THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains six sides and is accompanied by a booklet giving values of constants and containing mathematical formulae which you may quote without proof.

1 The pendulum shown in figure (a) below consists of a rigid massless rod of length l with a point mass m attached at the free end. The other end is attached to the fixed point P by means of a free hinge. The mass m moves above the two-dimensional plane ($\hat{\boldsymbol{n}}, \hat{\boldsymbol{w}}$) so that the rod makes an angle θ to the $\hat{\boldsymbol{z}}$ axis. The pendulum is situated at a latitude λ above the equator on the surface of the Earth. This is shown in figure (b), where $R=6.38 \times 10^{6} \mathrm{~m}$ is the radius of the Earth and $\Omega \hat{\boldsymbol{Z}}$ is the angular velocity of the Earth.

Consider the case where the pendulum exhibits small oscillations such that the velocity of the mass m in the Earth's rotating frame of reference may be approximated by $\boldsymbol{v}_{r} \approx \dot{x} \hat{\boldsymbol{n}}+\dot{y} \hat{\boldsymbol{w}}$.
(a) Calculate the velocity, \boldsymbol{v}_{s}, of the mass m in the Earth's stationary frame of reference and use it to show that the kinetic energy of pendulum may be approximated by

$$
T \approx \frac{1}{2} m\left[\dot{x}^{2}+\dot{y}^{2}-2 \Omega \dot{x} y \sin \lambda+2 \Omega \dot{y}(x \sin \lambda-R \cos \lambda)-2 \Omega^{2} x R \sin \lambda \cos \lambda\right]+\text { const. }
$$

(TURN OVER for continuation of question 1

Explain the approximations you have made. [Hint: You may find the identity $\boldsymbol{v}_{s}=\boldsymbol{v}_{r}+\Omega \hat{\boldsymbol{Z}} \times \boldsymbol{r}$ useful.]
(b) Show that the potential energy of the pendulum may be approximated by

$$
V \approx \frac{m \tilde{g}}{2 l}\left(x^{2}+y^{2}\right)
$$

where $\tilde{g}=g-\Omega^{2} R \cos ^{2} \lambda$. The correction to g arises from consideration of the centrifugal force.
(c) Using the approximations for T and V above, show that the equations of motion of the pendulum can be written in the form

$$
\binom{\ddot{\tilde{x}}}{\ddot{y}}+\left(\begin{array}{cc}
0 & -2 \alpha \tag{1}\\
2 \alpha & 0
\end{array}\right)\binom{\dot{\tilde{x}}}{\dot{y}}+\beta\binom{\tilde{x}}{y}=0 .
$$

Give physical explanations for the parameters α, β and \tilde{x}.
(d) Transform the equations of motion (1) to the rotating frame of reference defined by

$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \alpha t & -\sin \alpha t \\
\sin \alpha t & \cos \alpha t
\end{array}\right)\binom{\tilde{x}}{y}
$$

and show that they take the form

$$
\begin{equation*}
\binom{\ddot{X}}{\ddot{Y}}+\omega^{2}\binom{X}{Y}=0 . \tag{2}
\end{equation*}
$$

(e) Solve equation (2) and describe the characteristic motion of the pendulum in the two reference frames X, Y and x, y if the pendulum is: (i) at the equator, (ii) in Cambridge at 52° North or (iii) at the North Pole.

2 Explain what is meant by a canonical transformation.
(a) Show that the transformation

$$
\begin{align*}
x & =\frac{1}{\alpha}\left(\sqrt{2 P_{1}} \sin Q_{1}+P_{2}\right) \\
y & =\frac{1}{\alpha}\left(\sqrt{2 P_{1}} \cos Q_{1}+Q_{2}\right) \\
p_{x} & =\frac{\alpha}{2}\left(\sqrt{2 P_{1}} \cos Q_{1}-Q_{2}\right) \\
p_{y} & =-\frac{\alpha}{2}\left(\sqrt{2 P_{1}} \sin Q_{1}-P_{2}\right) \tag{13}
\end{align*}
$$

is canonical.
(b) The Hamiltonian for a particle of charge e moving in a two-dimensional plane (x, y) in a magnetic field $\mathbf{B}=B \hat{\boldsymbol{z}}$ can be written in the form

