Wednesday 13 January 2010 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answers

1

(a) The kinetic energy of the rolling cylinder is

$$T_c = \frac{1}{2}ma^2\dot{\theta}^2 + \frac{1}{2}I_c\dot{\theta}^2$$

where $I_c = ma^2/2$ is its moment of inertia about its axis. The kinetic energy of the plank is

$$T_p = \frac{1}{2}m^2(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}I_p\dot{\phi}^2$$

where $I_p = ml^2/12$ is its moment of inertia about its centre. The potential energy of the Plank is $V_p = mgy$. Therefore

$$L = T_c + T_p - V_p = \frac{3}{4}ma^2\dot{\theta}^2 + \frac{1}{24}ml^2\dot{\phi}^2 + \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - mgy$$

(b) The top of the cylinder is at $(a\theta, 0)$. Therefore the point of contact of plank and cylinder is at $a(\theta + \sin \phi, \cos \phi - 1)$. If there is no slipping, the vector from there to the centre of the plank is $a(\theta - \phi)(\cos \phi, -\sin \phi)$. Hence

$$\begin{aligned} x/a &= \theta + \sin \phi + (\theta - \phi) \cos \phi , \\ y/a &= -1 + \cos \phi - (\theta - \phi) \sin \phi . \end{aligned}$$

(TURN OVER for continuation of question 1

(c) We have

$$\dot{x}/a = \dot{\theta} + \dot{\phi}\cos\phi + (\dot{\theta} - \dot{\phi})\cos\phi + (\phi - \theta)\dot{\phi}\sin\phi , \dot{y}/a = -\dot{\phi}\sin\phi - (\dot{\theta} - \dot{\phi})\sin\phi + (\phi - \theta)\dot{\phi}\cos\phi .$$

Hence

$$\begin{aligned} (\dot{x}^2 + \dot{y}^2)/a^2 &= [\dot{\theta}(1 + \cos\phi) + (\phi - \theta)\dot{\phi}\sin\phi]^2 + [\dot{\theta}\sin\phi - (\phi - \theta)\dot{\phi}\cos\phi]^2 \\ &= 2\dot{\theta}^2(1 + \cos\phi) + (\phi - \theta)^2\dot{\phi}^2 + 2(\phi - \theta)\dot{\theta}\dot{\phi}\sin\phi \end{aligned}$$

The canonical momentum p_{θ} is

$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = \frac{3}{2}ma^{2}\dot{\theta} + \frac{1}{2}ma^{2}[4\dot{\theta}(1+\cos\phi) + 2(\phi-\theta)\dot{\phi}\sin\phi]$$
$$= \frac{1}{2}ma^{2}[\dot{\theta}(7+4\cos\phi) + 2(\phi-\theta)\dot{\phi}\sin\phi]$$

The canonical momentum p_ϕ is

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = \frac{1}{12}ml^2\dot{\phi} + ma^2(\phi - \theta)[(\phi - \theta)\dot{\phi} + \dot{\theta}\sin\phi]$$

(d) To second order in θ and ϕ ,

$$y/a \simeq \frac{1}{2}\phi^2 - \theta\phi$$
, $(\dot{x}^2 + \dot{y}^2)/a^2 \simeq 4\dot{\theta}^2$

so that

$$L \simeq \frac{11}{4}ma^{2}\dot{\theta}^{2} + \frac{1}{24}ml^{2}\dot{\phi}^{2} - \frac{1}{2}mga\phi(\phi - 2\theta)$$

To find the Hamiltonian to second order, we only need the canonical momenta to first order:

$$p_{\theta} \simeq \frac{11}{2} m a^2 \dot{\theta} , \quad p_{\phi} \simeq \frac{1}{12} m l^2 \dot{\phi}$$

Hence

۸

$$H = p_{\theta}\dot{\theta} + p_{\phi}\dot{\phi} - L \simeq \frac{1}{11}\frac{p_{\theta}^2}{ma^2} + 6\frac{p_{\theta}^2}{ml^2} + \frac{1}{2}mga\phi(\phi - 2\theta) .$$

Hamilton's equations are

$$\begin{split} \dot{\theta} &= \ \frac{\partial H}{\partial p_{\theta}} = \frac{2}{11} \frac{p_{\theta}}{ma^2} , \quad \dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} = mga\phi \\ \dot{\phi} &= \ \frac{\partial H}{\partial p_{\phi}} = 12 \frac{p_{\phi}}{ml^2} , \quad \dot{p}_{\phi} = -\frac{\partial H}{\partial \phi} = -mga(\phi - \theta) \end{split}$$

3

(e) Hence

$$\ddot{\theta} = \frac{2}{11} \frac{g}{a} \phi$$
, $\ddot{\phi} = 12 \frac{ga}{l^2} (\theta - \phi)$.

