THEORETICAL PHYSICS I

Answers

1
(a) The kinetic energy of the rolling cylinder is

$$
T_{c}=\frac{1}{2} m a^{2} \dot{\theta}^{2}+\frac{1}{2} I_{c} \dot{\theta}^{2}
$$

where $I_{c}=m a^{2} / 2$ is its moment of inertia about its axis. The kinetic energy of the plank is

$$
T_{p}=\frac{1}{2} m^{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I_{p} \dot{\phi}^{2}
$$

where $I_{p}=m l^{2} / 12$ is its moment of inertia about its centre. The potential energy of the Plank is $V_{p}=m g y$. Therefore

$$
L=T_{c}+T_{p}-V_{p}=\frac{3}{4} m a^{2} \dot{\theta}^{2}+\frac{1}{24} m l^{2} \dot{\phi}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y
$$

(b) The top of the cylinder is at $(a \theta, 0)$. Therefore the point of contact of plank and cylinder is at $a(\theta+\sin \phi, \cos \phi-1)$. If there is no slipping, the vector from there to the centre of the plank is $a(\theta-\phi)(\cos \phi,-\sin \phi)$. Hence

$$
\begin{aligned}
x / a & =\theta+\sin \phi+(\theta-\phi) \cos \phi \\
y / a & =-1+\cos \phi-(\theta-\phi) \sin \phi .
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\dot{x} / a & =\dot{\theta}+\dot{\phi} \cos \phi+(\dot{\theta}-\dot{\phi}) \cos \phi+(\phi-\theta) \dot{\phi} \sin \phi \\
\dot{y} / a & =-\dot{\phi} \sin \phi-(\dot{\theta}-\dot{\phi}) \sin \phi+(\phi-\theta) \dot{\phi} \cos \phi
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\dot{x}^{2}+\dot{y}^{2}\right) / a^{2} & =[\dot{\theta}(1+\cos \phi)+(\phi-\theta) \dot{\phi} \sin \phi]^{2}+[\dot{\theta} \sin \phi-(\phi-\theta) \dot{\phi} \cos \phi]^{2} \\
& =2 \dot{\theta}^{2}(1+\cos \phi)+(\phi-\theta)^{2} \dot{\phi}^{2}+2(\phi-\theta) \dot{\theta} \dot{\phi} \sin \phi
\end{aligned}
$$

The canonical momentum p_{θ} is

$$
\begin{aligned}
p_{\theta}=\frac{\partial L}{\partial \dot{\theta}} & =\frac{3}{2} m a^{2} \dot{\theta}+\frac{1}{2} m a^{2}[4 \dot{\theta}(1+\cos \phi)+2(\phi-\theta) \dot{\phi} \sin \phi] \\
& =\frac{1}{2} m a^{2}[\dot{\theta}(7+4 \cos \phi)+2(\phi-\theta) \dot{\phi} \sin \phi]
\end{aligned}
$$

The canonical momentum p_{ϕ} is

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\frac{1}{12} m l^{2} \dot{\phi}+m a^{2}(\phi-\theta)[(\phi-\theta) \dot{\phi}+\dot{\theta} \sin \phi]
$$

(d) To second order in θ and ϕ,

$$
y / a \simeq \frac{1}{2} \phi^{2}-\theta \phi, \quad\left(\dot{x}^{2}+\dot{y}^{2}\right) / a^{2} \simeq 4 \dot{\theta}^{2}
$$

so that

$$
L \simeq \frac{11}{4} m a^{2} \dot{\theta}^{2}+\frac{1}{24} m l^{2} \dot{\phi}^{2}-\frac{1}{2} m g a \phi(\phi-2 \theta)
$$

To find the Hamiltonian to second order, we only need the canonical momenta to first order:

$$
p_{\theta} \simeq \frac{11}{2} m a^{2} \dot{\theta}, \quad p_{\phi} \simeq \frac{1}{12} m l^{2} \dot{\phi}
$$