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}+e B \frac{y}{2}\right)^{2}+\frac{1}{2 m}\left(p_{y}-e B \frac{x}{2}\right)^{2}, \tag{3}
\end{equation*}
$$

where the symbols take their usual meanings. Transform this Hamiltonian to the coordinate system $Q_{1}, P_{1}, Q_{2}, P_{2}$ and choose a value for α to simplify the expression for the resulting Hamiltonian.
(c) Derive and solve the equations of motion in the coordinates $Q_{1}, P_{1}, Q_{2}, P_{2}$.
(d) Show that your solutions to part (c) satisfy Hamilton's equations of motion for the Hamiltonian in equation (3).

3 The angular twisting $\phi(x, t)$ of a torsion bar along its length (in the x direction) can be described by the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \rho\left(\frac{\partial \phi}{\partial t}\right)^{2}-\frac{1}{2} \kappa\left(\frac{\partial \phi}{\partial x}\right)^{2}-\zeta(1-\cos \phi),
$$

with constants $\rho, \kappa, \zeta>0$. Show that the Euler-Lagrange equation for the system leads to the equation of motion

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t^{2}}-v^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+\omega^{2} \sin \phi=0 \tag{4}
\end{equation*}
$$

where $v^{2}=\kappa / \rho$ and $\omega^{2}=\zeta / \rho$.
If the rod lies between $0 \leq x \leq L$ and is fixed at each end, $\phi(0, t)=\phi(L, t)=0$, show that the general solution for small angular displacements, i.e. $\phi \ll 1$, can be written in terms of Fourier harmonics:

$$
\begin{equation*}
\phi(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left[a_{n} \sin \left(\Omega_{n} t\right)+b_{n} \cos \left(\Omega_{n} t\right)\right] \tag{5}
\end{equation*}
$$

and find the frequencies of oscillation Ω_{n}.
Next consider the case of a rod of infinite extent, $-\infty<x<+\infty$, and switch to natural units in which $v=\omega=1$. With $f(x, t)=\tan (\phi(x, t) / 4)$, and relaxing the assumption that ϕ is small, show that the equation of motion (4) becomes

$$
\left(1+f^{2}\right)\left(\frac{\partial^{2} f}{\partial t^{2}}-\frac{\partial^{2} f}{\partial x^{2}}\right)+f\left[1-f^{2}-2\left(\frac{\partial f}{\partial t}\right)^{2}+2\left(\frac{\partial f}{\partial x}\right)^{2}\right]=0
$$

Regarding f as a function of the variable $y=(x+\alpha t) / \sqrt{1-\alpha^{2}}$, with α a real parameter in the interval $-1<\alpha<1$, write down expressions for the partial
derivatives $\partial f / \partial t$ and $\partial f / \partial x$ in terms of f and $f^{\prime} \equiv \mathrm{d} f / \mathrm{d} y$, and show that the above partial differential equation for f becomes

$$
\left(1+f^{2}\right) f^{\prime \prime}-f\left[1-f^{2}+2\left(f^{\prime}\right)^{2}\right]=0 .
$$

Determine the values of λ for which $f=\exp (\lambda y)$ is a solution, and hence show that the original partial differential equation for $\phi(x, t)$ has two particular solutions

$$
\phi_{ \pm}(x, t)=4 \arctan \left(\exp \left\{ \pm \frac{x+\alpha t}{\sqrt{1-\alpha^{2}}}\right\}\right)
$$

corresponding to boundary conditions $\phi_{+}(x=+\infty, t)=\phi_{-}(x=-\infty, t)=2 \pi$, $\phi_{+}(x=-\infty, t)=\phi_{-}(x=+\infty, t)=0$. Taking the positive sign solution, interpret this result in terms of the evolution in time of a particular initial $(t=0)$ angular displacement, which you should sketch.