Writing $\theta = Ae^{i\omega t}$, $\phi = Be^{i\omega t}$,

$$-\omega^2 A = \frac{2}{11} \frac{g}{a} B , \quad -\omega^2 B = 12 \frac{ga}{l^2} (A - B)$$

 \mathbf{SO}

$$-\omega^2 B = -12 \frac{ga}{l^2} B - \frac{24}{11} \frac{g^2}{l^2 \omega^2} B ,$$

$$\omega^4 - 12 \frac{ga}{l^2} \omega^2 - \frac{24}{11} \frac{g^2}{l^2} = 0 ,$$

and therefore

$$\omega^{2} = 6\frac{ga}{l^{2}} \left(1 \pm \sqrt{1 + \frac{2}{33}\frac{l^{2}}{a^{2}}} \right)$$

The negative root corresponds to a runaway solution – the plank falls off. The positive root ω_+ is an oscillation with θ and ϕ in antiphase and

$$\frac{B}{A} = -\frac{11}{2}\frac{a}{g}\omega_+^2 = -33\frac{a^2}{l^2}\left(1 + \sqrt{1 + \frac{2}{33}\frac{l^2}{a^2}}\right) \,.$$

(a) We have

$$A^{\mu} = \left(\frac{Q}{rc}, -\frac{1}{2}Br\sin\theta, \frac{1}{2}Br\cos\theta, 0\right)$$
$$= \left(\phi(r)/c, -\frac{1}{2}By, \frac{1}{2}Bx, 0\right)$$

where $\phi(r)$ is the electrostatic potential due to the charge at the origin. Now $A^{\mu} = (\phi/c, \mathbf{A})$ where $\mathbf{E} = -\nabla \phi - \partial \mathbf{A}/\partial t$ and $\mathbf{B} = \nabla \times \mathbf{A}$. Thus in this case $\mathbf{E} = -\nabla \phi$ and $\mathbf{B} = (0, 0, B)$ as required.

(b) The Lagrangian is

$$L = T - V = \frac{1}{2}mv^2 - e(\phi - \boldsymbol{v} \cdot \boldsymbol{A})$$

In plane polar coordinates $\boldsymbol{v} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}}$ and here $\boldsymbol{A} = Br\hat{\boldsymbol{\theta}}/2$, so

$$L = \frac{1}{2}m(\dot{r}^{2} + r^{2}\dot{\theta}^{2}) - \frac{eQ}{r} + \frac{1}{2}eBr^{2}\dot{\theta}$$

(c) Lagrange's equations of motion are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}}\right) = \frac{\partial L}{\partial r} , \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \frac{\partial L}{\partial \theta}$$

(TURN OVER

2

Hence

$$\begin{split} m\ddot{r} &= mr\dot{\theta}^2 + \frac{eQ}{r^2} + eBr\dot{\theta} \ , \\ \frac{d}{dt}\left(mr^2\dot{\theta} + \frac{1}{2}eBr^2\right) = 0 \ . \end{split}$$

(d) We see from the equation of motion for θ that the angular momentum

$$p_{\theta} = mr^2 \dot{\theta} + \frac{1}{2}eBr^2 = J$$

is a constant of the motion. Furthermore the Lagrangian does not depend explicitly on time, so the Hamiltonian is also constant:

$$H = p_r \dot{r} + p_\theta \dot{\theta} - L = \frac{1}{2}m(\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{eQ}{r} = E$$

(e) Writing

$$\theta = \phi - \omega_L t = \phi - \frac{eB}{2m}t$$

the equations of motion become

$$\begin{split} m\ddot{r} &= mr\left(\dot{\phi} - \frac{eB}{2m}\right)^2 + \frac{eQ}{r^2} + eBr\left(\dot{\phi} - \frac{eB}{2m}\right) \\ &= mr\dot{\phi}^2 + \frac{eQ}{r^2} - \frac{e^2B^2}{4m}r , \\ \frac{d}{dt}\left(mr^2\dot{\phi}\right) &= 0 . \end{split}$$

Therefore, to first order in B, the effect of the field is cancelled in a frame rotating with the Larmor frequency.

