frac{M}{m}\left(a^{2}+b^{2}\right) \dot{\theta}_{B}^{2}\right) \\
& -\frac{1}{2} k\left(a^{2}+r^{2}-2 a r \cos \left(\theta-\theta_{B}\right)+\left(z-b \theta_{B}\right)^{2}\right) .
\end{aligned}
$$

The "free" particle has kinetic energy

$$
K E_{m}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)
$$

The bead has kinetic energy

$$
K E_{B}=\frac{1}{2} M\left(a^{2}{\dot{\theta_{B}}}^{2}+\dot{z}_{B}^{2}\right),
$$

but the bead's z coordinate is simply $z_{B}=b \theta_{B}$ so this is

$$
K E_{B}=\frac{1}{2} M\left(a^{2}{\dot{\theta_{B}}}^{2}+b^{2} \dot{\theta}_{B}^{2}\right) .
$$

The length of the spring, l, is given by Pythagoras,

$$
l^{2}=\left(r \cos (\theta)-a \cos \left(\theta_{B}\right)\right)^{2}+\left(r \sin (\theta)-a \sin \left(\theta_{B}\right)\right)^{2}+\left(z-z_{B}\right)^{2}
$$

Expanding out recalling $z_{B}=b \theta_{B}$ this gives the potential energy

$$
\begin{aligned}
V=\frac{1}{2} k l^{2} & =\frac{1}{2} k\left(r^{2}+a^{2}-2 a r\left(\cos (\theta) \cos \left(\theta_{B}\right)+\sin (\theta) \sin \left(\theta_{B}\right)+\left(z-b \theta_{B}\right)^{2}\right)\right. \\
& =\frac{1}{2} k\left(r^{2}+a^{2}-2 a r \cos \left(\theta-\theta_{B}\right)+\left(z-b \theta_{B}\right)^{2}\right) .
\end{aligned}
$$

The Lagrangian is thus

$$
\begin{aligned}
& L=K E_{m}+K E_{B}-V \\
& =\frac{1}{2} m\left(\dot{r}^{2}+\dot{z}^{2}+r^{2} \dot{\theta}^{2}+\frac{M}{m}\left(a^{2}+b^{2}\right) \dot{\theta}_{B}^{2}\right)-\frac{1}{2} k\left(a^{2}+r^{2}-2 a r \cos \left(\theta-\theta_{B}\right)+\left(z-b \theta_{B}\right)^{2}\right)
\end{aligned}
$$

however the a^{2} term is an irrelevant constant, so this matches the given L.
(b) [book work] There are four coordinates, and hence four Euler-Lagrange equations.

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}=\frac{\partial L}{\partial \theta} \Longrightarrow \frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=-k a r \sin \left(\theta-\theta_{B}\right) \\
& \Longrightarrow 2 m \dot{r} \dot{\theta}+m r \ddot{\theta}=-k a \sin \left(\theta-\theta_{B}\right) \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{r}}=\frac{\partial L}{\partial r} \Longrightarrow m \ddot{r}=m r \dot{\theta}^{2}-k r+k a \cos \left(\theta-\theta_{B}\right) \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{z}}=\frac{\partial L}{\partial z} \Longrightarrow m \ddot{z}=-k\left(z-b \theta_{B}\right) \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\theta_{B}}}=\frac{\partial L}{\partial \theta_{B}} \Longrightarrow M\left(a^{2}+b^{2}\right) \ddot{\theta_{B}}=k a r \sin \left(\theta-\theta_{B}\right)+k b\left(z-b \theta_{B}\right)
\end{aligned}
$$

(c) [new] The potential is of the form $V\left(r, \theta-\theta_{B}, z-b \theta_{B}\right)$. The helical symmetry reveals itself because $\theta \rightarrow \theta+c, \theta_{B} \rightarrow \theta_{B}+c, z \rightarrow z+c b$ leaves the length of the spring, and hence V, unchanged. It requires a simultaneous rotation and elevation of both masses.

