NATURAL SCIENCES TRIPOS Part II

Wednesday 14 January 2009 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains ¢27 sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

1 A bead of mass m slides freely on a light wire of parabolic shape, which is
forced to rotate with angular velocity w about a vertical axis. The equation of the

parabola is

1 2
2—§ar

where z is the height and r is the distance from the axis of rotation.
(a) Show that the Lagrangian for this system is

L= %m {(1 + CL2T2) 74 (u}Z — ag) 7“2}

(b) Find a constant of the motion.

(c) The bead is released at r = 1/a with 7 = v. Show that if w? > ag the
bead escapes to infinity. Show that if w? < ag it oscillates about » = 0 , and
find the maximum value of r.

(d) Now suppose the wire is not forced but rotates freely about the vertical
axis with angular velocity ¢. Find the new Lagrangian and constants of the
motion.

(e) If the bead is released with the same initial conditions as before, i.e.
r=1/a, 7 = v, » = w, show that in this case it cannot escape to infinity for
any value of w, and find the maximum and minimum values of r.

Answer: (a) The kinetic energy is

T = %m (7 + 22 + r'w?)

where 2 = arr. The potential energy is mgz = magr®/2. Hence
_ 1 2,2\ .2 2 2
L—T—V—im[(l—i—ar )r +(w —ag)r}
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(b) The Lagrangian is not explicitly time-dependent and therefore the Hamiltonian
18 conserved. Now H = p,.7 — L where

pr:%:m(l—i-a??ﬂ)f

Hence .
= (1) (4 - )

NB HAT+V.
(c) Initially
H = %m [21}2 - (w2 - ag) /aﬂ

Hence the motion is such that

(1 + a2r2) 7 = (w2 — ag) (r* —1/a*) + 20v*

1.€.
o (P —ag)(r = 1/a?) + 20?
T _—
1+ a?r?
Thus 1 = 0 when
9 1 202 o
’]" = — — = TO

a?  w?—ag

For w* > ag, this means ro < 1/a. If v > 0, the bead moves outwards, 7 is
never zero, and so the bead moves to r = oo. If v < 0, the bead moves inwards to
r =1, then 1 becomes and remains positive, so again the bead moves to r = oo.

For w? < ag, this means ro > 1/a. If v > 0, the bead moves outwards to
r =10, then 1 becomes negative and the bead moves inwards to r = 0 then out to
r =1y again on the other side of the parabola, i.e. it oscillates about r = 0 with
amplitude ro. If v <0, the bead moves inwards to r = 0, then out to r = ry on the
other side of the parabola, i.e. again it oscillates about r = 0 with amplitude .
Thus the mazimum value of r is

1 202

Tmaz = T0 =\ 5

a’>  ag — w?

(d) When the rotation is not forced, the angle ¢ is another generalized
coordinate. The Lagrangian becomes

L=T-V= %m [(1 + a2r2) i? 4 2 — agrﬂ

The Hamiltonian s now H = p,r +p¢$ — L where

_ oL _
%

Do mr’e
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18 a constant of the motion, since L does not depend explicitly on ¢. Hence

H = %m Kl + a2r2) 72+ 7“2@2 + agrﬂ ,

which 1s also constant of the motion, since L does not depend explicitly on time.
N.B. H=T+V now.
(e) The intial conditions give

H = %m [21}2 + (w2 + ag) /aﬂ

as before, and py = mw/a?, so that ¢ = w/(ar)? and
(1 + a27“2) 7+ w?/(a'r?) + agr? = 20* + (w2 + ag) /a*

Hence ) .
2.2\ .2 o 2 2 2,2
(1+a7“)7“ =2v —l—g[w (1—W>+ag(1—ar)]

If we let r — oo then the terms involving r? dominate on each side and we get
72 — —ag, which is impossible. Hence the bead cannot escape to r = co. The
points where 7 = 0 are given by

1
2a%v* + w? (1 — W) + ag (1 — a2r2) =0
which is a quadratic equation for u = a?r?:
w? — (2a2v2 +w? + ag) u+ agu® =0

therefore the maximum and minimum values of r are r4 where

1
a’ri = — (2a202 +wr+ag+ \/(2@202 + w? + ag)2 — 4agw2> )
ag

2 Define the Hamiltonian of a dynamical system with a finite number of
degrees of freedom. 3]
Explain briefly the concept of a canonical transformation. 3]
Show by means of a canonical transformation that the Hamiltonian
2
p L,
H=— + =k
5 TPf@) + 5ka
describes the motion of a particle of mass m in some potential U(q), and express
U(q) in terms of f(q). 8]
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Show that the following transformation is canonical:

