Wednesday 18 January 2012

THEORETICAL PHYSICS I

Answers

1

(a) The x position of mass m_{2} is given by

$$
\begin{aligned}
x^{\prime} & =x+l \sin \phi \\
\dot{x^{\prime}} & =\dot{x}+l \dot{\phi} \cos \phi \\
\dot{x}^{\prime^{2}} & =\dot{x}^{2}+2 l \dot{x} \dot{\phi} \cos \phi+l^{2} \dot{\phi}^{2} \cos ^{2} \phi
\end{aligned}
$$

The y position of mass m_{2} is given by

$$
\begin{aligned}
y^{\prime} & =-l \cos \phi \\
\dot{y^{\prime}} & =l \dot{\phi} \sin \phi \\
\dot{y^{\prime}} & =l^{2} \dot{\phi}^{2} \sin ^{2} \phi
\end{aligned}
$$

The total kinetic energy is therefore

$$
T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}+2 l \dot{x} \dot{\phi} \cos \phi+l^{2} \dot{\phi}^{2}\right)
$$

and the potential energy is

$$
V=-m_{2} g l \cos \phi
$$

(TURN OVER for continuation of question 1

Hence the Lagrangian is given by

$$
L=T-V=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}+2 l \dot{x} \dot{\phi} \cos \phi+l^{2} \dot{\phi}^{2}\right)+m_{2} g l \cos \phi
$$

(b) The canonical momentum conjugate to x is

$$
p_{x}=\frac{\partial L}{\partial \dot{x}}=\left(m_{1}+m_{2}\right) \dot{x}+m_{2} l \dot{\phi} \cos \phi
$$

Using the associated Euler-Lagrange equation

$$
\dot{p_{x}}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x}=0
$$

so p_{x} is a conserved quantity.
The canonical momentum conjugate to ϕ is

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=m_{2} l^{2} \dot{\phi}+2 l \dot{x} \cos \phi
$$

Using the associated Euler-Lagrange equation

$$
\dot{p_{\phi}}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{\phi}}=\frac{\partial L}{\partial \phi}=-m_{2} l \dot{x} \dot{\phi} \sin \phi-m_{2} g l \sin \phi
$$

so p_{ϕ} is not a conserved quantity.
(c) Using conservation of p_{x}

$$
0=\left(m_{1}+m_{2}\right) \dot{x}+m_{2} l \dot{\phi} \cos \phi
$$

Integrating this we find

$$
\lambda=\left(m_{1}+m_{2}\right) x+m_{2} l \sin \phi
$$

where λ is a constant. Using the expression for x^{\prime} above we therefore find

$$
\sin \phi=\frac{\left(m_{1}+m_{2}\right) x^{\prime}-\lambda}{m_{1} l}
$$

Re-arranging the expression for y^{\prime} we have

$$
\cos \phi=\frac{-y^{\prime}}{l}
$$

Squaring and summing these we find

$$
\left(\frac{\left(m_{1}+m_{2}\right) x^{\prime}-\lambda}{m_{1} l}\right)^{2}+\left(\frac{y^{\prime}}{l}\right)^{2}=1
$$

which, as required, is an equation for an ellipse.
(d) Energy is conserved so

$$
\begin{equation*}
E=T+V=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}+2 l \dot{x} \dot{\phi} \cos \phi+l^{2} \dot{\phi}^{2}\right)-m_{2} g l \cos \phi \tag{1}
\end{equation*}
$$

Substituting for \dot{x} from part (c) we find

$$
E=\frac{1}{2} m_{2} l^{2} \dot{\phi}^{2}\left(\frac{m_{1}+m_{2} \sin ^{2} \phi}{m_{1}+m_{2}}\right)-m_{2} g l \cos \phi
$$

Re-arranging this expression for $\dot{\phi}$ we find

$$
l \frac{\mathrm{~d} \phi}{\mathrm{~d} t}=\sqrt{\frac{E+m_{2} g l \cos \phi}{\frac{1}{2} m_{2} l} \cdot \frac{m_{2}+m_{1}}{m_{1}+m_{2} \sin ^{2} \phi}}
$$

