## THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains five sides and is accompanied by a booklet giving values of constants and containing mathematical formulae which you may quote without proof.

1 A thin uniform plank of length $l$ and mass $m$ rests, initially in equilibrium, on a uniform cylinder of radius $a$, also of mass $m$, which can roll on a horizontal plane.
(a) Show that the Lagrangian of this system is

$$
L=\frac{3}{4} m a^{2} \dot{\theta}^{2}+\frac{1}{24} m l^{2} \dot{\phi}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y
$$

where $\theta$ is the angular displacement of the cylinder, $\phi$ is the angle of inclination of the plank, and $x, y$ are the horizontal and vertical displacements of the centre of the plank, as shown in the figure.

(b) Show further that if there is no slipping then

$$
\begin{aligned}
x / a & =\theta+\sin \phi+(\theta-\phi) \cos \phi \\
y / a & =-1+\cos \phi-(\theta-\phi) \sin \phi .
\end{aligned}
$$

(c) Deduce the canonical momenta $p_{\theta}$ and $p_{\phi}$ conjugate to the generalized coordinates $\theta$ and $\phi$.
(d) Working to second order in small quantities, find the Hamiltonian of the system and hence show that Hamilton's equations for small displacements are

$$
\begin{aligned}
\dot{\theta} & =\frac{2}{11} \frac{p_{\theta}}{m a^{2}}, \quad \dot{p}_{\theta}=m g a \phi \\
\dot{\phi} & =12 \frac{p_{\phi}}{m l^{2}}, \quad \dot{p}_{\phi}=-m g a(\phi-\theta) .
\end{aligned}
$$

(e) Show that there is a mode of small oscillation and find the corresponding angular frequency and relationship between $\theta$ and $\phi$.

2 A particle of mass $m$ and charge $e$ moves non-relativistically in a plane under the influence of a charge $4 \pi \epsilon_{0} Q$ fixed at the origin and a constant magnetic field $B$ perpendicular to the plane.
(a) Show that a suitable form for the 4 -vector potential is

$$
A^{\mu}=\left(\frac{Q}{r c},-\frac{1}{2} B r \sin \theta, \frac{1}{2} B r \cos \theta, 0\right)
$$

where $r, \theta$ are plane polar coordinates.s
(b) Hence show that the Lagrangian can be written as

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{e Q}{r}+\frac{1}{2} e B r^{2} \dot{\theta} .
$$

(c) Deduce the equations of motion.
(d) Find two constants of the motion.
(e) Show that, to first order in $B$, the effect of the magnetic field is to cause the orbit of the charge to precess with the Larmor frequency, $\omega_{L}=e B / 2 m$.

3 The potential energy density for sound vibrations in an ideal classical gas at density $\rho$ is

$$
V=\frac{S_{0}}{\gamma+1}\left[\left(\frac{\rho}{\rho_{0}}\right)^{\gamma+1}-1\right]
$$

where $S_{0}, \rho_{0}$ and $\gamma$ are constants.
(a) Writing $\rho=\rho_{0}(1-\boldsymbol{\nabla} \cdot \boldsymbol{\xi})$, where $\boldsymbol{\xi}(\boldsymbol{r}, t)$ is the vector field describing the (small) amplitude of vibration, show that

$$
V=S_{0}\left(-\boldsymbol{\nabla} \cdot \boldsymbol{\xi}+\frac{\gamma}{2}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}\right)
$$

where terms cubic and higher in $\boldsymbol{\nabla} \cdot \boldsymbol{\xi}$ have been neglected.
(b) Assuming that the kinetic energy density of the gas can be approximated by

$$
T=\frac{1}{2} \rho_{0} \dot{\boldsymbol{\xi}} \cdot \dot{\boldsymbol{\xi}}
$$

write down the expression for the Lagrangian density $\mathcal{L}$ and show that Lagrange's equations of motion lead to the field equation

$$
\begin{equation*}
\rho_{0} \ddot{\boldsymbol{\xi}}-\gamma S_{0} \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})=0 \tag{12}
\end{equation*}
$$

(c) Calculate the canonical momentum density $\boldsymbol{\pi}(\boldsymbol{r}, t)$ conjugate to $\boldsymbol{\xi}$, and show that the total Hamiltonian is

$$
H=\int \mathrm{d}^{3} \boldsymbol{r} \mathcal{H}(\boldsymbol{r}, t)
$$

where

$$
\mathcal{H}(\boldsymbol{r}, t)=\frac{\boldsymbol{\pi}^{2}}{2 \rho_{0}}+\frac{\gamma}{2} S_{0}(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^{2}
$$

and you may assume that the field $\boldsymbol{\xi}$ vanishes at $\infty$ in all spatial directions.
(d) If $\boldsymbol{\xi}^{T}$ and $\boldsymbol{\xi}^{L}$ are solutions of the equation of motion that are solenoidal and irrotational respectively, i.e.

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\xi}^{T}=0, \quad \nabla \times \boldsymbol{\xi}^{L}=0
$$

show that $\boldsymbol{\xi}^{T}$ obeys a free-particle equation of motion while $\boldsymbol{\xi}^{L}$ obeys a wave equation. Find the wave velocity for the latter.

