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THEORETICAL PHYSICS I

Answers

1 Adopt the (x, y) coordinates as illustrated in the figure below. Also
introduce the rotation angle ψ of the smaller cylinder, where points S and S ′

coincide in the equilibrium position θ = φ = 0.
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(a) [unseen, but similar to examples sheet problem] The position vectors of
the centres P and Q of the two cylinders are

rP = 2a(sin θ,− cos θ)
rQ = rP + a(sinφ,− cosφ) = a(2 sin θ + sin φ,−2 cos θ − cosφ).

Therefore, the velocities of the points P and Q are

ṙP = 2a(θ̇ cos θ, θ̇ sin θ), ṙQ = a(2θ̇ cos θ + φ̇ cos φ, 2θ̇ sin θ + φ̇ sinφ),

and hence

ṙP · ṙP = 4a2θ̇2, ṙQ · ṙQ = a2[4θ̇2 + φ̇2 + 4θ̇φ̇ cos(φ− θ)],
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where we have used the trigonometric relation cos θ cosφ+ sin θ sin φ = cos(θ − φ).
Therefore, the kinetic and potential energies of the system can be written as

T = 1
2
Ma2[8θ̇2 + φ̇2 + 4θ̇φ̇ cos(φ− θ)] + 1

2
I1θ̇

2 + 1
2
I2(ψ̇ − φ̇)2,

V = −Mga(4 cos θ + cos φ),

where I1 =M(2a)2 = 4Ma2 and I2 =Ma2 are the moments of inertia of the larger
and smaller cylinder, respectively, about their centres.

If no friction acts between the cylinders and the angular velocity of the
smaller cylinder about its own axis is fixed to zero throughout the motion, then
ψ = φ (so that the line QS ′ remains vertical), and the kinetic energy
termproportional to I2 vanishes. Thus, one obtains

L = 1
2
Ma2[12θ̇2 + φ̇2 + 4θ̇φ̇ cos(φ− θ)] +Mga(4 cos θ + cosφ).

Expanding about the equilibrium position θ = φ = 0 to second-order in the angles
and their time derivatives, one immediately finds (up to an irrelevant additive
constant)

L = 1
2
Ma2(12θ̇2 + φ̇2 + 4θ̇φ̇)− 1

2
Mga(4θ2 + φ2).

[9]

(b) [unseen, but similar to examples sheet problem] The Euler–Lagrange
equations immediately give

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0 ⇒ 12aθ̈ + 2aφ̈+ 4gθ = 0,

d

dt

(

∂L

∂φ̇

)

− ∂L

∂φ
= 0 ⇒ 2aθ̈ + aφ̈ + gφ = 0.

Assuming that θ and φ have the same time dependence eiωt implies θ̈ = −ω2θ and
φ̈ = −ω2φ, so that

(

12aω2 − 4g 2aω2

2aω2 aω2 − g

)(

θ
φ

)

=

(

0
0

)

.

Hence, the determinant on the LHS must vanish, which requires

2a2ω4 − 4agω2 + g2 = 0 ⇒ ω2 =
4ag ±

√
16a2g2 − 8a2g2

4a2
=

(2±
√
2)g

2a
.

Substituting these values for ω2 back into the matrix equation above gives:
if ω = ω+ ⇒ φ = −2(

√
2 + 1)θ ⇒ cylinders move in opposite directions,

if ω = ω− ⇒ φ = 2(
√
2− 1)θ ⇒ cylinders move in same direction. [10]
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(c) [unseen] If friction acts so that the smaller cylinder rolls without slipping,
then aψ = 2a(φ− θ) ⇒ ψ = 2(φ− θ). Hence the total kinetic energy becomes (to
second-order)

T = 1
2
Ma2(12θ̇2 + φ̇2 + 4θ̇φ̇) + 1

2
Ma2[2(φ̇− θ̇)− φ̇]2

= 1
2
Ma2(12θ̇2 + φ̇2 + 4θ̇φ̇) + 1

2
Ma2(φ̇2 + 4θ̇2 − 4θ̇φ̇)

= 1
2
Ma2(16θ̇2 + 2φ̇2),

and hence the Lagrangian reads

L = 1
2
Ma2(16θ̇2 + 2φ̇2)− 1

2
Mga(4θ2 + φ2).

[7]

