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THEORETICAL PHYSICS I

Answers

1 (a) Working in (x, y, z) coordinates the position of the mass is

r = (ax, ay, 0) + l(sin(θ),− cos(θ), 0)

and the velocity is
ṙ = (ȧx, ȧy, 0) + l(cos(θ), sin(θ), 0)θ̇

so the kinetic and potential energy are:

T =
1

2
m|ṙ|2 = 1

2
m(ȧ2x + ȧ2y + l2θ̇2 + 2lθ̇(ȧx cos(θ) + ȧy sin(θ))

V = mgz = mg(ay − l cos(θ)).

The Lagrangian is

L = T − V =
1

2
m(ȧ2x + ȧ2y + l2θ̇2 + 2lθ̇(ȧx cos(θ) + ȧy sin(θ))−mg(ay − l cos(θ))

(b) We have

∂L

∂θ̇
= ml2θ̇+ml(ȧx cos(θ)+ȧy sin(θ)),

∂L

∂θ
= mlθ̇(−ȧx sin(θ)+ȧy cos(θ))−mgl sin(θ).

The equation of motion is
d

dt

∂L

∂θ̇
=
∂L

∂θ
.

The left-hand-side is

d

dt

∂L

∂θ̇
=

d

dt

(

ml2θ̇ + l(ȧx cos(θ) + ȧy sin(θ))
)

= ml2θ̈ +ml(äx cos(θ) + äy sin(θ) + θ̇(ȧy cos(θ)− ȧx sin(θ))),

while the left hand side is given above. Putting the two together, the θ̇ terms
cancel, giving the equation of motion

l2θ̈ + l(äx cos(θ) + äy sin(θ)) = −gl sin(θ)
=⇒ l2θ̈ = −l[(äy + g) sin(θ) + äx cos(θ)]
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Writing l = l(sin(θ),− cos(θ), 0), g = (0,−g, 0) and ä = (äx, äy, 0), we have

l × (g − ä) = −l(0, 0, sin(θ)(äy + g) + cos(θ)äx),

so, as stated, we can write the equation of motion as:

l2θ̈ẑ = l × (g − ä)

(c) We now have ay = 0, ax = a cos(ωt), so our equation of motion is

lθ̈ = −g sin(θ) + aω2 cos(ωt) cos(θ).

However, we are told that

θ = θ1 −
a

l
cos(θ1) cos(ωt).

where θ1 is a slowly varying function of time and a/l ≪ 1. We insert this into the
above equation, expand to first order in a/l and average over one cycle, 2π/ω, in
which time θ1 does not significantly change. The lhs simply gives lθ̈1 since all the
other terms time-average to zero. On the right hand side, we have

−g sin(θ) ≈ −g
(

sin(θ1)− cos(θ1)
a

l
cos(θ1) cos(ωt)

)

,

but, averaging over one cycle the second term on the right gives zero, so this
becomes

−g sin(θ) → −g sin(θ1).
The other term on the right hand side is

aω2 cos(ωt) cos(θ) ≈ aω2 cos(ωt)
(

cos(θ1) + sin(θ1)
a

l
cos(ωt) cos(θ1)

)

.

Time averaging, the first term gives zero while cos2(ωt) → 1/2, so this becomes

aω2 cos(ωt) cos(θ) → 1

2

a2

l
ω2 sin(θ1) cos(θ1).

Assembling these three pieces, the equation for θ1 is

lθ̈1 = −g sin(θ1) +
1

2

a2

l
ω2 sin(θ1) cos(θ1).

(d) If this were an un-driven pendulum but in a different potential Veff(θ), the
equation of motion would be

ml2θ̈ = −V ′
eff(θ).
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For this to match the motion of θ1, we need

Veff(θ) = ml

∫
(

g sin(θ)− 1

2

a2

l
ω2 sin(θ) cos(θ)

)

dθ

= ml

(

−g cos(θ) + a2ω2

4l
cos2(θ)

)

For small a the first term, ∝ cos(θ), dominates so the potential has a single
minimum at θ = 0. At large a the second term dominates, so the potential has a
maxima when θ = 0 and minima at ±π/2. The transition happens when
V ′′
eff (0) = 0. We have

V ′′
eff (θ) = ml

(

g cos(θ)− a2ω2

2l
(cos2(θ)− sin2(θ)

)

,

so V ′′
eff(0) = 0 when 1

2
a2ω2

l
= g, so the θ = 0 solution is unstable if a2 > 2lg/ω2.