The kinetic energy does not depend on θ, z or θ_{B}, so the Lagrangian is also in the form $L\left(\dot{r}, \dot{\theta}, \dot{z}, \dot{\theta}_{B}, r, \theta-\theta_{B}, z-b \theta_{B}\right)$. We thus have

$$
\frac{\partial L}{\partial \theta_{B}}=-\frac{\partial L}{\partial \theta}-b \frac{\partial L}{\partial z} .
$$

Applying the Euler=Lagrange equations this yields

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{B}}\right)=-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-b \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{z}}\right)
$$

so the quantity

$$
J=\frac{\partial L}{\partial \dot{\theta}_{B}}+\frac{\partial L}{\partial \dot{\theta}}+b \frac{\partial L}{\partial \dot{z}}
$$

is conserved.
Evaluating this for the Lagrangian in this case, the conserved quantity is

$$
J=m r^{2} \dot{\theta}+M\left(a^{2}+b^{2}\right) \dot{\theta}_{B}+b m \dot{z}
$$

and conservation means $\dot{J}=0$.
(d) $[$ new $]$ Since the particle is released from rest and M is negligible, $J=0$. We thus have

$$
r^{2} \dot{\theta}=-b \dot{z}
$$

Integrating both sides with respect to time, we get

$$
\int_{0}^{T} r^{2} \dot{\theta} \mathrm{~d} t=-b \int_{0}^{T} \dot{z} \mathrm{~d} t=-b \Delta z .
$$

Using the chain rule, the lhs can be transformed to

$$
\int_{t=0}^{t=T} r^{2} \mathrm{~d} \theta=-b \Delta z
$$

so we have

$$
\Delta z=-\frac{2}{b}\left(\frac{1}{2} \int_{t=0}^{t=T} r^{2} \mathrm{~d} \theta\right)
$$

If the particle's trajectory is projected into the horizontal (r, θ) plane, it forms a closed loop, and $A=(1 / 2) \int r^{2} \mathrm{~d} \theta$ is the area of this loop.
[Of the last three marks, one will be given if the candidate offers a correct but non-geometric interpretation relating Δz to the time integral of the angular momentum.]

2 (a) [book work] Given the Lagrangian density

$$
\mathcal{L}=-\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta},
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, one obtains two Maxwell's equations for a free electromagnetic field from the Euler-Lagrange equations:

$$
\frac{\partial \mathcal{L}}{\partial A_{\alpha}}=0=\partial_{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\alpha}\right)}\right]
$$

The derivative

$$
\frac{\partial}{\partial\left(\partial_{\mu} A_{\alpha}\right)} F_{\delta \gamma} F^{\delta \gamma}=F^{\delta \gamma} \frac{\partial}{\partial\left(\partial_{\mu} A_{\alpha}\right)} F_{\delta \gamma}+F_{\delta \gamma} \frac{\partial}{\partial\left(\partial_{\mu} A_{\alpha}\right)} F^{\delta \gamma} .
$$

The two terms are in fact equal, and by permuting indices each of these is equal to

$$
2 F^{\delta \gamma} \frac{\partial}{\partial\left(\partial_{\mu} A_{\alpha}\right)} \partial_{\delta} A_{\gamma}=2 F^{\mu \alpha}
$$

The Euler-Lagrange equations therefore reduce to the 4 -vector relation

$$
\partial_{\mu} F^{\mu \alpha}=0 .
$$

These are just the (inhomogeneous) Maxwell equations:

$$
\nabla \cdot \boldsymbol{E}=0, \quad \nabla \times \boldsymbol{B}=\varepsilon_{0} \mu_{0} \frac{\partial \boldsymbol{E}}{\partial t}
$$

where we used $\partial_{0}=\partial / \partial(c t)$,

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} / c & -E_{y} / c & -E_{z} / c \\
E_{x} / c & 0 & -B_{z} & B_{y} \\
E_{y} / c & B_{z} & 0 & -B_{x} \\
E_{z} / c & -B_{y} & B_{x} & 0
\end{array}\right)
$$

and the fact that $c^{2}=1 / \mu_{0} \varepsilon_{0}$.
[Not for credit] The other two Maxwell's equations can be derived directly from the structure of the $F_{\mu \nu}$ tensor, using the so-called Bianchi identity

$$
\partial^{\lambda} F^{\mu \nu}+\partial^{\nu} F^{\lambda \mu}+\partial^{\mu} F^{\nu \lambda}=0
$$

which gives $\nabla \cdot \boldsymbol{B}=0$ and $\nabla \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$.
(b) [part book work, part new] From the given form of the electromagnetic stress-energy tensor