A

(a) We are given

$$V = \frac{S_0}{\gamma + 1} \left[\left(\frac{\rho}{\rho_0} \right)^{\gamma + 1} - 1 \right]$$

where $\rho = \rho_0(1 - \boldsymbol{\nabla} \cdot \boldsymbol{\xi})$, i.e. $\rho/\rho_0 = 1 - \delta$, where $\delta = \boldsymbol{\nabla} \cdot \boldsymbol{\xi}$ is small. Expanding

$$V = \frac{S_0}{\gamma + 1} \left[(1 - \delta)^{\gamma + 1} - 1 \right]$$

= $\frac{S_0}{\gamma + 1} \left[1 - (\gamma + 1)\delta + \frac{1}{2}\gamma(\gamma + 1)\delta^2 + \dots - 1 \right]$
= $S_0 \left[-\delta + \frac{\gamma}{2}\delta^2 + \mathcal{O}(\delta^3) \right]$
= $S_0 \left[-\nabla \cdot \boldsymbol{\xi} + \frac{\gamma}{2} (\nabla \cdot \boldsymbol{\xi})^2 \right]$

(b)

$$\mathcal{L} = T - V = \frac{1}{2}\rho_0 \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}} + S_0 \left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi} - \frac{\gamma}{2} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^2 \right)$$

Lagrange's equation of motion for ξ_i is

$$\frac{\partial \mathcal{L}}{\partial \xi_i} - \sum_j \frac{\partial}{\partial x_j} \frac{\partial \mathcal{L}}{\partial (\partial \xi_i / \partial x_j)} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\xi_i}} = 0$$

Hence in this case

$$0 - \frac{\partial}{\partial x_i} S_0(1 - \gamma \boldsymbol{\nabla} \cdot \boldsymbol{\xi}) - \rho_0 \ddot{\xi}_i = 0$$

i.e.

$$\rho_0 \ddot{\boldsymbol{\xi}} - \gamma S_0 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi}) = 0.$$

(c) The canonical momentum density $\pi_i = \partial \mathcal{L} / \partial \dot{\xi}_i = \rho_0 \dot{\xi}_i$. Hence

$$\mathcal{H} = \sum_{i} \pi_{i} \dot{\xi}_{i} - \mathcal{L}$$

$$= \rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}} - \frac{1}{2} \rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}} - S_{0} \left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi} - \frac{\gamma}{2} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2} \right)$$

$$= \frac{\boldsymbol{\pi}^{2}}{2\rho_{0}} - S_{0} \left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi} - \frac{\gamma}{2} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2} \right)$$

The term involving the total derivative $\nabla \cdot \boldsymbol{\xi}$ gives a contribution to the total Hamiltonian equal to an integral of the field over a surface at infinity,

$$-S_0 \int \mathrm{d}^3 \boldsymbol{r} \, \boldsymbol{\nabla} \cdot \boldsymbol{\xi} = -S_0 \int \mathrm{d}^2 \boldsymbol{S} \cdot \boldsymbol{\xi} = 0$$

since the field vanishes at infinity. Hence

$$H = \int \mathrm{d}^3 \boldsymbol{r} \ \mathcal{H}(\boldsymbol{r},t)$$

where

$$\mathcal{H}(\boldsymbol{r},t) = \frac{1}{2}\rho_0 \boldsymbol{\pi}^2 + \frac{\gamma}{2}S_0(\boldsymbol{\nabla}\cdot\boldsymbol{\xi})^2.$$

(d) We have

$$\rho_0 \ddot{\boldsymbol{\xi}}^{T,L} - \gamma S_0 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{T,L}) = 0$$

where

$$\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^T = 0, \quad \boldsymbol{\nabla} \times \boldsymbol{\xi}^L = 0.$$

Thus $\boldsymbol{\xi}^{T}$ obeys the free-particle equation of motion $\ddot{\boldsymbol{\xi}}^{T} = 0$, while for $\boldsymbol{\xi}^{L}$ we have

$$\rho_0 \ddot{\boldsymbol{\xi}}^L - \gamma S_0 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^L) = 0.$$