Hence

$$
H=p_{\theta} \dot{\theta}+p_{\phi} \dot{\phi}-L \simeq \frac{1}{11} \frac{p_{\theta}^{2}}{m a^{2}}+6 \frac{p_{\theta}^{2}}{m l^{2}}+\frac{1}{2} m g a \phi(\phi-2 \theta) .
$$

Hamilton's equations are

$$
\begin{aligned}
\dot{\theta} & =\frac{\partial H}{\partial p_{\theta}}=\frac{2}{11} \frac{p_{\theta}}{m a^{2}}, \quad \dot{p}_{\theta}=-\frac{\partial H}{\partial \theta}=m g a \phi \\
\dot{\phi} & =\frac{\partial H}{\partial p_{\phi}}=12 \frac{p_{\phi}}{m l^{2}}, \quad \dot{p}_{\phi}=-\frac{\partial H}{\partial \phi}=-m g a(\phi-\theta)
\end{aligned}
$$

(e) Hence

$$
\ddot{\theta}=\frac{2}{11} \frac{g}{a} \phi, \quad \ddot{\phi}=12 \frac{g a}{l^{2}}(\theta-\phi) .
$$

Writing $\theta=A e^{i \omega t}, \phi=B e^{i \omega t}$,

$$
-\omega^{2} A=\frac{2}{11} \frac{g}{a} B, \quad-\omega^{2} B=12 \frac{g a}{l^{2}}(A-B)
$$

so

$$
\begin{gathered}
-\omega^{2} B=-12 \frac{g a}{l^{2}} B-\frac{24}{11} \frac{g^{2}}{l^{2} \omega^{2}} B \\
\omega^{4}-12 \frac{g a}{l^{2}} \omega^{2}-\frac{24}{11} \frac{g^{2}}{l^{2}}=0
\end{gathered}
$$

and therefore

$$
\omega^{2}=6 \frac{g a}{l^{2}}\left(1 \pm \sqrt{1+\frac{2}{33} \frac{l^{2}}{a^{2}}}\right)
$$

The negative root corresponds to a runaway solution - the plank falls off. The positive root ω_{+}is an oscillation with θ and ϕ in antiphase and

$$
\frac{B}{A}=-\frac{11}{2} \frac{a}{g} \omega_{+}^{2}=-33 \frac{a^{2}}{l^{2}}\left(1+\sqrt{1+\frac{2}{33} \frac{l^{2}}{a^{2}}}\right)
$$

(a) We have

$$
\begin{aligned}
A^{\mu} & =\left(\frac{Q}{r c},-\frac{1}{2} B r \sin \theta, \frac{1}{2} B r \cos \theta, 0\right) \\
& =\left(\phi(r) / c,-\frac{1}{2} B y, \frac{1}{2} B x, 0\right)
\end{aligned}
$$

where $\phi(r)$ is the electrostatic potential due to the charge at the origin. Now $A^{\mu}=(\phi / c, \boldsymbol{A})$ where $\boldsymbol{E}=-\boldsymbol{\nabla} \phi-\partial \boldsymbol{A} / \partial t$ and $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$. Thus in this case $\boldsymbol{E}=-\boldsymbol{\nabla} \phi$ and $\boldsymbol{B}=(0,0, B)$ as required.
(b) The Lagrangian is

$$
L=T-V=\frac{1}{2} m v^{2}-e(\phi-\boldsymbol{v} \cdot \boldsymbol{A})
$$

In plane polar coordinates $\boldsymbol{v}=\dot{r} \hat{\boldsymbol{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}}$ and here $\boldsymbol{A}=B r \hat{\boldsymbol{\theta}} / 2$, so

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{e Q}{r}+\frac{1}{2} e B r^{2} \dot{\theta}
$$

(c) Lagrange's equations of motion are

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=\frac{\partial L}{\partial r}, \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}
$$

Hence

$$
\begin{aligned}
& m \ddot{r}=m r \dot{\theta}^{2}+\frac{e Q}{r^{2}}+e B r \dot{\theta} \\
& \frac{d}{d t}\left(m r^{2} \dot{\theta}+\frac{1}{2} e B r^{2}\right)=0
\end{aligned}
$$