$$
T^{\mu \nu}=-F_{\lambda}^{\mu} F^{\nu \lambda}-g^{\mu \nu} \mathcal{L}
$$

and from the form of the Lagrangian density given above, we obtain

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =-\left(\partial_{\mu} F_{\lambda}^{\mu}\right) F^{\nu \lambda}-F_{\lambda}^{\mu}\left(\partial_{\mu} F^{\nu \lambda}\right)+\frac{1}{4} g^{\mu \nu}\left(\partial_{\mu} F_{\alpha \beta}\right) F^{\alpha \beta}+\frac{1}{4} g^{\mu \nu} F_{\alpha \beta}\left(\partial_{\mu} F^{\alpha \beta}\right) \\
& =-\left(\partial_{\mu} F^{\mu \lambda}\right) F_{\lambda}^{\nu}-F_{\mu \lambda}\left(\partial^{\mu} F^{\nu \lambda}\right)+\frac{1}{2} F_{\alpha \beta}\left(\partial^{\nu} F^{\alpha \beta}\right) .
\end{aligned}
$$

The first term vanishes because of the Euler-Lagrange equation for a free electromagnetic field, $\partial_{\mu} F^{\mu \alpha}=0$.

In the second term, we can relabel the mute indices $\mu \rightarrow \alpha$ and $\lambda \rightarrow \beta$ for simplicity and use Bianchi's identity

$$
\partial^{\nu} F^{\alpha \beta}+\partial^{\alpha} F^{\beta \nu}+\partial^{\beta} F^{\nu \alpha}=0
$$

to arrive at

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =-F_{\alpha \beta}\left(\partial^{\alpha} F^{\nu \beta}\right)+\frac{1}{2} F_{\alpha \beta}\left(\partial^{\alpha} F^{\nu \beta}+\partial^{\beta} F^{\alpha \nu}\right) \\
& =\frac{1}{2} F_{\alpha \beta}\left(-\partial^{\alpha} F^{\nu \beta}+\partial^{\beta} F^{\alpha \nu}\right) \\
& =\frac{1}{2} F_{\alpha \beta}\left(\partial^{\alpha} F^{\beta \nu}+\partial^{\beta} F^{\alpha \nu}\right)=0,
\end{aligned}
$$

where we used (repeatedly) the fact that the electromagnetic tensor is antisymmetric, and we finally noticed in the last line that the term in round brackets is instead symmetric in $\alpha \leftrightarrow \beta$.
(c) [part book work, part unseen] The Lagrangian density for the interaction of a complex scalar field ϕ with the electromagnetic field A_{μ} is

$$
\mathcal{L}=\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-m^{2} \phi^{*} \phi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu},
$$

where $D_{\mu} \phi=\left(\partial_{\mu}+i q A_{\mu}\right) \phi$ and $\left(D_{\mu} \phi\right)^{*}=\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}$. Writing out the Lagrangian density in terms of ϕ, ϕ^{*} and A_{μ} explicitly, one obtains

$$
\begin{aligned}
\mathcal{L}= & \left(\partial_{\mu} \phi^{*}-\mathrm{i} q A_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi+\mathrm{i} q A^{\mu} \phi\right)-m^{2} \phi^{*} \phi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \\
= & \left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-\mathrm{i} q A_{\mu}\left(\phi^{*} \partial^{\mu} \phi-\phi \partial^{\mu} \phi^{*}\right)+q^{2} A_{\mu} A^{\mu} \phi^{*} \phi-m^{2} \phi^{*} \phi \\
& -\frac{1}{4}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) .
\end{aligned}
$$

The Euler-Lagrange equations for A_{μ} give

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial A_{\nu}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)=0 & \Rightarrow-\mathrm{i} q\left(\phi^{*} \partial^{\nu} \phi-\phi \partial^{\nu} \phi^{*}\right)+2 q^{2} A^{\nu} \phi^{*} \phi+\partial_{\mu} F^{\mu \nu}=0 \\
& \Rightarrow \partial_{\mu} F^{\mu \nu}=\mathrm{i} q\left(\phi^{*} \partial^{\nu} \phi-\phi \partial^{\nu} \phi^{*}\right)-2 q^{2} A^{\nu} \phi^{*} \phi
\end{aligned}
$$