2 (a) The kinetic energy for the system is

T =
1

2
m(ṙ2 + r2φ̇2).

The elastic potential energy for the circular spring is

Vspring =
1

2
k(2πr − 2πr0)

2 = 2π2k(r − r0)
2.

A convenient form for the magnetic vector potential is A = B r
2
φ̂, so

v ·A = 1
2
Br2φ̇ at every point on the ring. The velocity dependent magnetic

potential energy is thus

Vmag = −qBr
2

2
φ̇.

Putting these together, the Lagrangian is

L = T − V =
1

2
m(ṙ2 + r2φ̇2)− 2π2k(r − r0)

2 +
qBr2

2
φ̇.

(b) The momenta conjugate to r and φ are

pr =
∂L

∂ṙ
= mṙ

pφ =
∂L

∂φ̇
= mr2φ̇+

qBr2

2

The Hamiltonian is thus

H = prṙ + pφφ̇− L =
1

2
mṙ2 +

1

2
mr2φ̇2 + 2π2k(r − r0)

2.
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However, we should write this in terms of the canonical variables, pr, pφ, r and φ,
to get

H =
p2r
2m

+

(

pφ − qBr2

2

)2

2mr2
+ 2π2k(r − r0)

2,

which is why Hamilton’s equations will depend on B.

(c) The system has two symmetries: it does not depend on time or on the
coordinate φ. The former guarantees that the Hamiltonian will be a constant of
the motion, i.e. that the sum of the kinetic and spring energy will be conserved
during motion. The latter guarantees, via Lagrange’s equation of motion for φ,
that pφ is conserved during motion.

Lagrange’s equation of motion for r is

d
dt
∂L
∂ṙ

= ∂L
∂r

=⇒ mr̈ = mrφ̇2 + qBrφ̇− 4π2k(r − r0)

However, we know pφ = mr2φ̇+ qBr2

2
≡ J is a constant of the motion, so we use it

to eliminate φ̇.

mr̈ = mr
(

J
mr2

− qB
2m

)2
+ qBr

(

J
mr2

− qB
2m

)

− 4π2k(r − r0)

=⇒ mr̈ = J2

mr3
− q2B2r

4m
− 4π2k(r − r0)

(d) With the given value of φ̇, we see that J = 0. The equation of motion for r
thus reduces to

mr̈ = −q
2B2r

4m
− 4π2k(r − r0)

This is just an SHM equation for r. The equilibrium radius, re, is where the
rhs=0, i.e. where

−q
2B2re
4m

− 4π2k(re − r0) = 0 =⇒ re =
4π2kr0

q2B2

4m
+ 4π2k

=
16π2km

B2q2 + 16π2km
r0.

We can then write the equation of motion in the form

mr̈ = −
(

q2B2

4m
+ 4π2k

)

(r − re)

So the solution we are looking for is

r = re + (r0 − re) cos(ωt)

with re given above and mω2 =
(

q2B2

4m
+ 4π2k

)

. Since J = 0 is a constant of the

motion,we have, at all times, φ̇ = − qB
2m

, so the solution for φ is simply

φ = − qB
2m

t.
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(e) In this motion, we start with ṙ = φ̇ = 0 and r = r1, so we have

pφ = mr2φ̇+ qBr2

2
=

qBr2
1

2
, which we can solve to find φ̇ as:

φ̇ =
qB

2m

(

r21
r2

− 1

)

.

We can also evaluate the Hamiltonian as

H =
1

2
mṙ2 +

1

2
mr2φ̇2 + 2π2kr2 = 2π2kr21.

Substituting our equation for φ into the Hamiltonian gives

H =
1

2
mṙ2 +

1

2
mr2

(

qB

2m

)2(
r21
r2

− 1

)2

+ 2π2kr2 = 2π2kr21.