Hence, integrating, we find

$$
t=l \sqrt{\frac{m_{2}}{2\left(m_{2}+m_{1}\right)}} \int_{\phi_{1}}^{\phi_{2}} \mathrm{~d} \phi \sqrt{\frac{m_{1}+m_{2} \sin ^{2} \phi}{E+m_{2} g l \cos \phi}}
$$

(a) The transformation

$$
\begin{aligned}
x & =X+\alpha_{1} X^{2}+2 \alpha_{2} X P+\alpha_{3} P^{2} \\
p & =P+\beta_{1} X^{2}+2 \beta_{2} X P+\beta_{3} P^{2}
\end{aligned}
$$

will be canonical if the Poisson bracket

$$
\begin{aligned}
\{x, p\}_{X, P} & =\frac{\partial x}{\partial X} \frac{\partial p}{\partial P}-\frac{\partial x}{\partial P} \frac{\partial p}{\partial X}=1 \\
& =\left(1+2 \alpha_{1} X+2 \alpha_{2} P\right)\left(1+2 \beta_{2} X=2 \beta_{3} P\right)+\text { higher order terms } \\
& =1+2\left(\alpha_{1}+\beta_{2}\right) X+2\left(\alpha_{2}+\beta_{3}\right) P+\text { higher order terms }
\end{aligned}
$$

Therefore we must have $\beta_{2}=-\alpha_{1}$ and $\beta_{3}=-\alpha_{2}$.
(b)

$$
\begin{aligned}
K(X, P) & =\frac{\left(X+\beta_{1} X^{2}-2 \alpha_{1} X P+\alpha_{2} P^{2}\right)^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(X+\alpha_{1} X^{2}+2 \alpha_{2} X P+\alpha_{3} P^{2}\right)^{2} \\
& +\lambda\left(X+\alpha_{1} X^{2}+2 \alpha_{2} X P+\alpha_{3} P^{2}\right)^{3} \\
& =\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2}+X^{3}\left(\alpha_{1} m \omega^{2}+\lambda\right)+P^{3}\left(-\frac{\alpha_{2}}{m}\right) \\
& +X P^{2}\left(-\frac{2 \alpha_{1}}{m}+\alpha_{3} m \omega^{2}\right)+P X^{2}\left(\frac{\beta_{1}}{m}+2 \alpha_{2} m \omega^{2}\right)
\end{aligned}
$$

Hence we must have

$$
\begin{aligned}
& \alpha_{1}=-\frac{\lambda}{m \omega^{2}}, \alpha_{2}=0, \alpha_{3}=-\frac{2}{m} \frac{\lambda}{m \omega^{2}} \\
& \beta_{1}=0, \beta_{2}=\frac{\lambda}{m \omega^{2}}, \beta_{3}=0
\end{aligned}
$$

hence

$$
\begin{aligned}
& x=X-\frac{\lambda}{m \omega}\left(X^{2}+\frac{2}{m} \frac{P^{2}}{m \omega^{2}}\right) \\
& p=P+\frac{2 \lambda}{m \omega^{2}} X P
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{\mathrm{dX}}{\mathrm{~d} t}=\frac{\partial K}{\partial P}=\frac{P}{m} \\
& \frac{\mathrm{dP}}{\mathrm{~d} t}=-\frac{\partial K}{\partial X}=-m \omega^{2} X
\end{aligned}
$$

Hence

$$
\begin{aligned}
P & =A \cos (\omega t+\phi) \\
X & =\frac{A}{m \omega} \sin (\omega t+\phi)
\end{aligned}
$$

(d) Using definitions for X and P from part (c)

$$
\begin{aligned}
x & =X-\frac{\lambda}{m \omega}\left(X^{2}+\frac{2}{m} \frac{P^{2}}{m \omega^{2}}\right) \\
p & =P+\frac{2 \lambda}{m \omega^{2}} X P
\end{aligned}
$$

Substituting for X and P from above we find that x and p now have components oscillating at 2ω.