One can then verify that

$$
\begin{aligned}
J^{\nu} & \equiv \mathrm{i} q\left[\phi^{*} D^{\nu} \phi-\phi\left(D^{\nu} \phi\right)^{*}\right] \\
& =\mathrm{i} q\left[\phi^{*}\left(\partial^{\nu} \phi+\mathrm{i} q A^{\nu} \phi\right)-\phi\left(\partial^{\nu} \phi^{*}-\mathrm{i} q A^{\nu} \phi^{*}\right)\right] \\
& =\mathrm{i} q\left(\phi^{*} \partial^{\nu} \phi-\phi \partial^{\nu} \phi^{*}\right)-2 q^{2} A^{\nu} \phi^{*} \phi .
\end{aligned}
$$

(d) [part book work, part unseen] For the local transformations $\phi^{\prime}=\mathrm{e}^{-\mathrm{i} q \alpha(x)} \phi$ and $A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \alpha$, one has $\delta \phi=-\mathrm{i} q \alpha \phi, \delta \phi^{*}=\mathrm{i} q \alpha \phi^{*}$ and $\delta A_{\mu}=\partial_{\mu} \alpha$. Thus, by Noether's theorem, $\partial_{\mu} j_{\mathrm{N}}^{\mu}=0$, where

$$
\begin{aligned}
j_{\mathrm{N}}^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi^{*}\right)} \delta \phi^{*}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)} \delta A_{\nu} \\
& =\mathrm{i} q \alpha\left[\phi^{*} D^{\mu} \phi-\phi\left(D^{\mu} \phi\right)^{*}\right]-F^{\mu \nu} \partial_{\nu} \alpha \\
& =\alpha J^{\mu}-F^{\mu \nu} \partial_{\nu} \alpha .
\end{aligned}
$$

Therefore, one has

$$
\begin{aligned}
\partial_{\mu} j_{\mathrm{N}}^{\mu} & =\alpha \partial_{\mu} J^{\mu}+\left(\partial_{\mu} \alpha\right) J^{\mu}-\left(\partial_{\mu} F^{\mu \nu}\right)\left(\partial_{\nu} \alpha\right)-F^{\mu \nu} \partial_{\mu} \partial_{\nu} \alpha \\
& =\alpha \partial_{\mu} J^{\mu}
\end{aligned}
$$

since $\partial_{\mu} F^{\mu \nu}=J^{\nu}$ and $F^{\mu \nu}=-F^{\nu \mu}$. Therefore, Noether's theorem implies that $\partial_{\mu} J^{\mu}=0$.

3 Consider the Klein-Gordon Lagrangian density for a complex scalar field in Minkowski space, coupled to an external vector potential A_{μ} and to a time-dependent driving force $f(t)$:

$$
\mathcal{L}=\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{*} \phi+i e A_{\mu}\left[\phi \partial^{\mu} \phi^{*}-\phi^{*} \partial^{\mu} \phi\right]+f(t)\left(\phi+\phi^{*}\right)
$$

where $A_{\mu}=(V(\boldsymbol{r}), 0,0,0)$ and $V(\boldsymbol{r})$ is a real function of the space coordinates \boldsymbol{r} but is independent of time.
(a) [book work] In order to obtain the Euler-Lagrange equations, we need to compute

$$
\begin{aligned}
\frac{\delta \mathcal{L}}{\delta \phi^{*}} & =-m^{2} \phi-i e A_{\mu} \partial^{\mu} \phi+f(t) \\
\partial_{\mu} \frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi^{*}} & =\partial_{\mu}\left[\partial^{\mu} \phi+i e A^{\mu} \phi\right]=\partial_{\mu} \partial^{\mu} \phi+i e\left(\partial_{\mu} A^{\mu}\right) \phi+i e A^{\mu} \partial_{\mu} \phi
\end{aligned}
$$