Now we need the identity

$$oldsymbol{
abla} imes(oldsymbol{
abla} imesoldsymbol{A})=oldsymbol{
abla}(oldsymbol{
abla}\cdotoldsymbol{A})-oldsymbol{
abla}^2oldsymbol{A}$$

which since $\boldsymbol{\nabla} \times \boldsymbol{\xi}^L = 0$ gives

$$\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\boldsymbol{\xi}^L) = \boldsymbol{\nabla}^2\boldsymbol{\xi}^L$$

so that $\boldsymbol{\xi}^{L}$ obeys

$$\rho_0 \ddot{\boldsymbol{\xi}}^L - \gamma S_0 \boldsymbol{\nabla}^2 \boldsymbol{\xi}^L = 0$$

which is the wave equation with wave velocity $\sqrt{\gamma S_0/\rho_0}$.

(a) Hamilton's principle of least action states that $\delta S = 0$ for variations of the motion around the classical path, where the action S is

$$S = \int L \, dt = \int \mathcal{L} \, dx \, dt$$

for a field in one dimension. In this case we have

$$\mathcal{L} = \mathcal{L}\left(\varphi_t, \varphi_{xx}\right)$$

where $\varphi_t \equiv \partial \varphi / \partial t$ and $\varphi_{xx} \equiv \partial^2 \varphi / \partial x^2$. Therefore

$$\delta S = \int \left[\frac{\partial \mathcal{L}}{\partial \varphi_t} \delta \varphi_t + \frac{\partial \mathcal{L}}{\partial \varphi_{xx}} \delta \varphi_{xx} \right] dx dt$$

Now

$$\delta \varphi_t = \frac{\partial}{\partial t} \delta \varphi , \quad \delta \varphi_{xx} = \frac{\partial^2}{\partial x^2} \delta \varphi .$$

Therefore, integrating the first term by parts once w.r.t t and the second by parts twice w.r.t x, and dropping boundary terms since the field must vanish at $\pm \infty$:

$$\delta S = \int \left[-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \varphi_t} + \frac{\partial^2}{\partial x^2} \frac{\partial \mathcal{L}}{\partial \varphi_{xx}} \right] \delta \varphi \, dx \, dt = 0$$

The variation in φ is arbitrary and therefore

$$\frac{\partial}{\partial t}\frac{\partial \mathcal{L}}{\partial \varphi_t} - \frac{\partial^2}{\partial x^2}\frac{\partial \mathcal{L}}{\partial \varphi_{xx}} = 0$$

or in this case

$$\rho A \frac{\partial^2 \varphi}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(E I \frac{\partial^2 \varphi}{\partial x^2} \right) = 0 \; .$$

(TURN OVER

4

(b) The canonical momentum per unit length is

$$\pi \equiv \frac{\partial \mathcal{L}}{\partial \varphi_t} = \rho A \frac{\partial \varphi}{\partial t}$$

and the Hamiltonian per unit length is

$$\mathcal{H} = \pi \frac{\partial \varphi}{\partial t} - \mathcal{L} = \frac{1}{2} \rho A \left(\frac{\partial \varphi}{\partial t} \right)^2 + \frac{1}{2} E I \left(\frac{\partial^2 \varphi}{\partial x^2} \right)^2 \,.$$

(c) We have

$$\frac{\partial \mathcal{H}}{\partial t} = \rho A \frac{\partial \varphi}{\partial t} \frac{\partial^2 \varphi}{\partial t^2} + E I \frac{\partial^2 \varphi}{\partial x^2} \frac{\partial^3 \varphi}{\partial t \partial x^2} .$$

Applying the equation of motion,

$$\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \varphi}{\partial t} \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \varphi}{\partial x^2} \right) + EI \frac{\partial^2 \varphi}{\partial x^2} \frac{\partial^3 \varphi}{\partial t \partial x^2}$$

Writing $EI\partial^2\varphi/\partial x^2 \equiv \psi$, the r.h.s. has the form

$$-\frac{\partial\varphi}{\partial t}\frac{\partial^2\psi}{\partial x^2} + \psi\frac{\partial^3\varphi}{\partial t\partial x^2} = -\frac{\partial}{\partial x}\left(\frac{\partial\varphi}{\partial t}\frac{\partial\psi}{\partial x} - \psi\frac{\partial^2\varphi}{\partial t\partial x}\right)$$

and so

$$\mathcal{J} = \frac{\partial \varphi}{\partial t} \frac{\partial \psi}{\partial x} - \psi \frac{\partial^2 \varphi}{\partial t \partial x}$$