At the minimum radius we must have ṙ = 0, yielding the following quartic
equation for r,

1
2
mr2

(

qB
2m

)2
(

r2
1

r2
− 1
)2

+ 2π2kr2 = 2π2kr21

=⇒ q2B2

8m
(r41 − 2r21r

2 + r4) + 2π2k(r4 − r21r
2) = 0

=⇒
(

q2B2

8m
+ 2π2k

)

r4 −
(

q2B2

4m
+ 2π2k

)

r21r
2 + q2B2

8m
r41 = 0

This equation has four roots,

r = ±r1 r = ± Bq
√

B2q2 + 16kmπ2
r1,

The minimum radius of the motion is given by the positive root less than r1:

r =
Bq

√

B2q2 + 16kmπ2
r1.

At this minimum radius the angular velocity is given by

φ̇ =
qB

2m

(

r21
r2

− 1

)

=
8π2k

Bq
.

3 (a) The Poisson bracket of two functions f and g is defined as

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

A change of variables q, p→ Q(q, p), P (q, p) is said to be a canonical
transformation if it satisfies the condition

{Q,P} = 1 (and trivially: {Q,Q} = 0 = {P, P} )
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where the Poisson brackets are defined with respect to the original coordinates and
momenta q, p. Under canonical transformations, Hamilton’s equations of motion
are preserved; namely, upon transforming the Hamiltonian, one can use Hamilton’s
equations with respect to Q,P to obtain the equations of motion of the system in
the new variables.

One can show that the total time derivative of a generic observable O(q, p, t)
of the system can be obtained using the Poisson bracket of the function with the
Hamiltonian:

dO
dt

= {O, H}+ ∂O
∂t
.

(b) Hamilton’s equations of motion are:

{

q̇ = ∂H
∂p

= cosh(2q)

ṗ = −∂H
∂q

= −2p sinh(2q)

The function O(q, p) does not depend explicitly on time; therefore

dO
dt

= {O, H} = p eqp
∂H

∂p
− q eqp

∂H

∂q
= (p q̇ + q ṗ) eqp.

(c) In order for this change of variables to be a canonical transformation, it must
satisfy the condition

{Q,P} =
∂Q

∂q

∂P

∂p
−∂Q
∂p

∂P

∂q
= f(p)f ′(p) cosh2(q)−f ′(p)f(p) sinh2(q) = f(p)f ′(p) = 1.

One can verify that f(p) =
√
2p satisfies this equation.

Using the identity cosh(2x) = sinh2(x) + cosh2(x), we can re-write the
Hamiltonian as

H = p
[

sinh2(q) + cosh2(q)
]

=
1

2

[

√

2p sinh(q)
]2

+
1

2

[

√

2p cosh(q)
]2

which, after the chosen canonical change of variables, reduces to
H = Q2/2 + P 2/2, the Hamiltonian of a simple harmonic oscillator (of mass and
elastic constant m = k = 1).

(d) Hamilton’s equations of motion applied to H − g(t)Q are trivially
Q̇ = ∂H/∂P = P and Ṗ = −∂H/∂Q = −Q + g(t). Taking the time derivative of
the first equation and substituting the second one into it, we arrive at the result:

Q̈+Q = g(t) =
ω0

2
e−ω0|t|.

The Green’s function is a solution of the same equation with a δ-source,
G̈(t− t′) + G(t− t′) = δ(t− t′). Using the Fourier transform
G(t− t′) =

∫

dω G(ω) exp[−iω(t− t′)]/2π, the Green’s function can be computed
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explicitly as G(ω) = (1− ω2)−1. This function has two poles on the real axis at
ω = ±1. When computing the real time Green’s function G(t− t′) one has to move
the poles down in the negative imaginary half plane in order to satisfy the physical
requirement of causality, namely G(t− t′) = 0 for t < t′.

Rather than transforming the Green’s function back to real time, we follow
the suggestion in the hint and compute firstly Q(ω) = G(ω)g(ω) in Fourier space.
We must then evaluate the integral

Q(t) =

∫ ∞

−∞

dω

2π

exp[−iωt]
1− ω2

ω2
0

ω2 + ω2
0

The integrand has two poles along the real axis at ω = ±1 – which we push into
the negative imaginary half plane to satisfy causality – and two poles on the
imaginary axis at ω = ±iω0.