For the given vector potential we readily see that $\partial_{\mu} A^{\mu}=0$ and the corresponding Euler-Lagrange equation of motion can be written as

$$
\partial_{\mu} \partial^{\mu} \phi+2 i e A^{\mu}(\boldsymbol{r}) \partial_{\mu} \phi+m^{2} \phi=f(t),
$$

and equivalently for ϕ^{*}.
(b) [new] The Green's function $\mathcal{G}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)$ is a solution of the above equation of motion when the right hand side is replaced by $\delta\left(t-t^{\prime}\right) \delta^{(3)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$. In order to find the corresponding equation in Fourier space, let us substitute the transform

$$
\mathcal{G}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)=\int \frac{d \omega}{2 \pi} \int \frac{d^{3} k}{(2 \pi)^{3}} G(\boldsymbol{k} ; \omega) e^{-i \omega\left(t-t^{\prime}\right)+i \boldsymbol{k} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}
$$

in the equation

$$
\left[\partial_{\mu} \partial^{\mu}+2 i e A^{\mu}(\boldsymbol{r}) \partial_{\mu}+m^{2}\right] \mathcal{G}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \delta^{(3)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) .
$$

The left hand side becomes

$$
\int \frac{d \omega}{2 \pi} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[-\omega^{2}+k^{2}+2 e V(\boldsymbol{r}) \omega+m^{2}\right] G(\boldsymbol{k} ; \omega) e^{-i \omega\left(t-t^{\prime}\right)+i \boldsymbol{k} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}
$$

where we used $\partial_{\mu} \partial^{\mu}=\partial_{t}^{2}-\nabla^{2}$ and $A^{\mu}(\boldsymbol{r}) \partial_{\mu}=A^{0} \partial_{t}$.
We then multiply both left and right hand side of the equation by $e^{i \omega_{0}\left(t-t^{\prime}\right)-i \boldsymbol{k}_{0} \cdot\left(\boldsymbol{r}_{-} \boldsymbol{r}^{\prime}\right)}$, and integrate over t and \boldsymbol{r}. The right hand side gives straightforwardly 1 . The left hand side has two contributions:

$$
\begin{aligned}
& \int \frac{d \omega}{2 \pi} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[-\omega^{2}+k^{2}+m^{2}\right] G(\boldsymbol{k} ; \omega) \int d t \int d^{3} r e^{-i\left(\omega-\omega_{0}\right)\left(t-t^{\prime}\right)+i\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right) \cdot\left(\boldsymbol{r}_{-}-\boldsymbol{r}^{\prime}\right)} \\
& \quad=\left[-\omega_{0}^{2}+k_{0}^{2}+m^{2}\right] G\left(\boldsymbol{k}_{0} ; \omega_{0}\right) \\
& \int \frac{d \omega}{2 \pi} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[2 e \omega \int d^{3} r V(\boldsymbol{r}) e^{i\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right) \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\right] G(\boldsymbol{k} ; \omega) \int d t e^{-i\left(\omega-\omega_{0}\right)\left(t-t^{\prime}\right)} \\
& \quad=2 e \omega_{0} \int \frac{d^{3} k}{(2 \pi)^{3}} V\left(\boldsymbol{k}_{0}-\boldsymbol{k}\right) G\left(\boldsymbol{k} ; \omega_{0}\right)
\end{aligned}
$$

where we used the fact that

$$
\int d t e^{-i\left(\omega-\omega_{0}\right)\left(t-t^{\prime}\right)}=2 \pi \delta\left(\omega-\omega_{0}\right) \quad \int d^{3} r e^{i\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right) \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}=(2 \pi)^{3} \delta^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right)
$$

and

$$
V\left(\boldsymbol{k}_{0}-\boldsymbol{k}\right)=\int d^{3} r V(\boldsymbol{r}) e^{i\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right) \cdot\left(\boldsymbol{r}_{-} \boldsymbol{r}^{\prime}\right)}
$$

We can then combine these results (and change variables $\boldsymbol{k}, \omega \rightarrow \boldsymbol{k}^{\prime}, \omega^{\prime}$ and $\left.\boldsymbol{k}_{0}, \omega_{0} \rightarrow \boldsymbol{k}, \omega\right)$ to obtain the expression in the exam paper:

$$
\left[-\omega^{2}+k^{2}+m^{2}\right] G(\boldsymbol{k} ; \omega)+2 e \omega \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} V\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) G\left(\boldsymbol{k}^{\prime} ; \omega\right)=1
$$

(c) [part book work, part new] As instructed in the exam paper, we then consider the case where $V\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)=-(2 \pi)^{3} i \gamma \delta^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)$:

$$
\left[-\omega^{2}+k^{2}+m^{2}-2 e \gamma i \omega\right] G(\boldsymbol{k} ; \omega)=1 .
$$