(d) For EI = constant, substituting a wave solution $\varphi = C \cos \phi$ with $\phi = kx - \omega t$ in the equation of motion we have

$$-\rho AC\omega^2 + EICk^4 = 0$$

and hence the dispersion relation is

$$\omega = \sqrt{\frac{EI}{\rho A}}k^2 \,.$$

The wave and group velocities are

$$c_w \equiv \frac{\omega}{k} = \sqrt{\frac{EI}{\rho A}}k$$
, $c_g \equiv \frac{d\omega}{dk} = 2\sqrt{\frac{EI}{\rho A}}k = 2c_w$.

The energy per unit length is

$$\mathcal{H} = \frac{1}{2}\rho A C^2 \omega^2 \sin^2 \phi + \frac{1}{2} E I C^2 k^4 \cos^2 \phi = \frac{1}{2} E I C^2 k^4$$

and $\psi = -EICk^2 \cos \phi$, so the energy current is

$$\mathcal{J} = C\omega \sin\phi EICk^3 \sin\phi + EICk^2 \cos\phi C\omega k \cos\phi = EIC^2 \omega k^3.$$

Therefore the velocity of energy transfer is $\mathcal{J}/\mathcal{H} = 2\omega/k = 2c_w = c_g$.

(a) We have

$$\mathcal{L} = (\partial^{\mu}\phi^*)(\partial_{\mu}\phi) - V(\phi)$$

The Euler-Lagrange equation for ϕ is

$$\frac{\partial \mathcal{L}}{\partial \phi} - \sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial (\partial \phi / \partial x_{j})} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = 0$$

which gives (in units where c = 1)

$$-\frac{\partial V}{\partial \phi} + \boldsymbol{\nabla}^2 \phi^* - \ddot{\phi}^* = 0$$

i.e.

$$\partial^{\mu}\partial_{\mu}\phi^{*} + rac{\partial V}{\partial\phi} = 0.$$

Similarly the Euler-Lagrange equation for ϕ^* gives

$$\partial^{\mu}\partial_{\mu}\phi + \frac{\partial V}{\partial\phi^*} = 0.$$

(b) Setting c = 1, the canonical momentum densities are $\pi = \partial \mathcal{L} / \partial \dot{\phi} = \partial \phi^* / \partial t$ and $\pi^* = \partial \mathcal{L} / \partial \dot{\phi}^* = \partial \phi / \partial t$. The corresponding Hamiltonian density is

$$\mathcal{H} = \pi \dot{\phi} + \pi^* \phi^* - \mathcal{L} = \pi^* \pi + \nabla \phi^* \cdot \nabla \phi + V(\phi)$$

(c) A global phase change $\phi \to \phi e^{i\epsilon}$, $\phi^* \to \phi^* e^{-i\epsilon}$ leaves $\phi^* \phi$ and $(\partial^{\mu} \phi^*)(\partial_{\mu} \phi)$ unchanged. Therefore if the potential V is a function of $\phi^* \phi$, the Lagrangian density is invariant under this change.

(d) We are given the *Coleman-Weinberg* potential,

$$V(\phi) = (\phi^* \phi)^2 \left[\ln \left(\frac{\phi^* \phi}{\Lambda^2} \right) - \kappa \right],$$

where Λ and κ are real, positive constants. Let $X = \phi^* \phi$ and consider V as a function of X. Then V is continuous for X > 0, V = 0 at X = 0 and $V \to +\infty$ as $X \to \infty$. We have

$$\frac{dV}{dX} = 2X \left[\ln(X/\Lambda^2) - \kappa \right] + X = 2X \left[\ln(X/\Lambda^2) - \kappa + \frac{1}{2} \right]$$

This is zero for X = 0 and $X = X_0$ where $\ln(X_0/\Lambda^2) = \kappa - 1/2$, i.e.

$$X_0 = \Lambda^2 \mathrm{e}^{\kappa - 1/2}$$

At $X = X_0$ we have

$$\frac{d^2V}{dX^2} = 2\left[\ln(X_0/\Lambda^2) - \kappa + \frac{1}{2}\right] + 2 = 2$$

Hence X_0 is a minimum of V and the Hamiltonian is bounded from below.