(d) [unseen, but similar to examples sheet problem] In this case, the
Euler–Lagrange equations immediately give

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0 ⇒ 4aθ̈ + gθ = 0 ⇒ θ̈ +

g

4a
θ = 0,

d

dt

(

∂L

∂φ̇

)

− ∂L

∂φ
= 0 ⇒ 2aφ̈+ gφ = 0 ⇒ φ̈+

g

2a
φ = 0.

Thus, by inspection, the natural frequencies of oscillation are ω2
1 = g/(4a) and

ω2
2 = g/(2a). Moreover, again by inspection:

if ω = ω1 ⇒ φ = 0 ⇒ line PQ connecting centres of cylinders remains vertical,
if ω = ω2 ⇒ θ = 0 ⇒ large cylinder remains stationary. [7]

2 Consider a particle of mass m and charge q > 0 moving in two dimensions, in
presence of a uniform static electric field E = Ex̂, and a uniform static magnetic
field perpendicular to the plane, B = Bẑ (E > 0, B > 0). The particle is attached
to a fixed point on the plane (say, the origin of the reference frame) by an ideal
spring of constant k (see figure.)
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(a) [book work] Let us write the electrostatic potential as φ = −Ex; following
the hint in the exam paper, we further choose a vector potential of the form
A = B

2
(− ρ sin θ, ρ cos θ, 0). Using polar coordinates ρ, θ, the kinetic and potential

energy of the particle can be written as:

T =
1

2
m
(

ρ̇2 + ρ2θ̇2
)

and

V =
1

2
kρ2 + q (φ− v ·A) =

1

2
kρ2 − q

(

Eρ cos θ +
B

2
ρ2θ̇

)

which combine to give the Lagrangian in the exam paper: [9]

L =
1

2
m
(

ρ̇2 + ρ2θ̇2
)

− 1

2
kρ2 + q

(

Eρ cos θ +
B

2
ρ2θ̇

)

(b) [book work] The conjugate momenta are

pρ =
∂L

∂ρ̇
= mρ̇

and

pθ =
∂L

∂θ̇
= mρ2θ̇ +

qB

2
ρ2

The Hamiltonian for the particle takes the form [5]

H = pρρ̇+ pθθ̇ − L

= mρ̇2 +mρ2θ̇2 +
qB

2
ρ2θ̇ − 1

2
m
(

ρ̇2 + ρ2θ̇2
)

+
1

2
kρ2 − q

(

Eρ cos θ +
B

2
ρ2θ̇

)

=
1

2
mρ̇2 +

1

2
mρ2θ̇2 +

1

2
kρ2 − qEρ cos θ

which as a function of the coordinates and conjugate momenta becomes

H =
p2ρ
2m

+
1

2m

(

pθ
ρ

− qB

2
ρ

)2

+
1

2
kρ2 − qEρ cos θ

Hamilton’s equations of motion are [4]

ṗρ = −∂H
∂ρ

=
1

mρ

[

p2θ
ρ2

−
(

qB

2

)2

ρ2
]

− kρ+ qE cos θ

ρ̇ =
∂H

∂pρ
=
pρ
m

ṗθ = −∂H
∂θ

= −qEρ sin θ

θ̇ =
∂H

∂pθ
=

1

mρ

(

pθ
ρ

− qB

2
ρ

)
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(c) [book work] Using the Lagrangian at point (a), the Euler-Lagrange equations
of motion are

∂L

∂ρ
− d

dt

∂L

∂ρ̇
= 0 = mρθ̇2 − kρ+ qE cos θ + qBρθ̇ −mρ̈

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0 = −qEρ sin θ − 2mρρ̇θ̇ −mρ2θ̈ − qBρρ̇

The equilibrium solution is obtained by setting to zero all the time derivatives in
the above equations, leading to:

−kρ0 + qE cos θ0 = 0 − qEρ0 sin θ0 = 0

which impose ρ0 = qE/k and θ0 = 0 (away from the singular point ρ = 0). [5]

(d) [new] Starting from the expanded Euler-Lagrange equations of motion given
in the exam paper,

kρ̃− qBρ0
dθ̃

dt
+m

d2ρ̃

dt2
= 0

qEθ̃ +mρ0
d2θ̃

dt2
+ qB

dρ̃

dt
= 0,

we substitute the suggested solution of the form ρ̃ = ε cosωt and θ̃ = (ε/ρ0) sinωt,
where ε ≪ 1:

kε cosωt− qBρ0ω
ε

ρ0
cosωt−mω2ε cosωt = 0 = k − qBω −mω2

qE
ε

ρ0
sinωt−mρ0ω

2 ε

ρ0
sinωt− qBωε sinωt = 0 = qE

1

ρ0
−mω2 − qBω

The two equations are identical once we recall that ρ0 = qE/k, and they impose
that the frequency ω satisfies the condition:

ω1,2 = − qB
2m

[

1∓
√

1 +
4mk

q2B2

]

as in the exam paper. [7]
In order to draw the trajectory of the particle in the xy plane corresponding to
this special solution, one can notice that

ρ = ρ0 + ε cosωt θ = θ0 +
ε

ρ0
sinωt (θ0 = 0)

corresponds to the first order expansion in ε of the point z = ρ0 + εeiωt (in complex
plane notation). Alternatively, one can work out the solution in cartesian
coordinates up to first order in ε:

x = ρ cos θ = ρ0 + ε cosωt y = ρ sin θ = ε sinωt

A
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where we recognise the shape of a circle of radius ε centred at (ρ0, 0), illustrated in
the figure.

ε

y

E

B
x

ρ
0

ω
2

ω1

The two solutions ω1,2 correspond to clockwise and counter-clockwise motion along
the circle, respectively. The largest of the two frequencies corresponds to the
clockwise motion, which is the direction expected for the motion of a charge in a
magnetic field perpendicular to the plane (out of the page). The other solution
surprisingly rotates in the opposite direction. [3]

3 (a) [book work] The Hamiltonian is defined by

H(qi, pi, t) =
∑

i

piq̇i − L(qi, q̇i, t), where pi =
∂L

∂q̇i
.

Hence, its differential is given by

dH =
∑

i

pi dq̇i +
∑

i

q̇i dpi −
∑

i

∂L

∂qi
dqi −

∑

i

∂L

∂q̇i
dq̇i −

∂L

∂t
dt

=
∑

i

q̇i dpi −
∑

i

∂L

∂qi
dqi −

∂L

∂t
dt

=
∑

i

q̇i dpi −
∑

i

ṗi dqi −
∂L

∂t
dt, since ṗi =

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi
.

But, since H = H(qi, pi, t),

dH =
∑

i

∂H

∂qi
dqi +

∑

i

∂H

∂pi
dpi +

∂H

∂t
dt,

and thus by comparing terms one obtains Hamilton’s equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

∂H

∂t
= −∂L

∂t
.
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[6]

(b) [unseen, but canonical transformations are in the lectures] Consider
the transformation Qi = Qi(qj , pj, t), Pi = Pi(qi, pi, t) for i = 1, . . . , n and define

H(Qi, Pi, t) =
∑

i

PiQ̇i − L(Qi, Q̇i, t).

From part (a), one finds

Q̇i =
∂H
∂Pi

, Ṗi = − ∂H
∂Qi

,
∂H
∂t

= −∂L
∂t

if
d

dt

(

∂L
∂Q̇i

)

=
∂L
∂Qi

,

and the new Euler–Lagrange equation will hold if

L(Qi, Q̇i, t) = L(qi, q̇i, t)−
dG

dt
,

since, from Hamilton’s principle of least action, one has

S ≡
∫ t2

t1
L dt =

∫ t2

t1

(

L− dG

dt

)

dt = S − [G]t2t1 ⇒ δS = δS − δ[G]t2t1 = δS,

provided the variations δqi and δQi vanish at the end-points, as assumed in the
exam paper. [6]

(c) [unseen] In general,

dG

dt
= L−L =

∑

i

piq̇i −
∑

i

PiQ̇i + (H−H).

