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1 A simple pendulum of mass m2 is free to oscillate in the vertical plane x − y.
At its point of support the pendulum is attached to a mass m1 which is free to
move along the line y = 0.

(a) Show that the Lagrangian for this system is

L =
1

2
(m1 + m2) ẋ2 +

1

2
m2

(

l2φ̇2 + 2lẋφ̇ cos φ
)

+ m2gl cos φ,

where φ is the angular displacement of the pendulum and x is the horizontal
position of the mass m1, as shown in the figure. [8]

(b) Deduce the canonical momenta px and pφ conjugate to the generalised
coordinates x and φ and show that px is a conserved quantity. [6]

(c) Show that the path of m2 is the arc of an ellipse if px = 0. [10]

(d) For the case considered in (c) derive an expression for the energy E of
the system and use it to show that the time t taken for the pendulum to
move from angle φ1 to φ2 within a single oscillation is given by

t = l

√

m2

2(m2 + m1)

∫ φ2

φ1

dφ

√

m1 + m2 sin2 φ

E + m2gl cos φ
.

[9]

2 A harmonic oscillator is weakly perturbed by a cubic potential λx3 so that
its Hamiltonian has the form

H =
p2

2m
+

1

2
mω2x2 + λx3,

where λ is small.

(a) Find constraints on the parameters αi, βi which make the coordinate
transformation

x = X + α1X
2 + 2α2XP + α3P

2

p = P + β1X
2 + 2β2XP + β3P

2

canonical to first order in αi and βi. [8]
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(b) Carry out the canonical transformation from part (a) on the Hamiltonian
H and find values for the parameters αi, βi in terms of m, ω and λ which
make the transformed Hamiltonian K(X, P ) harmonic to first order in αi

and βi, i.e.

K(X, P ) =
P 2

2m
+

1

2
mω2X2 + O(α2

i , β
2
i ),

and state the resulting canonical transformations. [10]

(c) Use Hamilton’s equations for K to find expressions for X(t) and P (t) to
first order in αi and βi. [6]

(d) Use your answers to parts (b) and (c) to find expressions for x(t) and
p(t) and comment on the effect of the perturbation. [9]

3 Show explicitly that the Lagrangian

L =
1

2
mv2 + ev · A − eφ

yields the correct equation of motion for a particle of (positive) charge e and mass
m moving in an electromagnetic field:

E = −∇φ − ∂A

∂t
and B = ∇× A,

where A and φ are the usual electromagnetic potential functions. [7]
Explain what is meant by gauge invariance in this context. [3]
In terms of cylindrical coordinates (r, θ, z), the potential functions are

φ = λz2 and A = (0, µr, 0), where λ and µ are positive constants.

(a) Use the Euler-Lagrange equations to derive the (three) equations of
motion of the particle. [7]

(b) Determine the total energy of the particle and show that it is a constant
of the motion. [5]

(c) Show that the Euler-Lagrange equation for θ(t) gives rise to a second
constant of the motion. [3]

(d) Describe the motion of the particle given that r is constant, r = R, and
the angular velocity is non-zero, θ̇ 6= 0. [4]

(e) Explain the significance of the special case λ = (2eµ2/m)n2, where n is
an integer. [4]
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4 The Klein-Gordon Lagrangian density for a real scalar field ϕ(x, t) is

LKG[ϕ] =
1

2
(∂µϕ)(∂µϕ) − 1

2
m2ϕ2,

where ∂µ represents the differential operator (∂/∂t,−∇). Use the Euler-Lagrange
equations to derive the equation of motion: [5]

∂µ∂µϕ + m2ϕ = 0.

The Fourier transformed field ϕ̃(k, t) is defined by

ϕ(x, t) =

∫

d3k ϕ̃(k, t) eik·x.

Find and solve the equation of motion satisfied by ϕ̃(k, t). [5]
A dynamical system is described by two real scalar fields, ϕ1 and ϕ2, with

Lagrangian density
L = LKG[ϕ1] + LKG[ϕ2] + Lint,

where the interaction term is Lint = gϕ1ϕ2, with g a real constant, 0 < g < m2.
Derive the (two) coupled equations of motion for the system. [5]
Solve these equations to obtain general solutions in terms of the Fourier

transformed fields ϕ̃i(k, t). [9]
At time t = 0, the system is in a state corresponding to

ϕ1 = A sin(q · x),
∂ϕ1

∂t
=

∂ϕ2

∂t
= ϕ2 = 0,

with A and q a constant scalar and vector respectively. Find ϕ1 and ϕ2 for t > 0. [9]

5 State Noether’s theorem and explain its significance. [5]
A Lagrangian density L is a functional of a scalar field ϕ(x, t). If the

Lagrangian is invariant under an infinitessimal field transformation of the form

ϕ → ϕ̃ = ϕ + δϕ,

show that there is a continuity equation

∂Jx

∂x
+

∂ρ

∂t
= 0,

where

ρ =
∂L
∂ϕ̇

δϕ, Jx =
∂L
∂ϕ′

δϕ,

and ϕ̇ and ϕ′ denote partial differentiation with respect to t and x respectively. [10]
Generalising to 3 spatial dimensions, and using covariant notation, show that this
corresponds to conservation of the Noether current Jµ, i.e. ∂µJ

µ = 0, where [3]

Jµ =
∂L

∂(∂µϕ)
δϕ.
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The Lagrangian density for a scalar field in n space-time dimensions,
ϕ(t, x1, x2, ..., xn−1), is

L =
1

2
(∂µϕ)(∂µϕ) − λϕ4,

where ∂µ = (∂/∂t,−∂/∂x1,−∂/∂x2, ...,−∂/∂xn−1) and hence ∂µx
µ = n. Use the

Euler-Lagrange equations to derive the equation of motion [5]

∂µ∂µϕ + 4λφ3 = 0.

A current Jµ is defined by

Jµ = (ϕ + xν∂νϕ)∂µϕ − xµL.

Show that
∂µJµ = (n − 4)L,

and hence that Jµ is a conserved current only in 4 space-time dimensions. [10]

6 An infinite one-dimensional system has a temperature distribution T (x, t)
given by the heat transmission equation

−∂2T

∂x2
+ 2α

∂T

∂t
+

1

c2

∂2T

∂t2
= s(x, t),

where s(x, t) is a heat source, and α and c are positive constants.

(a) Use Fourier methods to show that the Green’s function

G(k; t − t′) =

∫

∞

−∞

e−ik(x−x′)G(x, x′; t, t′)dx

for this heat equation has the form

G(k, t − t′) = 0 t < t′

=
1

√

α2 − k2/c2
e−αc2(t−t′) sinh

√
α2c4 − k2c2(t − t′) t > t′

and comment on the result. [19]

(b) Find the temperature T (x, t) of the system if s(x, t) = cos(px)δ(t − t0)
and T (x, t < t0) = 0, for the two cases α > p/c and α < p/c and discuss your
results. [14]
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