(d) We see from the equation of motion for θ that the angular momentum

$$
p_{\theta}=m r^{2} \dot{\theta}+\frac{1}{2} e B r^{2}=J
$$

is a constant of the motion. Furthermore the Lagrangian does not depend explicitly on time, so the Hamiltonian is also constant:

$$
H=p_{r} \dot{r}+p_{\theta} \dot{\theta}-L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{e Q}{r}=E
$$

(e) Writing

$$
\theta=\phi-\omega_{L} t=\phi-\frac{e B}{2 m} t
$$

the equations of motion become

$$
\begin{aligned}
m \ddot{r} & =m r\left(\dot{\phi}-\frac{e B}{2 m}\right)^{2}+\frac{e Q}{r^{2}}+e B r\left(\dot{\phi}-\frac{e B}{2 m}\right) \\
& =m r \dot{\phi}^{2}+\frac{e Q}{r^{2}}-\frac{e^{2} B^{2}}{4 m} r, \\
\frac{d}{d t}\left(m r^{2} \dot{\phi}\right) & =0 .
\end{aligned}
$$

Therefore, to first order in B, the effect of the field is cancelled in a frame rotating with the Larmor frequency.
(a) We are given

$$
V=\frac{S_{0}}{\gamma+1}\left[\left(\frac{\rho}{\rho_{0}}\right)^{\gamma+1}-1\right]
$$

where $\rho=\rho_{0}(1-\boldsymbol{\nabla} \cdot \boldsymbol{\xi})$, i.e. $\rho / \rho_{0}=1-\delta$, where $\delta=\boldsymbol{\nabla} \cdot \boldsymbol{\xi}$ is small.
Expanding

$$
\begin{aligned}
V & =\frac{S_{0}}{\gamma+1}\left[(1-\delta)^{\gamma+1}-1\right] \\
& =\frac{S_{0}}{\gamma+1}\left[1-(\gamma+1) \delta+\frac{1}{2} \gamma(\gamma+1) \delta^{2}+\ldots-1\right] \\
& =S_{0}\left[-\delta+\frac{\gamma}{2} \delta^{2}+\mathcal{O}\left(\delta^{3}\right)\right] \\
& =S_{0}\left[-\boldsymbol{\nabla} \cdot \boldsymbol{\xi}+\frac{\gamma}{2}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}\right]
\end{aligned}
$$

(b)

$$
\mathcal{L}=T-V=\frac{1}{2} \rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}}+S_{0}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}-\frac{\gamma}{2}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}\right)
$$

Lagrange's equation of motion for ξ_{i} is

$$
\frac{\partial \mathcal{L}}{\partial \xi_{i}}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial \xi_{i} / \partial x_{j}\right)}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\xi}_{i}}=0
$$

Hence in this case

$$
0-\frac{\partial}{\partial x_{i}} S_{0}(1-\gamma \boldsymbol{\nabla} \cdot \boldsymbol{\xi})-\rho_{0} \ddot{\xi}_{i}=0
$$

i.e.

$$
\rho_{0} \ddot{\boldsymbol{\xi}}-\gamma S_{0} \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})=0
$$

(c) The canonical momentum density $\pi_{i}=\partial \mathcal{L} / \partial \dot{\xi}_{i}=\rho_{0} \dot{\xi}_{i}$. Hence

$$
\begin{aligned}
\mathcal{H} & =\sum_{i} \pi_{i} \dot{\xi}_{i}-\mathcal{L} \\
& =\rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}}-\frac{1}{2} \rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}}-S_{0}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}-\frac{\gamma}{2}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}\right) \\
& =\frac{\boldsymbol{\pi}^{2}}{2 \rho_{0}}-S_{0}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}-\frac{\gamma}{2}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}\right)
\end{aligned}
$$