It is straightforward to invert the equation and obtain $G(\boldsymbol{k} ; \omega)$, from which we get

$$
G\left(\boldsymbol{k} ; t, t^{\prime}\right)=\int \frac{d \omega}{2 \pi} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{-\omega^{2}-2 e \gamma i \omega+k^{2}+m^{2}}
$$

The location of the poles can be obtained by solving

$$
\omega^{2}+2 e \gamma i \omega-k^{2}-m^{2}=0 \quad \rightarrow \quad \omega_{1,2}=-e \gamma i \pm \sqrt{k^{2}+m^{2}-e^{2} \gamma^{2}}
$$

- If $k^{2}+m^{2}>e^{2} \gamma^{2}$, the square root term is real and the two poles appear in the lower half of the complex ω plane, a distance $e \gamma$ below the real axis points $\pm \sqrt{k^{2}+m^{2}-e^{2} \gamma^{2}}$.
- If $k^{2}+m^{2}<e^{2} \gamma^{2}$, the square root term is purely imaginary and the two poles sit on the imaginary axis of the complex ω plane. Since $\sqrt{e^{2} \gamma^{2}-k^{2}-m^{2}}$ is always smaller than $e \gamma$, the two poles lie again in the lower half plane, slightly above and slightly below the point $-i e \gamma$.
- Finally, if $k^{2}+m^{2}=e^{2} \gamma^{2}$, the integral has a double pole at the point -ie on the imaginary axis.
The location of the poles is illustrated schematically in the figure.

(d) [book work] When $k^{2}+m^{2}>e^{2} \gamma^{2}$ (left panel in the figure above), the two poles are

$$
\omega_{1,2}=-e \gamma i \pm \sqrt{k^{2}+m^{2}-e^{2} \gamma^{2}} \equiv-e \gamma i \pm \tilde{\omega} .
$$

In order to compute

$$
G\left(\boldsymbol{k} ; t, t^{\prime}\right)=-\int \frac{d \omega}{2 \pi} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\left(\omega-\omega_{1}\right)\left(\omega-\omega_{2}\right)}
$$

we use contour integration and Cauchy's theorem. For $t<t^{\prime}$, we need to close the contour in the upper half plane (cf. the contribution $\left.e^{\operatorname{Im}(\omega)\left(t-t^{\prime}\right)}\right)$ and the integral vanishes trivially since the contour does not encircle any poles. For $t>t^{\prime}$, we need to close the contour in the lower half plane thus encircling the two poles (in the clockwise direction!):

$$
\begin{aligned}
G\left(\boldsymbol{k} ; t, t^{\prime}\right) & =-\frac{2 \pi i}{2 \pi}\left[-\frac{e^{-i \omega_{1}\left(t-t^{\prime}\right)}}{\omega_{1}-\omega_{2}}-\frac{e^{-i \omega_{2}\left(t-t^{\prime}\right)}}{\omega_{2}-\omega_{1}}\right] \\
& =i\left[\frac{e^{-i \tilde{\omega}\left(t-t^{\prime}\right)}}{2 \tilde{\omega}}-\frac{e^{i \tilde{\omega}\left(t-t^{\prime}\right)}}{2 \tilde{\omega}}\right] e^{-e \gamma\left(t-t^{\prime}\right)}=\frac{\sin \left[\tilde{\omega}\left(t-t^{\prime}\right)\right]}{\tilde{\omega}} e^{-e \gamma\left(t-t^{\prime}\right)} .
\end{aligned}
$$

4 A ferromagnet consists of a large number, N, of interacting vector spins, $\left\{s_{i}\right\}$, which each have unit length but can point in any direction. Each spin interacts with many other spins via an interaction energy $E=-s_{i} \cdot s_{j}$, which favors alignment. We propose a Landau theory of the following form to study $\boldsymbol{m} \equiv \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{s}_{i}$, the average magnetization of the system:

$$
f=a m+b m^{2}+c m^{3}+d m^{4}
$$

where $m=|\boldsymbol{m}|$.
(a) [bookwork] The energy has a rotational invariance: changing $\boldsymbol{m} \rightarrow R \cdot \boldsymbol{m}$ should not change the energy, for any rotation R, so the energy should be written in terms of tensor-invariants of \boldsymbol{m}. It should also be an analytic function. Thus we have

$$
f=b \sum_{i} m_{i} m_{i}+d \sum_{i, j} m_{i} m_{i} m_{j} m_{j}
$$

Thus $a=c=0$ since they do not correspond to rotationally invariant analytic terms.