4 Consider the theory of a real vector field A^{μ} in three space-time dimensions, $\mu=0,1,2$, i.e. $x^{\mu}=(t, \boldsymbol{x})$ with \boldsymbol{x} the two-dimensional position vector. The dynamics of A^{μ} are determined by the 'Maxwell-Chern-Simons' Lagrangian

$$
\mathcal{L}_{\mathrm{MCS}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+g \epsilon^{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}
$$

where $\partial_{\mu}=\partial / \partial x^{\mu}, F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \epsilon^{\mu \nu \lambda}$ is the completely antisymmetric tensor, $\epsilon^{012}=1$, and g is a real constant.

Find the dimensions of the constant g.
Show that the action $S=\int \mathrm{d} t \mathrm{~d}^{2} \boldsymbol{x} \mathcal{L}_{\mathrm{MCS}}$ is invariant under the gauge transformation

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} f
$$

provided that the scalar function f and the field A_{μ} decrease sufficiently rapidly as $|t|,|x| \rightarrow \infty$.

Starting from the Euler-Lagrange equations, derive the field equations

$$
\begin{equation*}
\partial_{\mu} F^{\mu \alpha}+g \epsilon^{\alpha \rho \sigma} F_{\rho \sigma}=0, \tag{7}
\end{equation*}
$$

and show that they are gauge invariant.
The 'dual' vector field is defined by

$$
\begin{equation*}
\tilde{F}^{\mu}=\frac{1}{2} \epsilon^{\mu \alpha \beta} F_{\alpha \beta} . \tag{6}
\end{equation*}
$$

Show that $\partial_{\mu} \tilde{F}^{\mu}=0$ and $F^{\mu \nu}=\epsilon^{\mu \nu \alpha} \tilde{F}_{\alpha}$.
Show that the dual vector field satisfies the second-order partial differential equation

$$
\left[\partial_{\mu} \partial^{\mu}+(2 g)^{2}\right] \tilde{F}^{\nu}=0
$$

Show that this equation has plane-wave solutions

$$
\begin{equation*}
\tilde{F}^{\mu}=\int \mathrm{d}^{2} \boldsymbol{k}\left[a^{\mu}(k) e^{i \boldsymbol{k} \cdot \boldsymbol{x}+i \omega(k) t}+\left(a^{\mu}(k)\right)^{*} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega(k) t}\right] . \tag{5}
\end{equation*}
$$

and find an expression for $\omega(k)$ in terms of $k=|\boldsymbol{k}|$ and g. Interpret your result. [Hint: You may find the identity $\epsilon^{\alpha \mu \nu} \epsilon_{\alpha}^{\rho \sigma}=g^{\mu \rho} g^{\nu \sigma}-g^{\mu \sigma} g^{\nu \rho}$ useful. Note that the metric tensor has its usual meaning: $g^{00}=-g^{11}=-g^{22}=1$ with all other components zero.]

5 The Lagrangian density for a self-interacting, complex, massless scalar field $\phi(\boldsymbol{r}, t)$ is given by

$$
\mathcal{L}=\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)-V(\phi),
$$

where $\partial_{\mu}=\partial / \partial x^{\mu}$ and

$$
V(\phi)=-m^{2} \phi^{*} \phi+\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2} \quad(\lambda>0) .
$$

Derive an expression for the Hamiltonian density \mathcal{H} in terms of ϕ and its derivatives, and show that there is an infinite set of states $\phi=\phi_{0} e^{i \theta}$, with $\phi_{0}=m / \sqrt{\lambda}$ and $0 \leq \theta<2 \pi$, for which the energy is a minimum.

Explain the concept of spontaneous symmetry breaking, using the above Lagrangian as an illustrative example.

Consider the case when ϕ interacts with a real vector field A^{μ} through the Lagrangian density

$$
\mathcal{L}=-\frac{1}{4} F_{A \mu \nu} F_{A}^{\mu \nu}+\left(D^{\mu} \phi\right)^{*}\left(D_{\mu} \phi\right)-V(\phi),
$$

where $F_{A \mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, D_{\mu}=\partial_{\mu}+i e A_{\mu}$, and e is a constant. By expanding ϕ about the ground state configuration, $\phi=\phi_{0}+\chi_{1}+i \chi_{2}$, where χ_{1} and χ_{2} are real fields, show that the excitation quanta of the A^{μ} field acquire a non-zero mass $e m \sqrt{2 / \lambda}$.