If H(Qi, Pi, t) = H(qi, pi, t), then

dG

dt
=
∑

i

piq̇i −
∑

i

PiQ̇i ⇒ dG =
∑

i

pi dqi −
∑

i

Pi dQi,

so the quantity on the RHS is an exact differential. [5]

(d) [unseen] In the general case, the relationship H(Qi, Pi, t) = H(qi, pi, t) may
not hold and so

dG =
∑

pi dqi −
∑

i

Pi dQi + (H−H) dt.

But, since G = G(qi, Qi, t),

dG =
∑

i

∂G

∂qi
dqi +

∑

i

∂G

∂Qi
dQi +

∂G

∂t
dt,

and thus by comparing terms one obtains

pi =
∂G

∂qi
, Pi = − ∂G

∂Qi
, H−H =

∂G

∂t
.

A
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If the transformation is such that H ≡ 0, then the equations of motions become
Q̇i = 0 and Ṗi = 0. This may be achieved by choosing G to satisfy

∂G

∂t
+H(qi, pi, t) = 0 ⇒ ∂G

∂t
+H

(

qi,
∂G

∂qi
, t

)

= 0.

[6]

(e) [unseen] The Hamiltonian for a one-dimensional harmonic oscillator of mass
m and natural frequency ω has the form

H =
p2

2m
+
mω2q2

2
.

Hence, in order to transform to new coordinates (Q,P ) in which Hamilton’s
equations take the trivial form Q̇ = 0 and Ṗ = 0, one requires G to satisfy

∂G

∂t
+

1

2m

(

∂G

∂q

)2

+ 1
2
mω2q2 = 0.

Assuming that G = G1(q) +G2(t), one obtains

1

2m

(

dG1

dq

)2

+ 1
2
mω2q2 = −dG2

dt
.

Since the LHS is a function of only q and the RHS is a function of only t, then
both sides must be equal to some constant, say β. Therefore, omitting constants of
integration

G1(q) =
∫

√

2m(β − 1
2
mω2q2) dq, G2(t) = −βt,

and hence G = G1(q) +G2(t) is given by

G =
∫

√

2m(β − 1
2
mω2q2) dq− βt.

If one identifies the new coordinate Q with the constant β, thereby satisfying the
first one of Hamilton’s equation of motion Q̇ = 0, then from part (d) the new
generalised momentum P is given by

P = −∂G
∂Q

= −∂G
∂β

= −
√
2m

2

∫

dq
√

β − 1
2
mω2q2

+ t

But the second Hamilton’s equation of motion is Ṗ = 0, so P = constant ≡ γ, and
thus

t− γ =

√
2m

2

∫

dq
√

β − 1
2
mω2q2

=
1

ω
sin−1

(

√

mω2

2β
q

)

.
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Hence one finally obtains the expected result

q =

√

2β

mω2
sin ω(t− γ).

[10]

4 (a) [book work] The Lagrangian density for a free complex scalar field φ of
mass m is

L = (∂µφ
∗)(∂µφ)−m2φ∗φ,

where φ and φ∗ are considered as independent fields.
The Euler–Lagrange equations for φ and φ∗, respectively, give

∂L
∂φ

− ∂µ

(

∂L
∂(∂µφ)

)

= 0 ⇒ −m2φ∗ − ∂µ∂
µφ∗ = 0 ⇒ (∂µ∂

µ +m2)φ∗ = 0,

∂L
∂φ∗

− ∂µ

(

∂L
∂(∂µφ∗)

)

= 0 ⇒ −m2φ− ∂µ∂
µφ = 0 ⇒ (∂µ∂

µ +m2)φ = 0.