)\ 2 )\22
0= tan M | p:uw@),
P 2\ q

where A is an arbitrary constant and g(x) is an arbitrary function.
Hence, or otherwise, calculate the motion of the particle in the potential

1 1 A?
= —kq® — - —
Ula) = kg 2

where k£ > 0.
Discuss your answer.
Answer: The Hamiltonian is defined as

H({g;}, {p;}) = > _pjg; — L
J
where q; are the generalized coordinates and p; are the corresponding canonical
momenta, defined from the Lagrangian L({q;},{¢;}) by

oL

pjza—q.j

A canonical transformation is a transformation of the generalized coordinates
and canonical momenta to new variables Qi({¢;}, {p;}) and Py({q;},{p;}) that
preserve the canonical Poisson brackets

{Qr, Pe} =A{aqr, o} =1

(all other Poisson brackets vanishing), where

O, = 21 __oH
We have SH
_gt _p
Hence p =m[q — f(q)] and
2
o _p__l 2_1 2 o 2_12
L=pi—H =7 —ckq =gmid" —24f(a) + [f(O} = Shka
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The transformation Q = q, P = p+mf(q) is canonical since
{Q,P} =1—-0=1. Then

P? 1 1
H = %4“5/{?@2 - §M[f(Q)]2 =T+U
where . )
U(Q) = §kQ2 - 5m[f(@)]2

The transformation given,

)\ 2 )\22
Q:tan_lgq, P:uW(g) |

2\
has
A
i - gp (dgq dp
pP+X¢\qg p
1
oo = o= ()] [R5 ()
7 \q Ag \g
Thus
Aqp Lip 1, (p 1 P (P
Q,P =7<—[—+—g -l +-|N— =g | = =1
Q.7 PP+ X \q [A ¢ \q p " \q
We can write ) . e
p 2
H=— 1 _— I
om T2 T o
and go back, defining p' = p — Ay/m/q, ¢ = q, to give
p12 1 o A p/
H=—+—-k —=
om T g
Hence H = wP where
1 A
%ZE’ wA =k, wg(x):ﬁx
Hence
k A
w=1—, A=Vkm, )= —=x
Vo 9(x) 7
The equations of motion are . .
Q=w, P=0

so that Q = wt + ¢ and P is constant (which is obvious since P = H/w). Hence

P =qVkmcot(wt +¢), H= %kqQ [cot?(wt + ¢) + 1] + AV cot(wt + ¢)

(TURN OVER



and so 5
¢* = = sin(wt + 0) [ sin(wt + 6) — AVE cos(wt + 0)]

Given H and ¢ from the initial conditions, this solves for the motion. When A =0
we get SHM as expected. For A # 0 the r.h.s. is an oscillating function. Therefore
q* always evolves to 0 and thereafter there is no real solution, i.e. the particle gets
trapped at the origin by the strong attractive 1/q* potential.

3 Show that the Lagrangian density
1
L=——F,F"
4po o

leads to Maxwell’s equations for a free electromagnetic field.
Given that the electromagnetic stress-energy tensor is
1
™ = ——F"F" —g"' [
Ho

show explicitly that this tensor is conserved.
An electromagnetic wave is represented by the 4-vector potential

At = (0, Acos(kz — wt), Asin(kz — wt),0) .

(a) Evaluate the electric and magnetic fields.
(b) Evaluate the Lagrangian density.

(c) Evaluate the stress-energy tensor and interpret its components.

0 —E,/c —E,/c —E,/c

E./c 0 -B B

O(ﬁ — ¢4 ﬂ — '8 @ = r - Y

You may assume that F*° = 0*A” — 0" A E,/c B. 0 -—-B,
Ez/c _By By 0

Answer: The equation of motion for A, is

5 (0L \_oc
“\0(0,4,)) ~ 04,

The r.h.s. is zero and the l.h.s. gets four equal terms. Hence

0, F™ =0

Using the expression given for F*, the first column (v =0) gives V - E = 0. The
second column gives

_10E,  0B. 0B,
2 ot y 0z

(TURN OVER
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i.e. .
(V X B)x = IU(]E(]EI

Similarly the other columns give the corresponding components of this equation.
The other Mazwell equations follow from the definitions

B=VxA, Ej=cF'=c@dA" -4 = (cVA" - A);

sothat V-B=0and Vx E=—-B
We have to show that 9,T"" = 0, i.e. that
1

1
—— 9, (F*" F") 4+ —0"(F,gF*") = 0
COUFAF) 0 (FagF™?)