The term involving the total derivative $\boldsymbol{\nabla} \cdot \boldsymbol{\xi}$ gives a contribution to the total Hamiltonian equal to an integral of the field over a surface at infinity,

$$
-S_{0} \int \mathrm{~d}^{3} \boldsymbol{r} \boldsymbol{\nabla} \cdot \boldsymbol{\xi}=-S_{0} \int \mathrm{~d}^{2} \boldsymbol{S} \cdot \boldsymbol{\xi}=0
$$

since the field vanishes at infinity. Hence

$$
H=\int \mathrm{d}^{3} \boldsymbol{r} \mathcal{H}(\boldsymbol{r}, t)
$$

where

$$
\mathcal{H}(\boldsymbol{r}, t)=\frac{1}{2} \rho_{0} \boldsymbol{\pi}^{2}+\frac{\gamma}{2} S_{0}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2} .
$$

(d) We have

$$
\rho_{0} \ddot{\boldsymbol{\xi}}^{T, L}-\gamma S_{0} \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{T, L}\right)=0
$$

where

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{T}=0, \quad \nabla \times \boldsymbol{\xi}^{L}=0
$$

Thus $\boldsymbol{\xi}^{T}$ obeys the free-particle equation of motion $\ddot{\boldsymbol{\xi}}^{T}=0$, while for $\boldsymbol{\xi}^{L}$ we have

$$
\rho_{0} \ddot{\boldsymbol{\xi}}^{L}-\gamma S_{0} \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{L}\right)=0
$$

Now we need the identity

$$
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A})-\boldsymbol{\nabla}^{2} \boldsymbol{A}
$$

which since $\boldsymbol{\nabla} \times \boldsymbol{\xi}^{L}=0$ gives

$$
\boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{L}\right)=\boldsymbol{\nabla}^{2} \boldsymbol{\xi}^{L}
$$

so that $\boldsymbol{\xi}^{L}$ obeys

$$
\rho_{0} \ddot{\boldsymbol{\xi}}^{L}-\gamma S_{0} \boldsymbol{\nabla}^{2} \boldsymbol{\xi}^{L}=0
$$

which is the wave equation with wave velocity $\sqrt{\gamma S_{0} / \rho_{0}}$.
(a) Hamilton's principle of least action states that $\delta S=0$ for variations of the motion around the classical path, where the action S is

$$
S=\int L d t=\int \mathcal{L} d x d t
$$

for a field in one dimension. In this case we have

$$
\mathcal{L}=\mathcal{L}\left(\varphi_{t}, \varphi_{x x}\right)
$$

where $\varphi_{t} \equiv \partial \varphi / \partial t$ and $\varphi_{x x} \equiv \partial^{2} \varphi / \partial x^{2}$. Therefore

$$
\delta S=\int\left[\frac{\partial \mathcal{L}}{\partial \varphi_{t}} \delta \varphi_{t}+\frac{\partial \mathcal{L}}{\partial \varphi_{x x}} \delta \varphi_{x x}\right] d x d t
$$

Now

$$
\delta \varphi_{t}=\frac{\partial}{\partial t} \delta \varphi, \quad \delta \varphi_{x x}=\frac{\partial^{2}}{\partial x^{2}} \delta \varphi .
$$

Therefore, integrating the first term by parts once w.r.t t and the second by parts twice w.r.t x, and dropping boundary terms since the field must vanish at $\pm \infty$:

$$
\delta S=\int\left[-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \varphi_{t}}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial \mathcal{L}}{\partial \varphi_{x x}}\right] \delta \varphi d x d t=0
$$

The variation in φ is arbitrary and therefore

$$
\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \varphi_{t}}-\frac{\partial^{2}}{\partial x^{2}} \frac{\partial \mathcal{L}}{\partial \varphi_{x x}}=0
$$

or in this case

$$
\rho A \frac{\partial^{2} \varphi}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} \varphi}{\partial x^{2}}\right)=0 .
$$