3 The Euler-Lagrange equation is:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \boldsymbol{v}}\right)=\frac{\partial L}{\partial \boldsymbol{x}}=e \nabla(\boldsymbol{v} \cdot \boldsymbol{A})-e \nabla \phi=e(\boldsymbol{v} \cdot \nabla) \boldsymbol{A}+e[\boldsymbol{v} \times(\nabla \times \boldsymbol{A})]-e \nabla \phi
$$

Then using

$$
\frac{d \boldsymbol{A}}{d t}=\frac{\partial \boldsymbol{A}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{A}
$$

we obtain the equation of motion

$$
\frac{d(m \boldsymbol{v})}{d t}=-e \frac{\partial \boldsymbol{A}}{\partial t}-e \nabla \phi+e[\boldsymbol{v} \times(\nabla \times \boldsymbol{A})]=e \boldsymbol{E}+e \boldsymbol{v} \times \boldsymbol{B}
$$

as expected.
The equation of motion of a physical particle is determined by the physically observable fields \boldsymbol{E} and \boldsymbol{B}. However the potentials ϕ and \boldsymbol{A} which determine these
fields and contribute to the Lagrangian function are not unique. If we add the gradient of an arbitrary scalar function $f(\boldsymbol{x}, t)$ to the vector potential \boldsymbol{A}, i.e.

$$
A_{i}^{\prime}=A_{i}+\frac{\partial f}{\partial x_{i}}
$$

the magnetic flux density \boldsymbol{B} will not change, because curl $\nabla f \equiv 0$. To have the electric field unchanged as well, we must simultaneously subtract the time-derivative of f from the scalar potential:

$$
\phi^{\prime}=\phi-\frac{\partial f}{\partial t} .
$$

The invariance of all electromagnetic processes with respect to the above transformation of the potentials by an arbitrary function f is called gauge invariance.
(a) Using the given expressions for \boldsymbol{A} and ϕ, the Lagrangian becomes

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)-e \lambda z^{2}+e \mu r^{2} \dot{\theta}
$$

The E-L equation corresponding to coordinate r is then:

$$
\frac{d(m \dot{r})}{d t}=m r \dot{\theta}^{2}+2 e \mu r \dot{\theta}=r \dot{\theta}[m \dot{\theta}+2 e \mu]
$$

and for θ :

$$
\frac{d}{d t}\left[m r^{2} \dot{\theta}+e \mu r^{2}\right]=0
$$

and for z :

$$
\frac{d(m \dot{z})}{d t}=-2 e \lambda z \quad \Rightarrow \ddot{z}+\kappa^{2} z=0, \quad \kappa^{2}=2 e \lambda / m
$$

(b) Because L does not depend explicitly on t, the total energy as given by the Hamiltonian of the system is conserved, $d H / d t=0$. In general

$$
H=\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}-L .
$$

with here $q_{i}=(r, \theta, z)$. Hence the total energy of the particle

$$
E=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)+e \lambda z^{2}
$$

is a constant of the motion.
(c) From the E-L equation for $\theta(t)$ above, we have immediately that

$$
J=m r^{2} \dot{\theta}+e \mu r^{2}=r^{2}[m \dot{\theta}+e \mu]
$$

is another constant of the motion (generalised angular momentum).
(d) If $r=R$, then $\dot{r}=\ddot{r}=0$ and from the above equation for r we obtain $\dot{\theta}=-2 e \mu / m=$ constant, i.e. circular motion around the z axis with constant angular velocity. In terms of the z coordinate, the particle undergoes simple harmonic motion, $z(t)=a \sin \kappa t+b \cos \kappa t$, with average value $z=0$.
(e) The time for one rotation around the z axis is $T=m /(2 e \mu)$. Suppose $\kappa T=2 \pi n$, i.e. $\lambda=\left(2 e \mu^{2} / m\right) n^{2}$. Then the period of rotation around the z axis is an integer multiple of the simple harmonic oscillation in the z direction, i.e. the two motions are in phase.