4 The Lagrangian per unit length for bending of a stiff elastic rod is

$$
\mathcal{L}=\frac{1}{2} \rho A\left(\frac{\partial \varphi}{\partial t}\right)^{2}-\frac{1}{2} E I\left(\frac{\partial^{2} \varphi}{\partial x^{2}}\right)^{2}
$$

where $\varphi(x, t)$ is the transverse displacement, $\rho$ the density, $A$ the cross-sectional area, $E$ Young's modulus and $I$ the moment of area of the rod.
(a) State Hamilton's principle of least action and use it to deduce the equation of motion

$$
\rho A \frac{\partial^{2} \varphi}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} \varphi}{\partial x^{2}}\right)=0 .
$$

(b) Derive the canonical momentum and the Hamiltonian per unit length, $\mathcal{H}$.
(c) By considering the conservation equation

$$
\frac{\partial \mathcal{H}}{\partial t}=-\frac{\partial \mathcal{J}}{\partial x}
$$

show that the current of energy is

$$
\mathcal{J}=\frac{\partial \varphi}{\partial t} \frac{\partial}{\partial x}\left(E I \frac{\partial^{2} \varphi}{\partial x^{2}}\right)-E I \frac{\partial^{2} \varphi}{\partial x^{2}} \frac{\partial^{2} \varphi}{\partial t \partial x} .
$$

(TURN OVER for continuation of question 4
(d) By considering a wave solution of the form $\varphi=C \cos (k x-\omega t)$ for a uniform rod, find the dispersion relation and the wave and group velocities, and show that energy is transferred at the group velocity.

5 The Lagrangian density for a self-interacting, complex, massless scalar field $\phi$ is given by

$$
\mathcal{L}=\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)-V(\phi)
$$

where $V$ is a real-valued function of the scalar field.
(a) Using the Euler-Lagrange equations, show that the equations of motion are

$$
\partial^{\mu} \partial_{\mu} \phi+\frac{\partial V}{\partial \phi^{*}}=\partial^{\mu} \partial_{\mu} \phi^{*}+\frac{\partial V}{\partial \phi}=0 .
$$

(b) Show that the corresponding Hamiltonian density, in units where $c=1$, is

$$
\mathcal{H}=\pi^{*} \pi+\boldsymbol{\nabla} \phi^{*} \cdot \nabla \phi+V(\phi)
$$

where $\pi=\partial \phi^{*} / \partial t$ and $\pi^{*}=\partial \phi / \partial t$ are the canonical momentum densities conjugate to $\phi$ and $\phi^{*}$ respectively.
(c) Show that if the potential $V$ is a function of $\phi^{*} \phi$, the Lagrangian density is invariant under a global phase change in $\phi$.
(d) Consider the case of the Coleman-Weinberg potential,

$$
V(\phi)=\left(\phi^{*} \phi\right)^{2}\left[\ln \left(\frac{\phi^{*} \phi}{\Lambda^{2}}\right)-\kappa\right],
$$

where $\Lambda$ and $\kappa$ are real, positive constants. Sketch the potential $V$ as a function of $\phi^{*} \phi \geq 0$, and hence show that the Hamiltonian is bounded from below.
(e) Show that the states of minimum energy correspond to a circle in the complex $\phi$ plane $\phi_{0}=r_{0} e^{i \theta}$ where

$$
\begin{equation*}
r_{0}=\Lambda e^{(2 \kappa-1) / 4} \tag{5}
\end{equation*}
$$

(f) By considering small field variations around the state of minimum energy on the positive real $\phi$ axis, i.e. $\phi=r_{0}+\left(\chi_{1}+i \chi_{2}\right) / \sqrt{2}$, show that

$$
V(\phi)=V\left(\phi_{0}\right)+\frac{1}{2} m^{2} \chi_{1}^{2}+\mathcal{O}\left(\chi^{3}\right) .
$$

Comment on the significance of this result and find the value of $m$.

6 Outline the derivation of the first Kramers-Kronig relation

$$
\operatorname{Re} \widetilde{G}(\omega)=P \int \frac{d \omega^{\prime}}{\pi} \frac{\operatorname{Im} \widetilde{G}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega}
$$

where $\widetilde{G}(\omega)$ represents the Fourier transform of the time dependence of a causal propagator.
[You may assume that the Fourier transform of the Heaviside step function is $\widetilde{\Theta}(\omega)=\pi \delta(\omega)+i P(1 / \omega)$.
(a) The propagator for the wavefunction of an unstable particle with energy $\hbar \omega_{0}$ and mean lifetime $1 / \gamma$ has

$$
\widetilde{G}(\omega)=\frac{1}{\omega-\omega_{0}+i \gamma / 2} .
$$

Show explicitly that this satisfies the above Kramers-Kronig relation.
[Hint: Interpret the principal value as $P \int=\lim _{\epsilon \rightarrow 0} \frac{1}{2}\left(\int_{-\infty+i \epsilon}^{+\infty+i \epsilon}+\int_{-\infty-i \epsilon}^{+\infty-i \epsilon}\right)$.]
(b) Derive the propagator $G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t, t^{\prime}\right)$ of a free non-relativistic unstable particle, for which $\omega_{0}=\hbar \boldsymbol{k}^{2} / 2 m$ where $\boldsymbol{k}$ is the wave vector.