(b) The canonical momentum per unit length is

$$
\pi \equiv \frac{\partial \mathcal{L}}{\partial \varphi_{t}}=\rho A \frac{\partial \varphi}{\partial t}
$$

and the Hamiltonian per unit length is

$$
\mathcal{H}=\pi \frac{\partial \varphi}{\partial t}-\mathcal{L}=\frac{1}{2} \rho A\left(\frac{\partial \varphi}{\partial t}\right)^{2}+\frac{1}{2} E I\left(\frac{\partial^{2} \varphi}{\partial x^{2}}\right)^{2} .
$$

(c) We have

$$
\frac{\partial \mathcal{H}}{\partial t}=\rho A \frac{\partial \varphi}{\partial t} \frac{\partial^{2} \varphi}{\partial t^{2}}+E I \frac{\partial^{2} \varphi}{\partial x^{2}} \frac{\partial^{3} \varphi}{\partial t \partial x^{2}} .
$$

Applying the equation of motion,

$$
\frac{\partial \mathcal{H}}{\partial t}=-\frac{\partial \varphi}{\partial t} \frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} \varphi}{\partial x^{2}}\right)+E I \frac{\partial^{2} \varphi}{\partial x^{2}} \frac{\partial^{3} \varphi}{\partial t \partial x^{2}} .
$$

Writing $E I \partial^{2} \varphi / \partial x^{2} \equiv \psi$, the r.h.s. has the form

$$
-\frac{\partial \varphi}{\partial t} \frac{\partial^{2} \psi}{\partial x^{2}}+\psi \frac{\partial^{3} \varphi}{\partial t \partial x^{2}}=-\frac{\partial}{\partial x}\left(\frac{\partial \varphi}{\partial t} \frac{\partial \psi}{\partial x}-\psi \frac{\partial^{2} \varphi}{\partial t \partial x}\right)
$$

and so

$$
\mathcal{J}=\frac{\partial \varphi}{\partial t} \frac{\partial \psi}{\partial x}-\psi \frac{\partial^{2} \varphi}{\partial t \partial x}
$$

(d) For $E I=$ constant, substituting a wave solution $\varphi=C \cos \phi$ with $\phi=k x-\omega t$ in the equation of motion we have

$$
-\rho A C \omega^{2}+E I C k^{4}=0
$$

and hence the dispersion relation is

$$
\omega=\sqrt{\frac{E I}{\rho A}} k^{2} .
$$

The wave and group velocities are

$$
c_{w} \equiv \frac{\omega}{k}=\sqrt{\frac{E I}{\rho A}} k, \quad c_{g} \equiv \frac{d \omega}{d k}=2 \sqrt{\frac{E I}{\rho A}} k=2 c_{w}
$$

The energy per unit length is

$$
\mathcal{H}=\frac{1}{2} \rho A C^{2} \omega^{2} \sin ^{2} \phi+\frac{1}{2} E I C^{2} k^{4} \cos ^{2} \phi=\frac{1}{2} E I C^{2} k^{4}
$$

and $\psi=-E I C k^{2} \cos \phi$, so the energy current is

$$
\mathcal{J}=C \omega \sin \phi E I C k^{3} \sin \phi+E I C k^{2} \cos \phi C \omega k \cos \phi=E I C^{2} \omega k^{3} .
$$

Therefore the velocity of energy transfer is $\mathcal{J} / \mathcal{H}=2 \omega / k=2 c_{w}=c_{g}$.
(a) We have

$$
\mathcal{L}=\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)-V(\phi)
$$

The Euler-Lagrange equation for ϕ is

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\sum_{j} \frac{\partial}{\partial x_{j}} \frac{\partial \mathcal{L}}{\partial\left(\partial \phi / \partial x_{j}\right)}-\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}=0
$$

which gives (in units where $c=1$)

$$
-\frac{\partial V}{\partial \phi}+\nabla^{2} \phi^{*}-\ddot{\phi}^{*}=0
$$

i.e.

$$
\partial^{\mu} \partial_{\mu} \phi^{*}+\frac{\partial V}{\partial \phi}=0 .
$$