If jµ = iq(φ∗∂µφ− φ∂µφ∗), then

∂µj
µ = iq[(∂µφ

∗)(∂µφ) + φ∗∂µ∂
µφ− (∂µφ)(∂

µφ∗)− φ∂µ∂
µφ∗],

= iq[φ∗∂µ∂
µφ− φ∂µ∂

µφ∗],
= iq[φ∗(−m2φ)− φ(−m2φ∗)] = 0,

where in the last line we use the equations of motions for φ and φ∗. [4]

(b) [book work] For the global transformation φ′ = e−iqαφ we have δφ = −iqαφ
and δφ∗ = iqαφ∗. Thus, by Noether’s theorem, ∂µj

µ = 0 where

jµ ∝ ∂L
∂(∂µφ)

δφ+
∂L

∂(∂µφ∗)
δφ∗ = iqα(φ∗∂µφ− φ∂µφ∗).

Hence the required result holds immediately, since α = constant. [4]

(c) [part book work, part unseen] The Lagrangian density for the interaction
of a complex scalar field φ with the electromagnetic field Aµ is

L̂ = (D̄µφ
∗)(Dµφ)−m2φ∗φ− 1

4
F µνFµν ,

where Dµφ = (∂µ + iqAµ)φ, D̄µφ
∗ = (∂µ − iqAµ)φ

∗ and Fµν = ∂µAν − ∂νAµ.
Writing out the Lagrangian density in terms of φ, φ∗ and Aµ explicitly, one

obtains

L̂ = (∂µφ
∗ − iqAµφ

∗)(∂µφ+ iqAµφ)−m2φ∗φ− 1
4
F µνFµν

= (∂µφ
∗)(∂µφ)− iqAµ(φ

∗∂µφ− φ∂µφ∗) + q2AµA
µφ∗φ−m2φ∗φ

−1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

A
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The Euler–Lagrange equations for Aµ give

∂L̂
∂Aν

− ∂µ

(

∂L̂
∂(∂µAν)

)

= 0 ⇒ −iq(φ∗∂νφ− φ∂νφ∗) + 2q2Aνφ∗φ+ ∂µF
µν = 0

⇒ ∂µF
µν = iq(φ∗∂νφ− φ∂νφ∗)− 2q2Aνφ∗φ

⇒ ∂µF
µν = jν − 2q2Aνφ∗φ

Now consider

Jν ≡ iq(φ∗Dνφ− φD̄νφ∗)
= iq[φ∗(∂νφ+ iqAνφ)− φ(∂νφ∗ − iqAνφ∗)]
= iq(φ∗∂νφ− φ∂νφ∗)− 2q2Aνφ∗φ = jν − 2q2Aνφ∗φ.

Therefore the Euler–Lagrange equation can be written ∂µF
µν = Jν , from which

one obtains

∂νJ
ν = ∂ν∂µF

µν

= −∂ν∂µF νµ since F νµ = −F µν

= −∂µ∂νF νµ swapping order of partial derivatives
= −∂ν∂µF µν swapping indices µ and ν

Thus, since it is equal to minus itself, ∂ν∂µF
µν = ∂νJ

ν = 0. [10]

(d) [part book work, part unseen] For the local transformation φ′ = e−iqα(x)φ,
the derivative Dµφ transforms as

(Dµφ)
′ = (∂µ + iqA′

µ)φe
−iqα

= e−iqα∂µφ− iq(∂µα)φe
−iqα + iqA′

µφe
−iqα

= e−iqα(∂µ + iqAµ)φ since A′

µ = Aµ + ∂µα,
= e−iqαDµφ.

Similarly, since φ′∗ = eiqα(x)φ∗ one has (D̄µφ
∗)′ = eiqαD̄µφ

∗.

Combining these two results, one sees that the first term in L̂ is invariant
under the local transformation. Moreover, φ′∗φ′ = φ∗φ immediately and

F ′

µν = ∂µA
′

ν − ∂νA
′

µ

= ∂µAν + ∂µ∂να− ∂νAµ − ∂ν∂µα
= ∂µAν − ∂νAµ since ∂µ∂να = ∂ν∂µα
= Fµν ,

and so the full Lagrangian density L̂ is invariant under the local transformation. [7]

(e) [part book work, part unseen] For the local transformations φ′ = e−iqα(x)φ
and A′

µ = Aµ + ∂µα, one has δφ = −iqαφ, δφ∗ = iqαφ∗ and δAµ = ∂µα. Thus, by
Noether’s theorem, ∂µj

µ
N = 0, where

jµN =
∂L̂

∂(∂µφ)
δφ+

∂L̂
∂(∂µφ∗)

δφ∗ +
∂L̂

∂(∂µAν)
δAν

= iqα(φ∗Dµφ− φD̄µφ∗)− F µν∂να
= αJµ − F µν∂να.