Now
Ou(F'\F) = (0,F"\)F" + F"\ 0, F"

From the equation of motion above, the first term on the r.h.s. is zero. Changing
the summed labels p, A to «, B, the second term is

Flapd® F"P = Fo5(0°0” A — 9°9° A")

The second term on the r.h.s. is symmetric in «, 3 while Fog is antisymmetric, so
that term sums to zero. Furthermore

O (FopF?) = 2F, 30" F*F = 2F, (0" 0 AP — 0" A®)

Therefore
2000, TH = Flop(—20%0" AP + 070 AP — 9V 0° A™) = 0

since the expression in brackets is symmetric in o, 3 while Fig is antisymmetric.
(a) The electric field is

E = —A = Aw(—sin(kz — wt), cos(kz — wt), 0)
The magnetic field is
B =V x A = Ak (— cos(kz — wt), — sin(kz — wt), 0)

(b) From the expression given,

—FE,/c 0 —B., B,

Fag =1 _ y/c B, 0 —-B,
~E.Je -B, B, 0
Hence
L=—-Lpure— LBy = Ly a8 =0
4t 210 2/10
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(c) Since L =0 for this field, we have

1
T = ——F" F"
Ho
where, writing ¢ = kz — wt,
0 —sing coso 0
uo — sin ¢ 0 0 sin ¢
Fiy = Ak cos ¢ 0 0 —cos¢
0 —sing coso 0
and
0 sing —cos¢ 0
A — sin ¢ 0 0 —sing
P = Ak Ccos ¢ 0 0 cos¢
0 sing —cos¢ 0
Hence
1 001
27.2
T _ Ak 0000
Lo 0000
1 001

T is the energy density:
TOO = BQ//LO = 60E2

In units where c = 1, T® is the density of p,, T3 is the energy flux in the
z-direction, and T3 is the flux of p, in the z-direction. All of these are equal in a
plane wave travelling in the z-direction.

4 A real scalar field ¢(x) has Lagrangian density

L= (0)0,9)

(a) Derive the equation of motion, the canonical momentum density and the
Hamiltonian density.

(b) Write a Fourier representation of the field and find the dispersion
relation between the frequency and wave vector.

(c) Derive the stress-energy tensor and show that it is conserved.

(d) The system has a shift symmetry under ¢ — ¢’ = ¢ + ¢ where c is a
constant. Derive the associated Noether current and show that it is
conserved.

(e) Discuss whether you would expect the shift symmetry to be
spontaneously broken.

(TURN OVER
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(f) State Goldstone’s theorem and discuss its applicability to this case. 5]

Answer: (a) The equation of motion is given by

P oL B (9_£
! a(au@) _890

which gives the wave equation

0,0"p =0
The canonical momentum density is
oc ¢
m=—— = —
0p 2

and the Hamiltonian density is thus
. Lo o 2
H:’/TQO—[,Zi{CW —l—(Vgp)}
(b) The Fourier representation of a real field takes the form
© = /dBkN(k) (a(k)ei(kﬂ'fwt) + a*(k>67i(k-7'7wt))
where N (k) is a normalization factor. Applying the equation of motion,
0,0 = — / PEN (k) (w?/c* — k) (a(k)e ™0 4 o (k)e " F7=20) = 0

and hence the dispersion relation is w?/c* — k* =0, i.e. w = c|k].
(c) The stress-energy tensor is

oL
3(%0)

w

0"p— gL
Hence )

T = (9"¢)(9"¢) = 59"(0"0)(Oxp)
This is conserved if 0, T" = 0. Now

0T = (0,0"0)(@"9) + ("9)(2,0"¢) — 50" [(P9)(O19)]

The first term vanishes due to the equation of motion. The third term involves

(0 0)(0rp)] = (20" 0) (Orp) + (*0) (020" ) = 2(0"¢)(0,0" )

since X and i are just summed indices. Thus the second and third terms cancel,
gwing 0,T" = 0 as required.

(TURN OVER
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(d) The Noether current associated with symmetry under ¢ — @ + 0y is

oL
JH x o
9(0up)
In this case dyp = constant, so we can take
oL
JH = = Qo
a(au@)

By the equation of motion, this is conserved:
o J" = 0,0 =0

(e) We see from the Hamiltonian density in (a) that the minimum-energy
form of the field s simply ¢ = constant. The system must choose some particular
value, so we do expect the symmetry to be spontaneously broken.