Similarly the Euler-Lagrange equation for ϕ^{*} gives

$$
\partial^{\mu} \partial_{\mu} \phi+\frac{\partial V}{\partial \phi^{*}}=0
$$

(b) Setting $c=1$, the canonical momentum densities are $\pi=\partial \mathcal{L} / \partial \dot{\phi}=\partial \phi^{*} / \partial t$ and $\pi^{*}=\partial \mathcal{L} / \partial \dot{\phi}^{*}=\partial \phi / \partial t$. The corresponding Hamiltonian density is

$$
\mathcal{H}=\pi \dot{\phi}+\pi^{*} \phi^{*}-\mathcal{L}=\pi^{*} \pi+\boldsymbol{\nabla} \phi^{*} \cdot \boldsymbol{\nabla} \phi+V(\phi)
$$

(c) A global phase change $\phi \rightarrow \phi \mathrm{e}^{i \epsilon}, \phi^{*} \rightarrow \phi^{*} \mathrm{e}^{-i \epsilon}$ leaves $\phi^{*} \phi$ and $\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)$ unchanged. Therefore if the potential V is a function of $\phi^{*} \phi$, the Lagrangian density is invariant under this change.
(d) We are given the Coleman-Weinberg potential,

$$
V(\phi)=\left(\phi^{*} \phi\right)^{2}\left[\ln \left(\frac{\phi^{*} \phi}{\Lambda^{2}}\right)-\kappa\right],
$$

where Λ and κ are real, positive constants. Let $X=\phi^{*} \phi$ and consider V as a function of X. Then V is continuous for $X>0, V=0$ at $X=0$ and $V \rightarrow+\infty$ as $X \rightarrow \infty$. We have

$$
\frac{d V}{d X}=2 X\left[\ln \left(X / \Lambda^{2}\right)-\kappa\right]+X=2 X\left[\ln \left(X / \Lambda^{2}\right)-\kappa+\frac{1}{2}\right]
$$

This is zero for $X=0$ and $X=X_{0}$ where $\ln \left(X_{0} / \Lambda^{2}\right)=\kappa-1 / 2$, i.e.

$$
X_{0}=\Lambda^{2} \mathrm{e}^{\kappa-1 / 2}
$$

At $X=X_{0}$ we have

$$
\frac{d^{2} V}{d X^{2}}=2\left[\ln \left(X_{0} / \Lambda^{2}\right)-\kappa+\frac{1}{2}\right]+2=2
$$

Hence X_{0} is a minimum of V and the Hamiltonian is bounded from below.

(e) The states of minimum energy correspond to the circle in the complex ϕ plane where $\phi^{*} \phi=X_{0}$, i.e. $\phi=\phi_{0}$ where

$$
\phi_{0}=r_{0} \mathrm{e}^{i \theta}, \quad r_{0}=\Lambda \mathrm{e}^{(2 \kappa-1) / 4}
$$

(f) Considering small field variations around $\phi=r_{0}$, i.e. $\phi=r_{0}+\left(\chi_{1}+i \chi_{2}\right) / \sqrt{2}$, we have

$$
X=\phi^{*} \phi=r_{0}^{2}+\sqrt{2} r_{0} \chi_{1}+\frac{1}{2}\left(\chi_{1}^{2}+\chi_{2}^{2}\right)
$$

Then

$$
V=V\left(X_{0}\right)+\frac{1}{2}\left(X-X_{0}\right)^{2} \frac{d^{2} V}{d X^{2}}+\ldots=V\left(X_{0}\right)+2 r_{0}^{2} \chi_{1}^{2}++\mathcal{O}\left(\chi^{3}\right)
$$

i.e.

$$
V(\phi)=V\left(\phi_{0}\right)+\frac{1}{2} m^{2} \chi_{1}^{2}+\mathcal{O}\left(\chi^{3}\right)
$$

where $m=2 r_{0}$. Thus the field χ_{1} satisfies a Klein-Gordon equation with mass (in natural units) $2 r_{0}$, while the field χ_{2} satisfies a massless Klein-Gordon equation. This is an example of Goldstone's theorem: the global phase symmetry is spontaneously broken when the field chooses a particular ground state on the circle, and there is an associated massless Goldstone boson χ_{2}, while the other degree of freedom of the field χ_{1} is massive.