4 We start from the Euler-Lagrange equations for ϕ :

$$
\frac{\partial \mathcal{L}}{\partial \varphi}=\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial \varphi / \partial x^{\mu}\right)}\right) \equiv \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left[\partial_{\mu} \varphi\right]}
$$

which immediately gives

$$
-m^{2} \varphi=\partial^{\mu} \partial_{\mu} \varphi \quad \Rightarrow \quad \partial^{\mu} \partial_{\mu} \varphi+m^{2} \varphi=0 \quad \Rightarrow \quad \frac{\partial^{2} \varphi}{\partial t^{2}}-\nabla^{2} \varphi+m^{2} \varphi=0
$$

The Fourier transformed field $\tilde{\varphi}(\boldsymbol{k}, t)$ is defined by

$$
\varphi(\boldsymbol{x}, t)=\int d^{3} \boldsymbol{k} \tilde{\varphi}(\boldsymbol{k}, t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

Substituting into the equation of motion gives

$$
\frac{\partial^{2} \tilde{\varphi}}{\partial t^{2}}+\left(m^{2}+k^{2}\right) \tilde{\varphi}=0
$$

Define $\omega=+\sqrt{m^{2}+k^{2}}$. Then

$$
\tilde{\varphi}(\boldsymbol{k}, t)=a(\boldsymbol{k}) e^{-i \omega t}+b(\boldsymbol{k}) e^{i \omega t} .
$$

The reality of φ requires $b(\boldsymbol{k})=a^{*}(-\boldsymbol{k})$. With

$$
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \varphi_{1}\right)\left(\partial_{\mu} \varphi_{1}\right)-\frac{1}{2} m^{2} \varphi_{1}^{2}+\frac{1}{2}\left(\partial^{\mu} \varphi_{2}\right)\left(\partial_{\mu} \varphi_{2}\right)-\frac{1}{2} m^{2} \varphi_{2}^{2}+g \varphi_{1} \varphi_{2}
$$

we now have two equations of motion, corresponding to the E-L equations corresponding to φ_{1} and φ_{2} respectively:

$$
\partial^{\mu} \partial_{\mu} \varphi_{1}+m^{2} \varphi_{1}-g \varphi_{2}=0, \quad \partial^{\mu} \partial_{\mu} \varphi_{2}+m^{2} \varphi_{2}-g \varphi_{1}=0
$$

Now define two linear combinations of the φ_{i} fields: $\varphi_{ \pm}=\varphi_{1} \pm \varphi_{2}$. By adding and subtracting the above two equations of motion, we obtain two corresponding equations for the $\varphi_{ \pm}$:

$$
\partial^{\mu} \partial_{\mu} \varphi_{+}+\left(m^{2}-g\right) \varphi_{+}=0, \quad \partial^{\mu} \partial_{\mu} \varphi_{-}+\left(m^{2}+g\right) \varphi_{-}=0 .
$$

Note that these are now decoupled, and so we can solve them as we do for the normal (massive) Klein-Gordon field. Thus

$$
\varphi_{ \pm}(\boldsymbol{x}, t)=\int d^{3} \boldsymbol{k}\left[a_{ \pm}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{ \pm} t}+a_{ \pm}^{*}(\boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}+i \omega_{ \pm} t}\right]
$$

where the frequencies $\omega_{ \pm}$are given by

$$
\omega_{ \pm}^{2}=k^{2}+m^{2} \mp g>0 .
$$

It is now straightforward to recover the solutions for φ_{1} and φ_{2} :

$$
\begin{aligned}
& \varphi_{1}(\boldsymbol{x}, t)=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \frac{1}{2}\left[a_{+}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{+} t}+a_{-}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{-} t}+\text { c.c. }\right] \\
& \varphi_{2}(\boldsymbol{x}, t)=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \frac{1}{2}\left[a_{+}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{+} t}-a_{-}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{-} t}+\text { c.c. }\right] .
\end{aligned}
$$

To solve for the fields for the given boundary conditions at $t=0$, we first transform these into boundary conditions on $\varphi_{ \pm}$:

$$
\varphi_{+}(\boldsymbol{x}, 0)=\varphi_{-}(\boldsymbol{x}, 0)=A \sin (\boldsymbol{q} \cdot \boldsymbol{x}), \quad \dot{\varphi}_{+}(\boldsymbol{x}, 0)=\dot{\varphi}_{-}(\boldsymbol{x}, 0)=0
$$