In order to solve the integral, we use Cauchy’s theorem. For t < 0 we must
close the contour along an infinite semicircle in the upper half plane. This encircles
only one pole at ω = iω0 (recall that ω0 > 0) in the counter-clockwise direction,
and therefore:

Q(t < 0) =
2πi

2π

exp(ω0t)

1 + ω2
0

ω2
0

2iω0

=
exp(−ω0|t|)

2

ω0

1 + ω2
0

.

For t > 0 we must close the contour along an infinite semicircle in the lower
half plane. This encircles the three remaining poles, at ω = −iω0 and ω = ±1, in
the clockwise direction. Therefore:

Q(t > 0) = −2πi

2π

{

exp(−it)
−2

ω2
0

1 + ω2
0

+
exp(it)

2

ω2
0

1 + ω2
0

+
exp(−ω0t)

1 + ω2
0

ω2
0

−2iω0

}

which simplifies to

Q(t > 0) =
ω2
0

1 + ω2
0

sin(t) +
exp(−ω0t)

1 + ω2
0

ω0

2
=

ω0

1 + ω2
0

{

ω0 sin(t) +
exp(−ω0t)

2

}

The behaviour of Q(t) is continuous at t = 0 but singular in its first derivative (not
surprisingly, since g(t) is singular at t = 0). It is the superposition of a symmetric
contribution ∝ exp(−ω0|t|) and a contribution ∝ sin(t) that is present only at
positive times due to our choice of imposing causality on the Green’s function.

4 (a) The velocity of an element dx of the string is ψ̇yŷ + ψ̇zẑ, so the total kinetic
energy is

T =

∫

1

2
ρ(ψ̇2

y + ψ̇2
z)dx.

The elastic potential energy is

V = F

[
∫

ds−
∫

dx

]

= F

(
∫

√

1 + ψ′2
z + ψ′2

y dx−
∫

dx

)
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For small displacement gradients, we can expand this to leading order to get

V =

∫

1

2
F
(

ψ′2
z + ψ′2

y

)

dx.

The Lagrangian for the string is thus

L = T − V =

∫

1

2
ρ(ψ̇2

y + ψ̇2
z)−

1

2
F
(

ψ′2
z + ψ′2

y

)

dx.

(b) The transformation ψy → ψy + a does not change ψ′
y or ψ̇y so, trivially, the

Lagrangian is invariant. The resultant Noether conservation law is simply the
Lagrangian equation of motion for ψy:

∂t
∂L

∂ψ̇y
+ ∂x

∂L

∂ψ′
y

=
∂L

∂ψy
= 0.

Evaluating this for the Lagrangian in question gives:

∂t(ρψ̇y)− ∂x(Fψ
′
y) = 0.

Integrating along the entire length of the string, we have
∫ ∞

−∞

∂t(ρψ̇y)dx =

∫ ∞

−∞

∂x(Fψ
′
y)dx =

[

Fψ′
y

]∞

−∞
= 0.

On the left-hand side, we can bring the ∂t outside the integral, so we have

∂t

∫ ∞

−∞

(ρψ̇y)dx = 0

i.e. the quantity

Py =

∫ ∞

−∞

(ρψ̇y)dx,

which is the total linear momentum in the y direction, is conserved in time.

(c) A global rotation of the displacement fields is supplied by the transformation
ψy → ψy cos(θ)− ψz sin(θ), ψz → ψz cos(θ) + ψy sin(θ). We therefore have

ψ̇2
y + ψ̇2

z →
(

ψ̇y cos(θ)− ψ̇z sin(θ)
)2

+
(

ψ̇z cos(θ) + ψ̇y sin(θ)
)2

= ψ̇2
y + ψ̇2

z

and, similarly,

ψ′2
y + ψ′2

z →
(

ψ′
y cos(θ)− ψ′

z sin(θ)
)2

+
(

ψ′
z cos(θ) + ψ′

y sin(θ)
)2

= ψ′2
y + ψ′2

z ,
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so the Lagrangian is indeed invariant.
In this case, the conserved quantity does not appear directly from equations

of motion. Instead, we consider the infinitesimal form of the transformation,
ψy → ψy + δψy, ψz → ψz + δψz, with

δψy = −ψzθ δψz = ψyθ.