6 The propagator $G(t)$ must vanish for $t<0$ and so we can write

$$
G(t)=\Theta(t) g(t)
$$

where $g(t)$ can be chosen to be either an odd or even function of t. By the convolution theorem, it follows that

$$
\begin{aligned}
\widetilde{G}(\omega) & =\int \frac{d \omega^{\prime}}{2 \pi} \widetilde{\Theta}\left(\omega-\omega^{\prime}\right) \widetilde{g}\left(\omega^{\prime}\right) \\
& =\int \frac{d \omega^{\prime}}{2 \pi}\left[\pi \delta\left(\omega-\omega^{\prime}\right)+i P \frac{1}{\omega-\omega^{\prime}}\right] \widetilde{g}\left(\omega^{\prime}\right)
\end{aligned}
$$

where

$$
\widetilde{g}(\omega)=\int_{-\infty}^{+\infty} d t g(t)(\cos \omega t+i \sin \omega t)
$$

Hence if we choose $g(t)$ to be an odd function, $\widetilde{g}(\omega)$ will be purely imaginary, say $\widetilde{g}(\omega)=i \widetilde{h}(\omega)$. Then equating real parts in the above equation

$$
\operatorname{Re} \widetilde{G}(\omega)=-P \int \frac{d \omega^{\prime}}{2 \pi} \frac{\widetilde{h}\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}}
$$

and equating imaginary parts

$$
\operatorname{Im} \widetilde{G}(\omega)=\int \frac{d \omega^{\prime}}{2 \pi} \pi \delta\left(\omega-\omega^{\prime}\right) \widetilde{h}\left(\omega^{\prime}\right)=\frac{1}{2} \widetilde{h}(\omega)
$$

Substituting this in the above then gives the Kramers-Kronig relation.
(a) We have

$$
\begin{aligned}
\operatorname{Re} \widetilde{G}(\omega) & =\frac{\omega-\omega_{0}}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2} / 4} \\
\operatorname{Im} \widetilde{G}(\omega) & =-\frac{1}{2} \frac{\gamma}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2} / 4}
\end{aligned}
$$

The r.h.s. of the Kramers-Kronig relation is thus

$$
-P \int \frac{d \omega^{\prime}}{2 \pi} \frac{\gamma}{\left(\omega^{\prime}-\omega\right)} \frac{1}{\left(\omega^{\prime}-\omega_{0}\right)^{2}+\gamma^{2} / 4}
$$

The integrand has poles at $\omega^{\prime}=\omega$ and at $\omega^{\prime}=\omega_{0} \pm i \gamma / 2$. However, it vanishes rapidly at ∞, so we can complete the contour with a large semicircle in either the upper or the lower half-plane. Using

$$
P \int=\lim _{\epsilon \rightarrow 0} \frac{1}{2}\left(\int_{-\infty+i \epsilon}^{+\infty+i \epsilon}+\int_{-\infty-i \epsilon}^{+\infty-i \epsilon}\right),
$$

and choosing the upper half plane, the first integral encloses only the pole at $\omega^{\prime}=\omega_{0}+i \gamma / 2$, which gives

$$
-i \pi \frac{1}{2 \pi} \frac{\gamma}{\left(\omega_{0}+i \gamma / 2-\omega\right)} \frac{1}{(i \gamma)}=-\frac{1}{2} \frac{1}{\left(\omega_{0}+i \gamma / 2-\omega\right)}
$$

Choosing the lower half plane for the second integral encloses only the pole at $\omega^{\prime}=\omega_{0}-i \gamma / 2$ (in a negative sense), giving

$$
i \pi \frac{1}{2 \pi} \frac{\gamma}{\left(\omega_{0}-i \gamma / 2-\omega\right)} \frac{1}{(-i \gamma)}=-\frac{1}{2} \frac{1}{\left(\omega_{0}-i \gamma / 2-\omega\right)} .
$$

