
NATURAL SCIENCES TRIPOS Part II

Wednesday 16 January 2013 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks

allotted to each part of a question is indicated in the right margin

where appropriate. The paper contains six sides and is accompanied

by a booklet giving values of constants and containing mathematical

formulae which you may quote without proof.

1 Consider a double pendulum composed of two masses m1 and m2 attached to
two rigid massless rods of equal length ℓ, as illustrated in the figure. The two rods
are connected by a frictionless hinge at point B and the other end of the first rod
is pinned by a frictionless hinge to rotate about point A. A massless spring of
elastic constant κ connects the end points A and C.
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(a) Consider the case m1 = m2 = m. Derive the Lagrangian of the system as a
function of the angles θ and φ. Expand it to second order assuming that both
angles as well as their time derivatives are small. Show that the result can be
written as

L = mℓ2
(

θ̇2 + θ̇φ̇+
1

2
φ̇2

)

−mgℓ
(

θ2 +
1

2
φ2

)

+
1

2
κℓ2 (θ − φ)2 ,

up to irrelevant constants. [9]
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(b) From the Euler-Lagrange equations, derive the equations of motion. For what
value(s) of the parameters is there a solution where both θ and φ oscillate with the
same frequency, and satisfy the initial conditions θ(0) = −φ(0) = ξ,
θ̇(0) = φ̇(0) = 0? [Note: the generic solution is much more involved!] Describe in
words the resulting motion of the pendulum. [7]

(c) Obtain the Lagrangian for the case m1 = 0, m2 = m. Show that the
Euler-Lagrange equations of motion in this case can be written in terms of the
variables η = θ + φ and ν = θ − φ,

{

η̈ + ω2

0
η = 0

(ω2

0
− ω2

1
) ν = 0

,

where ω2

0
= g/2ℓ and ω2

1
= κ/m. Comment briefly on the nature of the resulting

motion and what happens if ω0 = ω1. [5]

(d) We now add a friction term to the equations of motion in case (c) above,
γθ̇ + γφ̇ = γη̇, γ > 0, and a time-dependent external force exp(−αt), α > 0, that
couples only to the sum of the two angles for t > 0:

η̈ + γη̇ + ω2

0
η =

{

0 t < 0
Ae−αt t ≥ 0

,

where A is a constant of dimensions (time)−2.
Find the Green’s function for η(t) by solving the equation

η̈ + γη̇ + ω2

0
η = δ(t− t′)

via the Fourier transform

η̂(ω) =
∫

dte−iωtη(t), η(t) =
∫

dω

2π
eiωtη̂(ω),

assuming that ω0 > γ/2. Use it to obtain a solution to the equation

η̈ + γη̇ + ω2

0
η = Ae−αtΘ(t),

where Θ(t) is the Heaviside theta function, and show that the result corresponds
to the choice of initial conditions η(0) = 0 and η̇(0) = 0 in the expected general
solution

η(t) = C1 cos(ωt)e
−γt/2 + C2 sin(ωt)e

−γt/2 +
Ae−αt

α2 − γα + ω2
0

,

where ω =
√

ω2
0 − γ2/4. [12]
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2 Consider two charged particles of mass m1 and m2, charge e1 and e2 with
e1 = −e2 = e, and position vectors r1 and r2 that are constrained to move in the
x− y plane in the presence of a magnetic field perpendicular to the plane, B = Bẑ.
The two particles interact via the Coulomb potential V (r) = −e2/r, r = |r1 − r2|.

(a) Introduce the centre of mass and relative position coordinates

R =
m1r1 +m2r2

M
, r = r2 − r1, M = m1 +m2,

and write the Lagrangian of the system in the gauge A(r) = (B × r)/2. [Hint: it
may be convenient to keep the electromagnetic potential A in its implicit vectorial
form A = (B × r)/2 rather than explicitly writing out each component.]

Show that, up to a total time derivative that can be neglected, the
Lagrangian can be written as

L =
M

2
Ṙ

2

+
µ

2
ṙ2 +

e2

r
−

e

2

m1 −m2

M
ṙ · (B × r)− eṘ · (B × r),

where µ = m1m2/M is the reduced mass. [10]

(b) Obtain the Hamiltonian of the system and show that it can be written as

H =
[P + e (B × r)]2

2M
+

[p+ e∗ (B × r)]2

2µ
−

e2

r
,

where e∗ = e(m1 −m2)/2M . Use the form of the Hamiltonian to show that the
energy of the system and the momentum of the centre of mass are constants of the
motion. [6]

(c) Working in the reference frame where P = 0, derive Hamilton’s equations of
motion. [Note that since r lies in the x− y plane and B is perpendicular to it,
then |B × r| = Br.] [6]

(d) Use the first order differential equations of motion to derive second order
equations for x and y alone, r = (x, y):

{

µẍ+ 2e∗Bẏ = −e2B2

M
x− e2

r3
x

µÿ − 2e∗Bẋ = −e2B2

M
y − e2

r3
y.