The conserved density is then

Pθ =
∫

(

∂L
∂ψ̇y

δψy +
∂L
∂ψ̇z

δψz

)

dx

=
∫

ρ
(

−ψ̇yψz + ψ̇zψy

)

dx,

which we recognize as the total angular momentum of the string around the x axis.

(d) The Lagrangian is now

L = T − V =

∫

1

2
ρψ̇2

y −
1

2
Fψ′2

y − 1

2
Bψ′′2

y dx.

The Euler-Lagrange equation for the rod is

∂t
∂L

∂ψ̇y
+ ∂x

∂L

∂ψ′
y

− ∂x∂x
∂L

∂ψ′′
y

= 0,

which we can evaluate to get

ρψ̈y − Fψ′′
y +Bψ′′′′

y = 0.

We try a wave solution for the form ψy = ei(kx−ωt). Putting this into the
Euler-Lagrange equation, we get

(−ρω2 + Fk2 +Bk4)ei(kx−ωt) = 0,

which is true provided we obey the dispersion relation

ω2 =
k2

ρ
(F +Bk2).

(e) Recalling F is negative (i.e. the rod is in compression), the rhs of the
dispersion relation is negative if

k2 < −F
B
,

i.e. if the wavelength is sufficiently long. If the rhs is negative, then ω is imaginary,
so we can write ω = ±i/τ , where

1

τ
=

√

−k
2

ρ
(F +Bk2),
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is real. Our wave solution is then

ei(kx−ωt) = ei(kx∓it/τ) = eikxe±t/τ ,

and one of these solutions grows exponentially in time, indicating that the straight
compressed rod is unstable.

The ends of the rod have zero displacement, so the solution of this type with
the longest admissible wavelength has λ = 2l =⇒ k = π/l. Such a wavelength will
indeed be unstable if

π2

l2
< −F

B
⇒ l > π

√

−B
F

.

5 (a) The Klein-Gordon Lagrangian density for a complex scalar field

L = ∂µφ∂
µφ∗ −m2φ∗φ

can be coupled to electromagnetic fields by replacing the derivatives with so-called
covariant derivatives Dµ = ∂µ + ieAµ:

L = (Dµφ)(D
µφ)∗ −m2φ∗φ.

Upon expanding the covariant derivatives, one can show that this coupling
amounts to the standard JµKGAµ coupling, plus additional terms.

This choice of coupling to electromagnetism via the covariant derivative is
special in that it realises a Lagrangian density that is invariant under local phase
transformations φ → e−iǫ(x)φ, φ∗ → eiǫ(x)φ∗. Indeed, if we accompany such change
with a simultaneous gauge transformation Aµ → Aµ+ ∂µǫ(x)/e, one can verify that
the covariant derivatives transform just like the fields themselves: Dµφ→ e−iǫDµφ
and (Dµφ)

∗ → eiǫ(Dµφ)
∗. Therefore, the Lagrangiam remains unchanged.

(b) Nöther’s theorem states that there is a conserved current associated with every
continuous symmetry of the Lagrangian, i.e. with symmetry under a
transformation of the form φ → φ+ δφ, where δφ is infinitesimal. The conserved
current takes the form

Jµ =
∂L

∂(∂µφ)
δφ

and the conserved charge is the spatial integral of the time component of the
conserved current, Q =

∫

d3rJ0(r, t).

(c) The Euler-Lagrange equations can be obtained from
{

∂µ
∂L

∂(∂µφ)
= ∂L

∂φ

∂µ
∂L

∂(∂µφ∗)
= ∂L

∂φ∗

After a few lines of algebra, we obtain
{

∂µ∂
µφ∗ − ie∂µ(A

µφ∗) = −m2φ∗ + ieAµ∂
µφ∗

∂µ∂
µφ+ ie∂µ(A

µφ) = −m2φ− ieAµ∂
µφ
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or equivalently

{

∂µ∂
µφ∗ − ieφ∗∂µA

µ − 2ieAµ∂µφ
∗ +m2φ∗ = 0

∂µ∂
µφ+ ieφ∂µA

µ + 2ieAµ∂µφ+m2φ = 0
.