(e) The states of minimum energy correspond to the circle in the complex ϕ plane where $\phi^*\phi = X_0$, i.e. $\phi = \phi_0$ where

$$\phi_0 = r_0 e^{i\theta}$$
, $r_0 = \Lambda e^{(2\kappa - 1)/4}$.

(f) Considering small field variations around $\phi = r_0$, i.e. $\phi = r_0 + (\chi_1 + i\chi_2)/\sqrt{2}$, we have

$$X = \phi^* \phi = r_0^2 + \sqrt{2}r_0\chi_1 + \frac{1}{2}(\chi_1^2 + \chi_2^2)$$

Then

$$V = V(X_0) + \frac{1}{2}(X - X_0)^2 \frac{d^2 V}{dX^2} + \ldots = V(X_0) + 2r_0^2 \chi_1^2 + \mathcal{O}(\chi^3)$$

i.e.

$$V(\phi) = V(\phi_0) + \frac{1}{2}m^2\chi_1^2 + \mathcal{O}(\chi^3) \,.$$

where $m = 2r_0$. Thus the field χ_1 satisfies a Klein-Gordon equation with mass (in natural units) $2r_0$, while the field χ_2 satisfies a massless Klein-Gordon equation. This is an example of *Goldstone's theorem*: the global phase symmetry is spontaneously broken when the field chooses a particular ground state on the circle, and there is an associated massless Goldstone boson χ_2 , while the other degree of freedom of the field χ_1 is massive.

6 The propagator G(t) must vanish for t < 0 and so we can write

$$G(t) = \Theta(t)g(t)$$

where g(t) can be chosen to be either an odd or even function of t. By the convolution theorem, it follows that

$$\begin{split} \tilde{G}(\omega) &= \int \frac{d\omega'}{2\pi} \tilde{\Theta}(\omega - \omega') \tilde{g}(\omega') \\ &= \int \frac{d\omega'}{2\pi} \left[\pi \delta(\omega - \omega') + i P \frac{1}{\omega - \omega'} \right] \tilde{g}(\omega') \end{split}$$

where

$$\widetilde{g}(\omega) = \int_{-\infty}^{+\infty} dt \, g(t)(\cos \omega t + i \sin \omega t)$$

Hence if we choose g(t) to be an odd function, $\tilde{g}(\omega)$ will be purely imaginary, say $\tilde{g}(\omega) = i\tilde{h}(\omega)$. Then equating real parts in the above equation

$$\operatorname{Re}\widetilde{G}(\omega) = -P \int \frac{d\omega'}{2\pi} \frac{\widetilde{h}(\omega')}{\omega - \omega'}$$

and equating imaginary parts

Im
$$\widetilde{G}(\omega) = \int \frac{d\omega'}{2\pi} \pi \delta(\omega - \omega') \widetilde{h}(\omega') = \frac{1}{2} \widetilde{h}(\omega)$$
.

Substituting this in the above then gives the Kramers-Kronig relation.

(a) We have

$$\operatorname{Re} \widetilde{G}(\omega) = \frac{\omega - \omega_0}{(\omega - \omega_0)^2 + \gamma^2/4}$$

$$\operatorname{Im} \widetilde{G}(\omega) = -\frac{1}{2} \frac{\gamma}{(\omega - \omega_0)^2 + \gamma^2/4}.$$

The r.h.s. of the Kramers-Kronig relation is thus

$$-P\int \frac{d\omega'}{2\pi} \frac{\gamma}{(\omega'-\omega)} \frac{1}{(\omega'-\omega_0)^2 + \gamma^2/4}$$

The integrand has poles at $\omega' = \omega$ and at $\omega' = \omega_0 \pm i\gamma/2$. However, it vanishes rapidly at ∞ , so we can complete the contour with a large semicircle in either the upper or the lower half-plane. Using

$$P\int = \lim_{\epsilon \to 0} \frac{1}{2} \left(\int_{-\infty+i\epsilon}^{+\infty+i\epsilon} + \int_{-\infty-i\epsilon}^{+\infty-i\epsilon} \right) ,$$

and choosing the upper half plane, the first integral encloses only the pole at $\omega' = \omega_0 + i\gamma/2$, which gives

$$-i\pi \frac{1}{2\pi} \frac{\gamma}{(\omega_0 + i\gamma/2 - \omega)} \frac{1}{(i\gamma)} = -\frac{1}{2} \frac{1}{(\omega_0 + i\gamma/2 - \omega)} .$$
(TURN OVER)