A
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Therefore, one has

∂µj
µ
N = α∂µJ

µ + (∂µα)J
µ − (∂µF

µν)(∂να)− F µν∂µ∂να
= α∂µJ

µ since ∂µF
µν = Jν and F µν = −F νµ

Thus, Noether’s theorem implies that ∂µJ
µ = 0. [8]

5 Consider the Klein-Gordon Lagrangian density for a complex scalar field in
Minkowski space, coupled to an external (static) electromagnetic field and to a
time-dependent driving force

L = (∂µφ
∗) (∂µφ)−m2φ∗φ+ ieAµ [φ∂

µφ∗ − φ∗∂µφ] + f(t) (φ+ φ∗)

where Aµ is a function of the space coordinates r but it is independent of time.

(a) [part book work, part new] In order to obtain the Euler-Lagrange
equations, we need to compute

δL
δφ∗

= −m2φ− ieAµ∂
µφ+ f(t)

∂µ
δL
δ∂µφ∗

= ∂µ [∂
µφ+ ieAµφ] = ∂µ∂

µφ+ ie (∂µA
µ)φ+ ieAµ∂µφ

In the Lorenz gauge ∂µA
µ = 0, the corresponding Euler-Lagrange equation of

motion can be written as

∂µ∂
µφ+ 2ieAµ(r)∂µφ+m2φ = f(t),

and equivalently for φ∗. [8]

(b) [new] The Green’s function G(r, r′; t, t′) is a solution of the above equation of
motion when the right hand side is replaced by δ(t− t′)δ(3)(r − r

′). In order to
find the corresponding equation in Fourier space, let us substitute the transform

G(r, r′; t, t′) =
∫

dω

2π

∫

d3k

(2π)3
G(k;ω) e−iω(t−t′)+ik·(r−r′)

in the equation
[

∂µ∂
µ + 2ieAµ(r)∂µ +m2

]

G(r, r′; t, t′) = δ(t− t′)δ(3)(r − r
′) .

The left hand side becomes

∫

dω

2π

∫

d3k

(2π)3

[

−ω2 + k2 + 2eA0(r)ω − 2eA(r) · k +m2
]

G(k;ω) e−iω(t−t′)+ik·(r−r′)

where we used ∂µ∂
µ = ∂2t −∇2 and Aµ(r)∂µ = A0∂t +A ·∇.

A
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We then multiply both left and right hand side of the equation by

eiω0(t−t′)−ik0·(r−r′), and integrate over t and r. The right hand side gives
straightforwardly 1. The left hand side has two contributions:

∫ dω

2π

∫ d3k

(2π)3

[

−ω2 + k2 +m2
]

G(k;ω)
∫

dt
∫

d3r e−i(ω−ω0)(t−t′)+i(k−k0)·(r−r′)

=
[

−ω2
0 + k20 +m2

]

G(k0;ω0)
∫

dt
∫

d3r
∫

dω

2π

∫

d3k

(2π)3

[

2eA0(r)ω − 2eA(r) · k
]

G(k;ω) e−i(ω−ω0)(t−t′)+i(k−k0)·(r−r′)

= 2e
∫

d3k

(2π)3

[

A0(k0 − k)ω0 −A(k0 − k) · k
]

G(k;ω0)

where we used the fact that
∫

dt e−i(ω−ω0)(t−t′) = 2πδ(ω − ω0)
∫

d3r ei(k−k0)·(r−r′) = (2π)3δ(3)(k − k0)

and

A0(k0 − k) =
∫

d3r A0(r)ei(k−k0)·(r−r′)
A(k0 − k) =

∫

d3rA(r)ei(k−k0)·(r−r′)