In order to obtain the Hamiltonian density, we need first to compute the
canonical momentum densities

π(r, t) = ∂L
∂(∂tφ)

= ∂tφ∗ − ieA0φ∗

π∗(r, t) = ∂L
∂(∂tφ∗)

= ∂tφ+ ieA0φ

and then construct
H = π∂tφ+ π∗∂tφ

∗ −L .
Since the question asks explicily for a Hamiltonian density expressed as a function
of its proper variables (namely, φ, π, ∇φ and their complex conjugates), we invert
the equations for the canonical momentum densities

∂tφ∗ = π(r, t) + ieA0φ∗

∂tφ = π∗(r, t)− ieA0φ

and substitute into H to obtain

H = π(π∗ − ieA0φ) + π∗(π + ieA0φ
∗)

− (π + ieA0φ
∗)
(

π∗ − ieA0φ
)

− (∂iφ
∗)
(

∂iφ
)

+m2φ∗φ

−ieA0

[

φ(π + ieA0φ∗)− φ∗(π∗ − ieA0φ)
]

− ieAi
[

φ∂iφ∗ − φ∗∂iφ
]

= ππ∗ − ieA0φπ + ieA0φ
∗π∗

+ieA0φπ − ieA0φ
∗π∗ − e2A0A

0φ∗φ+∇φ∗ · ∇φ+m2φ∗φ

−ieA0 [φπ − φ∗π∗]− ieAi
[

φ∂iφ∗ − φ∗∂iφ
]

= ππ∗ +∇φ∗ · ∇φ+m2φ∗φ− e2A0A
0φ∗φ− ieA0 [φπ − φ∗π∗]− ieA · [φ∇φ∗ − φ∗∇φ]

where we have introduced A ≡ (A1, A2, A3).

(d) Nöther’s current for the Lagrangian density in part (c) can be obtained from

Jµ =
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗

with respect to an infinitesimal global phase change φ→ φ− iǫφ, φ∗ → φ∗ + iǫφ∗.
Neglecting the constant overall factor of ǫ, we arrive at:

Jµ = −iφ [∂µφ∗ − ieAµφ∗] + iφ∗ [∂µφ+ ieAµφ] = −i [φ∂µφ∗ − φ∗∂µφ]− 2eAµφ∗φ.

We can explicitly check that Noether’s current is conserved by computing

∂µJ
µ = −i [φ∂µ∂µφ∗ − φ∗∂µ∂

µφ]− 2e(∂µA
µ)φ∗φ− 2eAµ [φ∗∂µφ+ φ∂µφ

∗]
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and using the Euler-Lagrange equations derived earlier to substitute:

∂µ∂
µφ∗ = ieφ∗∂µA

µ + 2ieAµ∂µφ
∗ −m2φ∗

∂µ∂
µφ = −ieφ∂µAµ − 2ieAµ∂µφ−m2φ

.

This gives

∂µJ
µ = [2eφ∗φ∂µA

µ + 2eAµ (φ∂µφ
∗ + φ∗∂µφ)]−2e(∂µA

µ)φ∗φ−2eAµ [φ∗∂µφ+ φ∂µφ
∗]

which vanishes identically as the terms cancel out pairwise.

6 (a) MFT approximates the interaction of a spin with its neighbours by assuming
that its neighbours behave as a typical spin in the system. Namely, each spin
interacts with the thermodynamic average of its neighbours. It becomes
increasingly more reliable as the number of neighbours increases; it is exact in the
limit of infinite dimensions or infinite range interactions.

(b) In MFT, the energy is approximated by:

E = −J
2

∑

i,δ

[〈Si〉 · Si+δ + Si · 〈Si+δ〉] = −4JS ·
(

∑

i

Si

)

.

The partition function can therefore be written as:

Z =
∑

{Si}

exp

[

β2dJS ·
(

∑

i

Si

)]

=
∏

i





∑

Si

exp (aS · Si)



 ,

where we have introduced for convenience the parameter a = β2dJ (note that
a > 0).

As suggested in the question, we choose a reference frame for the spins Si

such that the z-axis is in the direction of S, which leads to S · Si = S cos θ.
Following the hint, the summation over all possible values (i.e., orientations) of the
unit vector Si can be written as an integral over the solid angle element,

Z =

[

2π

∫ π

0

sin θdθ eaS cos θ

]N

=

[

4π

aS
sinh(aS)

]N

.