This suggests looking for real solutions of the form:

$$
\varphi_{ \pm}=\sin (\boldsymbol{q} \cdot \boldsymbol{x})\left[\alpha \cos \left(\omega_{ \pm} t\right)+\beta \sin \left(\omega_{ \pm} t\right)\right]
$$

where now $\omega_{ \pm}=\sqrt{q^{2}+m^{2} \mp g}$. Evidently the boundary conditions are satisfied for $\alpha=A$ and $\beta=0$. Hence

$$
\begin{aligned}
& \varphi_{1}(\boldsymbol{x}, t)=\frac{A}{2} \sin (\boldsymbol{q} \cdot \boldsymbol{x})\left[\cos \left(\omega_{+} t\right)+\cos \left(\omega_{-} t\right)\right], \\
& \varphi_{2}(\boldsymbol{x}, t)=\frac{A}{2} \sin (\boldsymbol{q} \cdot \boldsymbol{x})\left[\cos \left(\omega_{+} t\right)-\cos \left(\omega_{-} t\right)\right] .
\end{aligned}
$$

Note that in the limit $g \rightarrow 0, \varphi_{2} \rightarrow 0$.
5 The relationship between symmetries and conserved quantities, and the effects of symmetry breaking, are amongst the most important in theoretical physics. Noether's theorem is an important general result, which tells us that there is a conserved current associated with every continuous symmetry of the
Lagrangian, i.e. with symmetry under a transformation of the form $\varphi \rightarrow \varphi+\delta \varphi$ where $\delta \varphi$ is infinitesimal. Symmetry means that \mathcal{L} does not change under this field transformation.

$$
\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi+\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}} \delta \varphi^{\prime}+\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \dot{\varphi}=0
$$

where

$$
\begin{aligned}
\delta \varphi^{\prime}=\delta\left(\frac{\partial \varphi}{\partial x}\right) & =\frac{\partial}{\partial x} \delta \varphi \\
\delta \dot{\varphi}=\delta\left(\frac{\partial \varphi}{\partial t}\right) & =\frac{\partial}{\partial t} \delta \varphi
\end{aligned}
$$

(easily generalized to 3 spatial dimensions).
The Euler-Lagrange equation of motion

$$
\frac{\partial \mathcal{L}}{\partial \varphi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}\right)=0
$$

then implies that

$$
\begin{aligned}
\delta \mathcal{L}=\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}}\right) & \delta \varphi+\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}} \frac{\partial}{\partial x}(\delta \varphi)+\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}\right) \delta \varphi+\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \frac{\partial}{\partial t}(\delta \varphi)=0 \\
\Rightarrow & \frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}} \delta \varphi\right)+\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \varphi\right)=0
\end{aligned}
$$

Comparing with the conservation/continuity equation (in 1 spatial dimension)

$$
\frac{\partial}{\partial x}\left(J_{x}\right)+\frac{\partial \rho}{\partial t}=0
$$

we see that the conserved density and current are (proportional to)

$$
\rho=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \varphi, \quad J_{x}=\frac{\partial \mathcal{L}}{\partial \varphi^{\prime}} \delta \varphi
$$

In more than 1 spatial dimension

$$
J_{x}=\frac{\partial \mathcal{L}}{\partial(\partial \varphi / \partial x)} \delta \varphi, \quad J_{y}=\frac{\partial \mathcal{L}}{\partial(\partial \varphi / \partial y)} \delta \varphi, \ldots
$$

and hence in covariant notation

$$
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)} \delta \varphi .
$$

The Lagrangian density for a scalar field in n space-time dimensions, $\varphi\left(t, x_{1}, x_{2}, \ldots, x_{n-1}\right)$, is

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)-\lambda \varphi^{4} .
$$

We use the E-L equation in the form

$$
\frac{\partial \mathcal{L}}{\partial \varphi}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left[\partial_{\mu} \varphi\right]}
$$

to immediately obtain the equation of motion

$$
\partial^{\mu} \partial_{\mu} \varphi+4 \lambda \phi^{3}=0 .
$$

A current J^{μ} is defined by

$$
J^{\mu}=\left(\varphi+x^{\nu} \partial_{\nu} \varphi\right) \partial^{\mu} \varphi-x^{\mu} \mathcal{L}
$$