We can then combine these results (and change variables k0, ω0 → k, ω) to obtain
the expression in the exam paper: [10]

[

−ω2 + k2 +m2
]

G(k;ω) + 2e
∫ d3k′

(2π)3

[

A0(k − k
′)ω −A(k − k

′) · k′

]

G(k′;ω) = 1

(c) [part book work, part new] As instructed in the exam paper, we then
consider the case where A(k − k

′) = 0 and A0(k − k
′) = (2π)3 iγ δ(3)(k − k

′):

[

−ω2 + k2 +m2 + 2eγiω
]

G(k;ω) = 1

It is straightforward to invert the equation and obtain G(k;ω), from which we get [3]

G(k; t, t′) =
∫

dω

2π

e−iω(t−t′)

−ω2 + 2eγiω + k2 +m2

The location of the poles can be obtained by solving

ω2 − 2eγiω − k2 −m2 = 0 → ω1,2 = eγi±
√

k2 +m2 − e2γ2

•If k2 +m2 > e2γ2, the square root term is real and the two poles appear in
the upper half of the complex ω plane, a distance eγ above the real axis
points ±

√
k2 +m2 − e2γ2.

A
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•If k2 +m2 < e2γ2, the square root term is purely imaginary and the two poles
sit on the imaginary axis of the complex ω plane. Since

√
e2γ2 − k2 +m2 is

always smaller than eγ, the two poles lie again in the upper half plane,
slightly above and slightly below the point ieγ.

•Finally, if k2 +m2 = e2γ2, the integral has a double pole at the point ieγ on
the imaginary axis.

The location of the poles is illustrated schematically in the figure. [8]

ω

Im ω

Re

Im ω

Re ω

Im ω

Re ω

(d) [book work] When k2 +m2 > e2γ2 (left panel in the figure above), the two
poles are

ω1,2 = eγi±
√

k2 +m2 − e2γ2 ≡ eγi± ω̃

In order to compute

G(k; t, t′) = −
∫

dω

2π

e−iω(t−t′)

(ω − ω1)(ω − ω2)

we use contour integration and Cauchy’s theorem. For t > t′, we need to close the
contour in the lower half plane (cf. the contribution eIm(ω)(t−t′)) and the integral
vanishes trivially since the contour does not encircle any poles. For t < t′, we need
to close the contour in the upper half plane thus encircling the two poles: [4]

G(k; t, t′) = −i
[

e−iω1(t−t′)

ω1 − ω2
+
e−iω2(t−t′)

ω2 − ω1

]

= −i
[

e−iω̃(t−t′)

2ω̃
− eiω̃(t−t′)

2ω̃

]

eeγ(t−t′) = −sin [ω̃(t− t′)]

ω̃
eeγ(t−t′)

6 Consider the Landau free energy expansion of a system with complex order
parameter φ(x) in 1D:

βH =
∫

f dx =
∫
[

aφ∗φ+
1

2
(φ∗φ)2 + c (∂xφ

∗) (∂xφ) + d
(

∂2xφ
∗

) (

∂2xφ
)

]

dx

with the coefficients a, c, d real.

(a) [book work] The physical state of the system is obtained by minimizing the
free energy. When c > 0 and d = 0, this is equivalent to the free energy expected

A
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for an Ising ferromagnet discussed in the lecture notes, which is minimized by a
uniformly constant order parameter φ(x) = φ, except that the order parameter is
now complex. We thus need to minimize the function

f
∣

∣

∣

φ(x)=φ
= aφ

∗

φ+
1

2

(

φ
∗

φ
)2

= a|φ|2 + 1

2
|φ|4

This is the mexican hat potential encountered when studying spontaneous
symmetry breaking in the context of the relativistic scalar complex φ4 field theory.
For a > 0, the solution is φ = 0, whereas for a < 0 a continuous line of solutions
equally minimize the free energy, |φ| =

√
−a. [6]

The order parameter develops continuously across the transition at a = 0,
with a discontinuity in its first derivative. This is therefore a second order phase
transition, which spontaneously breaks a global phase change symmetry. [6]

(b) [book work] Let us consider a uniform magnetic field B coupled to the order
parameter φ(x), where B points along the real axis in the complex φ plane. The
free energy should then include a further term −B (φ+ φ∗) /2.