The sum of these is

$$
-\frac{1}{2} \frac{1}{\left(\omega_{0}-i \gamma / 2-\omega\right)}-\frac{1}{2} \frac{1}{\left(\omega_{0}+i \gamma / 2-\omega\right)}=\frac{\omega-\omega_{0}}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2} / 4}=\operatorname{Re} \widetilde{G}(\omega)
$$

as required.
(b) The propagator is $G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t-t^{\prime}\right)$ where

$$
G(\boldsymbol{r}, t)=\int \frac{d^{3} \boldsymbol{k} d \omega}{(2 \pi)^{4}} \frac{\exp (i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t)}{\omega-\hbar \boldsymbol{k}^{2} / 2 m+i \gamma / 2}
$$

For $t<0$ we can complete the contour with a large semicircle in the upper half-plane, which encloses no singularities and so gives $G(\boldsymbol{r}, t)=0$ for $t<0$. For $t>0$ we must instead choose the lower half-plane, which encloses the pole at $\omega=-\hbar \boldsymbol{k}^{2} / 2 m-i \gamma / 2$ (in a negative sense), giving

$$
G(\boldsymbol{r}, t)=-i \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \exp \left(i \boldsymbol{k} \cdot \boldsymbol{r}-\frac{i \hbar \boldsymbol{k}^{2} t}{2 m}-\frac{\gamma}{2} t\right)
$$

for $t>0$. Now we can write

$$
i \boldsymbol{k} \cdot \boldsymbol{r}-\frac{i \hbar \boldsymbol{k}^{2} t}{2 m}=-\frac{i \hbar t}{2 m}\left(\boldsymbol{k}-\frac{m}{\hbar t} \boldsymbol{r}\right)^{2}+\frac{i m}{2 \hbar t} \boldsymbol{r}^{2}
$$

Hence, changing the variable of integration to

$$
\boldsymbol{k}^{\prime}=\boldsymbol{k}-\frac{m}{\hbar t} \boldsymbol{r}
$$

we have

$$
G(\boldsymbol{r}, t)=-i \int \frac{d^{3} \boldsymbol{k}^{\prime}}{(2 \pi)^{3}} \exp \left(-\frac{i \hbar t}{2 m} \boldsymbol{k}^{\prime 2}+\frac{i m}{2 \hbar t} \boldsymbol{r}^{2}-\frac{\gamma}{2} t\right)
$$

But

$$
\int d^{3} \boldsymbol{k}^{\prime} \exp \left(-a \boldsymbol{k}^{\prime 2}\right)=\left(\frac{\pi}{a}\right)^{3 / 2}
$$

SO

$$
\begin{aligned}
G(\boldsymbol{r}, t) & =-\frac{i}{(2 \pi)^{3}}\left(\frac{2 \pi m}{i \hbar t}\right)^{3 / 2} \exp \left(\frac{i m}{2 \hbar t} \boldsymbol{r}^{2}-\frac{\gamma}{2} t\right) \\
& =\left(\frac{i m}{2 \pi \hbar t}\right)^{3 / 2} \exp \left(\frac{i m}{2 \hbar t} \boldsymbol{r}^{2}-\frac{\gamma}{2} t\right)
\end{aligned}
$$

for $t>0$ and $G(\boldsymbol{r}, t)=0$ for $t<0$. Correspondingly

$$
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t, t^{\prime}\right)=\left[\frac{i m}{2 \pi \hbar\left(t-t^{\prime}\right)}\right]^{3 / 2} \exp \left(\frac{i m\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)^{2}}{2 \hbar\left(t-t^{\prime}\right)}-\frac{\gamma}{2}\left(t-t^{\prime}\right)\right)
$$

for $t>t^{\prime}$ and $G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t, t^{\prime}\right)=0$ for $t<t^{\prime}$.

END OF PAPER