For $m \rightarrow \infty$ not to be the ground state, with divergent negative energy, we must have $d>0$.

The parameter b controls the transition: $b>0$ gives $m=0$, the isotropic state, $b<0$ gives $m \neq 0$, the aligned state.
(b) [bookwork] The observed \boldsymbol{m} is that which minimizes f, which requires

$$
\frac{\partial f}{\partial m}=2 b m+4 d m^{3}=0
$$

which is solved by $m=0$, and by $m=\sqrt{-b /(2 d)}=\sqrt{\left(T_{c}-T\right) /\left(2 T_{c} d\right)}$. There is no \pm as $|m|$ cannot be negative.
The $m=0$ is the ground state for $b>0$ (i.e. $T>T_{c}$) while $m=\sqrt{\left(T_{c}-T\right) /\left(2 T_{c} d\right)}$ is the ground state for $b<0$. Thus the plot looks like

The system breaks its spatial isotropy: the hamiltonian is isotropic, but the state with finite $|m|$ must "choose" a direction for \boldsymbol{m}.
Inspecting the plot above, the transition is continuous.
A nematic liquid crystal is similar to a ferromagnet, in that it consists of lots of rod shaped molecules each pointing along a vector s_{i}, which has unit length but can point in any direction. However, in this case the molecules interact via an energy $E \propto-\left(\boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}\right)^{2}$ which equally favors alignment or anti-alignment.
(c)[new] The ferro-magnet energy, $E \propto-\boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}$ favors alignment, whereas the nematic energy, $E \propto-\left(s_{i} \cdot s_{j}\right)^{2}$, equally favors alignment or anti-alignment. Thus the ferro-magnet aligned state has the spins all pointing in the same direction, giving a finite $\langle\boldsymbol{s}\rangle$, whereas the nematic ground state can contain equal numbers of aligned and anti-aligned spins giving $\langle\boldsymbol{s}\rangle=0$.
[bonus mark] The nematic energy does not actually distinguish between alignment and anti-alignment, so the fully aligned state is also a ground state. However, on combinatorial grounds there are many more ground states with $\langle\boldsymbol{s}\rangle=0$, hence this is what is observed.
(d) [new] $S_{\alpha \alpha}=\frac{1}{N} \sum_{i=1}^{N}\left(3 s_{i \alpha} s_{i \alpha}-\delta_{\alpha \alpha}\right)=\frac{1}{N} \sum_{i=1}^{N}(3(1)-3)=0$
(e) [new] Substituting $S_{\alpha \beta}=Q\left(3 n_{\alpha} n_{\beta}-\delta_{\alpha \beta}\right)$ into the provided energy (easy if you remember it is symmetric, and hence diagonal in its principal frame) yields

$$
f=6 a Q^{2}+6 b Q^{3}+18 c Q^{4} .
$$

This is graphed for various values of $b<0$ below:

If $b=0$ this is a simple symmetric energy with a single minimum. As b is reduced below 0 the energy loses symmetry, and eventually a second minimum appears at positive Q. At some value of b it becomes the global minimum. The transition is thus discontinuous.
(f) [new] f always has one minimum with $f=0$ at $Q=0$. The second minimum will become the global minimum when it passes $f=0$, so we examine

$$
\begin{align*}
f & =6 a Q^{2}+6 b Q^{3}+18 c Q^{4}=0 \tag{1}\\
\Longrightarrow & =a Q^{2}+b Q^{3}+3 c Q^{4}=0
\end{align*}
$$

which as three solutions, $Q=0$ (as expected) and

$$
Q=\frac{-b \pm \sqrt{b^{2}-12 c a}}{6 c} .
$$

The point where we go from one to three solutions is the point when the second minimum cuts the x axis, which occurs when $b^{2}=12 c a$.
So the transition happens when $b=-\sqrt{12 a c}$, and the system jumps from $Q=0$ to

$$
Q=\frac{-b}{6 c}=\sqrt{\frac{a}{3 c}} .
$$

END OF PAPER