(c) Following the same steps as in part (b),

〈Sk · ẑ〉 =
1

Z

∑

{Si}

(Sk · ẑ) exp
[

aS ·
(

∑

i

Si

)]

=
1

Z







∑

Sk

(Sk · ẑ) exp [aS · Sk]













∏

i 6=k

∑

Si

exp [aS · Si]







=
1

Z

{

2π

∫ π

0

sin θdθ cos θ eaS cos θ

}[

4π

aS
sinh(aS)

]N−1

.
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[Extra: Using a similar calculation, one can show that the x and y components of
the vector 〈Sk〉 vanish upon integration over the azimuthal angle φ, as expected by
symmetry.]

The integral for the z component reduces to 2π
∫ 1

−1
dx x exp(aSx), which can

be calculated by parts and one obtains

〈Sk · ẑ〉 =
4π

(aS)2
[aS cosh(aS)− sinh(aS)]

4π
aS

sinh(aS)
= coth(aS)− 1

aS
.

The self-consistency condition of MFT is obtained by imposing that 〈Sk · ẑ〉 is
equal to S in S = (0, 0, S) (recall that we had chosen the reference frame for the
spins such that S ‖ ẑ).

We can therefore rewrite the self-consistency condition as

S = coth(aS)− 1

aS
.

Upon changing variable S → x = aS, this equation becomes

x

a
= coth(x)− 1

x
,

which we can compare with the formula in the question and we can identify
τ = (β2dJ)−1 and x = β2dJS = 3TcS/T .

(d) The function L(x) = coth(x)− 1/x tends to ±1 for x→ ±∞. The diveregence
of coth(x) at x = 0 is compensated by the subtraction of 1/x and therefore
L(0) = 0. Indeed, for small x one obtains the following expansion:

L(x) =
ex + e−x

ex − e−x
− 1

x
=

2 + x2 +O(x4)

2x+ x3/3 +O(x5)
− 1

x

=
2 + x2 +O(x4)

2x

[

1− x2

6
+O(x4)

]

− 1

x

=
2 + 2x2/3 +O(x4)

2x
− 1

x
=
x

3
+O(x3).

One can further verify that the derivative of L(x) is always positive. The
shape of L(x) is similar to that of tanh(x) except that the derivative at x = 0
takes the value 1/3 instead of 1. The graphic solution of the equation τx = L(x)
therefore operates in a similar way as to the case of the Ising model considered in
the lecture notes. If the slope of the left hand side is larger than 1/3, then the only
solution is at x = 0. This corresponds to T > Tc; from τ = kBT/2dJ > 1/3 we
obtain Tc = 2dJ/3kB. If the slope is less than 1/3 (T < Tc), then there are three
solutions, at x = 0 and at x = ±x0. As T → T−

c the two solutions at ±x0 tend to
0, where they merge at T = Tc.

This behaviour signals (within MFT) that the model undergoes a continuous
phase transition at T = Tc. Above the transition, the magnetisation of the system
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M ∝ S ∝ x vanishes as expected in a system that is symmetric upon global
rotations of the spins Si. Below the transition the system develops two
non-vanishing expectation values of S ∝ ±x0 (one can verify that they are indeed
the two minima of the free energy, whereas S = 0 is now a local maximum –
however, this is not asked explicitly in the question). In choosing one of the two
solutions, the system spontaneously breaks the rotational symmetry and develops
long range order. The transition is second order, in that the discontinuity is in the
derivative of M with respect to T , and therefore in the second derivative of the
free energy.

(e) Given c > 0, the last term is minimised by a constant m(x) = m0. With this
choice, the free energy reduces to

f = f0 + a(T − Tc)m
2
0 + bm4

0,

where m0 = |m0|. The extrema are found by setting the derivative with respect to
m0 to 0, which leads to

a(T − Tc)m0 + 2bm3
0 = 0 → m0 =

{

0 T > Tc
√

a
2b

√
Tc − T T < Tc

Consistently with the MFT result above, the transition is second order and it
breaks the continuous symmetry in m. By developing a free energy minimum at
finite m0 = |m0|, the system is thus forced to choose one of the (infinitely many)
minima and therefore select a specific direction m0 in the 3D order parameter
space.

END OF PAPER
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