A second real vector field B^{μ} is introduced into the system such that the Lagrangian density becomes

$$
\mathcal{L}=-\frac{1}{4} F_{A \mu \nu} F_{A}^{\mu \nu}-\frac{1}{4} F_{B \mu \nu} F_{B}^{\mu \nu}+\left(D^{\mu} \phi\right)^{*}\left(D_{\mu} \phi\right)-V(\phi),
$$

where now $D_{\mu}=\partial_{\mu}+i e A_{\mu}+i e^{\prime} B_{\mu}$. Show that under spontaneous symmetry breaking the term in the resulting Lagrangian density that is quadratic in the A^{μ} and B^{μ} fields is

$$
\mathcal{L}_{\text {quadratic }}=\frac{m^{2}}{\lambda}\left(e^{2} A_{\mu} A^{\mu}+e^{\prime 2} B_{\mu} B^{\mu}+2 e e^{\prime} A_{\mu} B^{\mu}\right)
$$

The fields A^{μ} and B^{μ} are now 'rotated' into two new fields Z^{μ} and W^{μ} defined by $Z^{\mu}=\cos \alpha A^{\mu}+\sin \alpha B^{\mu}$ and $W^{\mu}=\sin \alpha A^{\mu}-\cos \alpha B^{\mu}$. Show that

$$
-\frac{1}{4} F_{A \mu \nu} F_{A}^{\mu \nu}-\frac{1}{4} F_{B \mu \nu} F_{B}^{\mu \nu}=-\frac{1}{4} F_{Z \mu \nu} F_{Z}^{\mu \nu}-\frac{1}{4} F_{W \mu \nu} F_{W}^{\mu \nu}
$$

and that, for $\tan 2 \alpha=2 e e^{\prime} /\left(e^{2}-e^{\prime 2}\right)$,

$$
\mathcal{L}_{\text {quadratic }}=\frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu}+\frac{1}{2} m_{W}^{2} W_{\mu} W^{\mu} .
$$

Interpret this result and determine m_{Z} and m_{W}.
6 The Green's Function for a particle obeying the Klein-Gordon equation of motion in three dimensions is defined by

$$
\left(-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}-m_{0}^{2}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)=\boldsymbol{\delta}^{3}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

where the symbols take their usual meanings.
(a) Use Fourier methods to derive the Green's function

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; \omega\right)=\int_{-\infty}^{\infty} \mathrm{d} \tau e^{-i \omega \tau} G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)
$$

for a free particle, where $\tau=t-t^{\prime}$ and $\omega=E+i \epsilon$, in the three energy regimes (i) $E \geq m_{0}$ (ii) $|E|<m_{0}$ and (iii) $E \leq-m_{0}$. The parameter ϵ should be assumed to be real and small.
(b) Use your results from (a) to calculate the quantity

$$
\frac{\mathrm{d} n}{\mathrm{~d} z}=\lim _{r \rightarrow \boldsymbol{r}^{\prime}} \lim _{\epsilon \rightarrow 0} \frac{G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E+i|\epsilon|\right)-G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E-i|\epsilon|\right)}{-2 \pi i}
$$

where $z=E^{2}$, and hence find the density of states $\mathrm{d} n / \mathrm{d} E$ in the same three energy regimes.
(c) Use Fourier methods to derive the Green's function

$$
G\left(\boldsymbol{k} ; t, t^{\prime}\right)=\int_{-\infty}^{\infty} \mathrm{d}^{3} \boldsymbol{p} e^{-i \boldsymbol{k} \cdot \boldsymbol{p}} G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)
$$

where $\boldsymbol{p}=\boldsymbol{r}-\boldsymbol{r}^{\prime}$, for the two cases $t>t^{\prime}$ and $t<t^{\prime}$.
(d) Comment on and give a physical explanation for your results in sections (b) and (c).

END OF PAPER