Splitting this into two pieces, we first have

$$
\partial_{\mu}\left[\left(\varphi+x^{\nu} \partial_{\nu} \varphi\right)\left(\partial^{\mu} \varphi\right)\right]=2\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)+x^{\nu}\left(\partial_{\mu} \partial_{\nu} \varphi\right)\left(\partial^{\mu} \varphi\right)+\left(\varphi+x^{\nu} \partial_{\nu} \varphi\right)\left(-4 \lambda \varphi^{3}\right),
$$

where we have used the equation of motion in the last term. Also

$$
\partial_{\mu}\left(x^{\mu} \mathcal{L}\right)=n \mathcal{L}-x^{\mu}\left[\left(\partial_{\mu} \partial_{\nu} \varphi\right)\left(\partial^{\mu} \varphi\right)-4 \lambda \varphi^{3}\left(\partial_{\mu} \varphi\right)\right]
$$

Subtracting these and cancelling terms then gives

$$
\partial_{\mu} J^{\mu}=\left(2-\frac{n}{2}\right)\left(\partial_{\mu} \varphi\right)\left(\partial^{\mu} \varphi\right)+\lambda \varphi^{4}(-4+n)=(4-n) \mathcal{L} .
$$

For $n=4$ the right-hand side vanishes and the current is conserved.

6
(a) Taking the F.T in x we have

$$
\left(k^{2}+2 \alpha \frac{\partial}{\partial t}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) G\left(k, t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

This can be solved either using the 'jump' condition method from 1B maths or by taking a further F.T in t and using contour integration. The equation is identical in form to the damped harmonic oscillator for which the full solution is given in the lecture notes on pages 52,52 , question 4 in the examples and Q6 in the 2010 paper.

$$
\begin{aligned}
G\left(k, t-t^{\prime}\right) & =0 \quad t<t^{\prime} \\
& =\frac{1}{\sqrt{\alpha^{2}-k^{2} / c^{2}}} e^{-\alpha c^{2}\left(t-t^{\prime}\right)} \sinh \sqrt{\alpha^{2} c^{4}-k^{2} c^{2}}\left(t-t^{\prime}\right)
\end{aligned}
$$

(b) From the inverse Fourier transform we have

$$
G\left(x, x^{\prime} ; t, t^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} G\left(k, t-t^{\prime}\right) d k
$$

and with $s(x, t)=\cos (p x) \delta\left(t-t_{0}\right)$

$$
\begin{aligned}
T(x, t) & =\int_{-\infty}^{t^{+}} \mathrm{d} t^{\prime} \int_{-\infty}^{\infty} \mathrm{d} x^{\prime} s\left(x^{\prime}, t^{\prime}\right) G\left(x, x^{\prime} ; t, t^{\prime}\right) \\
& =\int_{-\infty}^{\infty} \mathrm{d} x^{\prime} \cos \left(p x^{\prime}\right) \cdot \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k e^{i k\left(x-x^{\prime}\right)} G\left(k, t-t_{0}\right) \\
& =\int_{-\infty}^{\infty} \mathrm{d} k \frac{1}{2.2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x^{\prime}\left[e^{i(k-p)\left(x-x^{\prime}\right)} e^{i p x} G\left(k, t-t_{0}\right)+e^{i(k+p)\left(x-x^{\prime}\right)} e^{-i p x} G\left(k, t-t_{0}\right)\right] \\
& =\frac{1}{2}\left(e^{i p x} G\left(p, t-t_{0}\right)+e^{-i p x} G\left(-p, t-t_{0}\right)\right)=\cos (p x) G\left(p, t-t_{0}\right)
\end{aligned}
$$

Hence, for $\alpha c>p$ the oscillating temperature distribution decays without oscillating and for $\alpha c<p$ it executes damped harmonic motion.

END OF PAPER