The response of the system to such field will be in the real component of φ,
and we can therefore simplify the expression for the free energy by considering φ to
be a real scalar field. Once again, for c > 0 and d = 0 the free energy is minimised
by a uniform constant field φ(x) = m, with m real in this case:

f
∣

∣

∣

φ(x)=m
= am2 +

1

2
m4 − Bm ,

∂f

∂m
= 0 = 2am+ 2m3 − B

This is equivalent to the case of the Ising ferromagnet considered in the
lecture notes. The zero-field susceptibility is obtained by taking the derivative
with respect to B of the equation that determines the physical value of m (above,
right hand side),

2aχ+ 6m2χ = 1

where χ = ∂m/∂B|B=0. Above the transition (a > 0), m(B = 0) = 0 and
χ = 1/2a. Below the transition (a < 0), m(B = 0) = ±

√
−a and χ = −1/4a. [6]

(c) [new] We then consider d = 1, where both a and c are allowed to take on
negative values and assume, as suggested in the exam paper, an order parameter of
the form φ(x) = φ0e

i(kx+δ), where φ0 > 0, k and δ are real constants. A
straightforward substitution into the free energy of the system gives:

f
∣

∣

∣

φ(x)=φ0ei(kx+δ)
= aφ2

0 +
1

2
φ4
0 + ck2φ2

0 + k4φ2
0 =

(

a+ ck2 + k4
)

φ2
0 +

1

2
φ4
0

In order to minimize the free energy, we need to solve the system of differential
equations

{

∂f
∂φ0

= 2 (a + ck2 + k4)φ0 + 2φ3
0 = 0

∂f
∂k

= 2k (c+ 2k2)φ2
0 = 0
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•If a > 0 and c > 0, then the only solution is φ0 = 0 (for any k). This
corresponds to the disordered “paramagnetic” phase where the order
parameter vanishes.

•If a < 0 and c > 0, then an additional solution appears, for k = 0 and
φ2
0 = −a. In order to see which of the two solutions is the global minimum

(and thus corresponds to the physical state), we need to compare the free
energies: (i) f |φ0=0 = 0; and (ii) f |k=0, φ2

0=−a = −a2/2. Clearly the free energy
(ii) is lowest, and this region of parameter space corresponds to an ordered
phase with uniform (k = 0) order parameter φ2

0 = −a.
•If c < 0, a new solution to the second differential equation appears for
k2 = −c/2. With this choice for k, the first differential equation gives
φ2
0 = c2/4− a (in addition to φ0 = 0, which is always a solution). Notice that

this new finite value of the order parameter for finite k is allowed only if
a < c2/4. The free energy of this new solution

f
∣

∣

∣

k2=−c/2, φ2
0=c2/4−a

= −1

2

(

c2

4
− a

)2

,

is always negative, thus lower than that for φ0 = 0, f = 0.

In the region of parameter space where a < 0 and c < 0, this new solution
should also be compared to the other one: k = 0, φ2

0 = −a, f = −a2/2:

−1

2

(

c2

4
− a

)2

< −a
2

2
→ c2

2

(

c2

8
− a

)

> 0

which is always satisfied for a < 0. Therefore, whenever the new finite-k
solution is allowed, it is indeed the global minimum of the free energy and
thus the physical state of the system. Notice that k2 = −c/2, φ2

0 = c2/4− a
corresponds to a modulated rather than uniform order parameter, with wave

vector k = ±
√

−c/2.
[12]

There is no dependence on δ in the free energy. This term represents a global
phase in the order parameter, and the free energy is symmetric upon changes in
the global phase; therefore it cannot depend on δ.
As discussed in part (b) above, the system undergoes a spontaneous breaking of
the global phase symmetry. In the ordered phase, the system will spontaneously
choose a value for δ, but this choice is arbitrary rather than being dictated by a
free energy minimisation principle. [3]

END OF PAPER
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