Show that these equations admit a solution of the form
{

x = R cos(ωt)
y = R sin(ωt),

with R, ω constants. Comment on the corresponding motion of the two particles:
is it consistent with what you would expect for two particles moving in a magnetic
field and interacting via a centrosymmetric potential? Compute the dependence of
ω on B and R. [11]
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3 A dynamical system with Hamiltonian H is described by independent
coordinates qi (i = 1, ..., n) and corresponding generalised (canonical) momenta pi.

(a) Explain what is meant by the Poisson Bracket {f, g} of two functions f(qi, pi, t)
and g(qi, pi, t) that depend on the generalised coordinates qi and pi and on time t. [3]

Show that if one of the functions coincides with a coordinate qj or a
momentum pj, then the Poisson Bracket reduces to a partial derivative, and
therefore that {qi, pj} = δij , where δij is the Kronecker delta symbol. [3]

Starting from Hamilton’s equations of motion, show that

df

dt
=

∂f

∂t
+ {f,H}.

[3]
Use the Jacobi Identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

to show that if f and g satisfy the relationships

∂f

∂t
+ {f,H} = 0,

∂g

∂t
+ {g,H} = 0,

then so does h defined as h = {f, g}. [5]

(b) A new set of coordinates and momenta (Qi, Pi) is defined by

Qi = Qi(qj , pj), Pi = Pi(qj , pj), i = 1, ..., n.

What condition must the new coordinates satisfy in order that this transformation
is canonical, i.e. preserves the form of Hamilton’s equations of motion? [3]

For a system with two degrees of freedom, two new coordinates are defined by

Q1 = q2
1
, Q2 = q1 + q2.

Find the most general expressions for the new generalised momenta
P1(q1, q2, p1, p2) and P2(q1, q2, p1, p2) such that the transformation is canonical. [12]

Find a particular choice for the Pi that reduces the Hamiltonian

H =

(

p1 − p2
2q1

)2

+ p2 + (q1 + q2)
2

to
H = P 2

1
+ P2.

[4]
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4 The Lagrangian density for a triplet of real scalar fields in 3 + 1 space-time
dimensions, ϕa(t, x1, x2, x3) with a = 1, 2, 3, is

L =
1

2
(∂µϕa)(∂

µϕa)−
1

2
λϕaϕa,

where ∂µ = (∂/∂t,−∂/∂x1,−∂/∂x2,−∂/∂x3). Use the Euler-Lagrange equations
to derive the equations of motion for the fields ϕa. [5]

Show that L is invariant under the infinitesimal SO(3) rotation by an angle θ

ϕa → ϕa + θǫabcnbϕc,

where na is an arbitrary unit vector and ǫabc is the three-dimensional Levi-Civita
symbol, i.e. ǫabc is 1 if (a, b, c) is an even permutation of (1, 2, 3), −1 if it is an odd
permutation, and 0 if any index is repeated. [8]

Derive from first principles the Noether current Jµ corresponding to this
symmetry of the Lagrangian density. [12]

Deduce that the three quantities

Qa =
∫

d3x ǫabc
∂ϕb

∂t
ϕc

are all conserved and verify this directly using the field equations satisfied by the
ϕa. You should state explicitly any assumptions needed for this result to hold. [8]

5 The non-linear version of the Klein-Gordon Lagrangian density for a scalar
field φ(x, t) is given by

L =
1

2

(

∂φ

∂t

)2

−
1

2

(

∂φ

∂x

)2

+ F (φ) ,

where F (φ) is a differentiable function of its argument.

(a) Show that the Euler-Lagrange equation for the system leads to the equation of
motion

∂2φ

∂t2
=

∂2φ

∂x2
+ f(φ) ,

where f(φ) = F ′(φ). [4]
If φ = φ(x, t) is a solution of this equation, show that the function

φ1 = φ(x cosh β + t sinh β, t cosh β + x sinh β),

where β is an arbitrary constant, is also a solution. [8]

(b) Consider the particular case f(φ) = −aφ+ bφn, for positive constants a, b and
integer n > 1. Determine the values of constants A and B for which the function

w(x) =
[

A cosh2(Bx)
]

1

1−n
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is a (static) solution of the equation of motion. [12]
Sketch this solution for −∞ < x < +∞ and several different values of n. [4]
Hence show that

φ(x, t) = w(x coshβ − t sinh β),

where β is a positive constant, is a travelling-wave solution and describe its
dependence on x and t. [5]

6 The Landau free energy expansion for a uniaxial ferromagnet in a magnetic
field can be written as

F = F0 − hm+
a

2
m2 +

b

4
m4,

where m is the magnetisation of the system and h represents an externally applied
magnetic field.
(a) Briefly discuss the origin of this expansion and what you know a priori about
(some of) the terms and their coefficients. [4]

(b) Define and compute the exponent δ along the critical isotherm. [6]

(c) Compute the susceptibility χ = (∂m/∂h)|h=0
as a function of t = (T − Tc)/Tc

both above (t > 0) and below (t < 0) the transition. Show that [8]

lim
t→0+

χ(t)

χ(−t)
= 2.

(d) Add the term dm3/3 to the free energy F for a generic real parameter d and
set h = 0. Discuss how the nature of the ordering transition is affected (you may
restrict the discussion to values of d < 9ab/2 as the solution for larger values of d
becomes more involved). [15]
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