Choosing the lower half plane for the second integral encloses only the pole at $\omega' = \omega_0 - i\gamma/2$ (in a negative sense), giving

$$i\pi \frac{1}{2\pi} \frac{\gamma}{(\omega_0 - i\gamma/2 - \omega)} \frac{1}{(-i\gamma)} = -\frac{1}{2} \frac{1}{(\omega_0 - i\gamma/2 - \omega)} .$$

The sum of these is

$$-\frac{1}{2}\frac{1}{(\omega_0 - i\gamma/2 - \omega)} - \frac{1}{2}\frac{1}{(\omega_0 + i\gamma/2 - \omega)} = \frac{\omega - \omega_0}{(\omega - \omega_0)^2 + \gamma^2/4} = \operatorname{Re}\widetilde{G}(\omega)$$

as required.

(b) The propagator is $G(\boldsymbol{r} - \boldsymbol{r}', t - t')$ where

$$G(\mathbf{r},t) = \int \frac{d^3 \mathbf{k} \, d\omega}{(2\pi)^4} \frac{\exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t)}{\omega - \hbar \mathbf{k}^2/2m + i\gamma/2} \,.$$

For t < 0 we can complete the contour with a large semicircle in the upper half-plane, which encloses no singularities and so gives $G(\mathbf{r}, t) = 0$ for t < 0. For t > 0 we must instead choose the lower half-plane, which encloses the pole at $\omega = -\hbar \mathbf{k}^2/2m - i\gamma/2$ (in a negative sense), giving

$$G(\boldsymbol{r},t) = -i \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} \exp\left(i\boldsymbol{k}\cdot\boldsymbol{r} - \frac{i\hbar\boldsymbol{k}^2 t}{2m} - \frac{\gamma}{2}t\right)$$

for t > 0. Now we can write

$$i\mathbf{k}\cdot\mathbf{r} - rac{i\hbar\mathbf{k}^2t}{2m} = -rac{i\hbar t}{2m}\left(\mathbf{k} - rac{m}{\hbar t}\mathbf{r}
ight)^2 + rac{im}{2\hbar t}\mathbf{r}^2$$

Hence, changing the variable of integration to

$$\boldsymbol{k}' = \boldsymbol{k} - \frac{m}{\hbar t} \boldsymbol{r}$$

we have

$$G(\mathbf{r},t) = -i \int \frac{d^3 \mathbf{k}'}{(2\pi)^3} \exp\left(-\frac{i\hbar t}{2m} \mathbf{k}'^2 + \frac{im}{2\hbar t} \mathbf{r}^2 - \frac{\gamma}{2}t\right)$$

But

$$\int d^3 \boldsymbol{k}' \, \exp\left(-a \boldsymbol{k}'^2\right) = \left(\frac{\pi}{a}\right)^{3/2}$$

 \mathbf{SO}

$$G(\mathbf{r},t) = -\frac{i}{(2\pi)^3} \left(\frac{2\pi m}{i\hbar t}\right)^{3/2} \exp\left(\frac{im}{2\hbar t}\mathbf{r}^2 - \frac{\gamma}{2}t\right)$$
$$= \left(\frac{im}{2\pi\hbar t}\right)^{3/2} \exp\left(\frac{im}{2\hbar t}\mathbf{r}^2 - \frac{\gamma}{2}t\right)$$

for t > 0 and $G(\mathbf{r}, t) = 0$ for t < 0. Correspondingly

$$G(\boldsymbol{r},\boldsymbol{r}',t,t') = \left[\frac{im}{2\pi\hbar(t-t')}\right]^{3/2} \exp\left(\frac{im(\boldsymbol{r}-\boldsymbol{r}')^2}{2\hbar(t-t')} - \frac{\gamma}{2}(t-t')\right)$$

for t > t' and $G(\boldsymbol{r}, \boldsymbol{r}', t, t') = 0$ for t < t'.

.

END OF PAPER