(f) Goldstone’s theorem states that for every spontaneously broken
continuous global symmetry there is a field with massless quanta.

In this case the field o itself satifies the Klein-Gordon equation
0,0"p +m2p = 0 with m = 0 and dispersion relation w = c|k|. The quanta will
have energy E = hw and momentum p = hk, so E = c|p| and the quanta are
indeed massless, so Goldstone’s theorem is obeyed.

5 In the Nambu-Jona-Lasinio model, a Dirac field ¢ has Lagrangian density
— A — —
£ =iy O+ 7 [(0)° — ()]

where 1) = 1% and X is a real, positive constant.
(a) Derive the equations of motion for ¢ and ¢ and show that they are

consistent.
(b) Express £ in terms of the left- and right-handed fields
1 5 1 5

and derive the equations of motion for ¢, and ¢R.

(c) Show that there is a global symmetry with respect to independent phase
changes in these fields, i.e.

v — €Y, g — €PPp
where a and [ are real constants.

(d) Show that this symmetry is spontaneously broken but there remains a
global symmetry with respect to identical phase changes in these fields, i.e.

a=[.
(TURN OVER for continuation of question 5
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[You may assume that A 4" +~"4* = 2", F*4° +9°4* =0,

P =1, A =19"and A°4"1y0 =4 ]

Answer: (a) The equation of motion for 1 is
(o)
\awg0) ~ o

0= iv"d 1 + % (@) — (D7)

The left-hand side is zero, so

The equation of motion for 1 is

o (5) %
"\ouw))  ov

Hence
'a_u_é DD — (b~ h~°
10" = 5 | (@0)d = (97° )97’
Now ¥ = ™% and 4%t = 4°. Therefore, hermitian conjugating the whole equation
~ir"15°0, = 3 [ @)Y — (@07 ) 71 ]

Multiplying on the left by v° and using the results given

i O = 5 (@) + (BP0

Now B
(P0)" = (1)
and since this is just a number we may transpose the whole expression to obtain
()" = 1y = Py
On the other hand
@7°0)* = W 9)* = T = =%y
so that \
~iv* 0 = 5 (P — (09|

which 1s indeed consistent with the above equation of motion for 1.

(b) Clearly
b =Yr+Ur, VY =1vr—L

(TURN OVER
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Now ] ]
Vg = §¢T(1 +9°)° = 5@(1 —7°)

and similarly
_ 1—
V= §¢(1 +7°)

Therefore ¥ pibr = Yp1br = 0 and

Vph =R, Yt =gy, P =Pt + U Yk

while
EL’YFW = EL@DR ) ER’YE)w = —EPﬂﬁL ) E’Y%ﬂ = ER@DL - EL%%
so that
@7?)2 - @751@2 = 4@R¢L)@L¢R)
On the other hand

ELryua;ﬂ/) = ELryua,qu ) ERryua;ﬂ/) - ER'VH@/(#R

Therefore - _ _ —
L =i gy 0 R + i Y00 + MWL) (W YR)

The fields 11, and Vg can be treated as independent (or check this explicitly).

Then, as above,
9, (aiﬁ) _g- 9%

0up) Mg

girves

"R + NP pr)bL =0
Stmilarly

0L + MNP pYr)tr =0

(c) When

v — ey, g — ePp

we have

@L - eiiO@L ) ER - e’w%

Hence in the Lagrangian density

L = i) py* LR + i y* L+ AU pYr) (YL YR)

the first two terms do not change, while

ER'(ﬁL - ei(a_ﬂ)ERzﬁL ) @LQﬁR - €_i(a_ﬁ)EL1/)R )

so the last term doesn’t change either.

(TURN OVER
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(d) The minimum-energy configuration of the field will have 1 constant, and
then the Hamiltonian density will be

Hmin = _)‘(ERwL)(ELwR)
Noticing that ¥ z1py, = (P 0R)*, we see that this is

Humin = _)‘|EL77Z)R|2 <0

so that the field ¥ will assume some large value, limited only by higher-order terms
not shown. Once this has happened, 1 — €' implies Y1) — e'“y°1p and hence
Yp — e and Y, — €. Thus the only remaining symmetry is a change of
Ygr and Y, by the same phase.

6 The current density j(¢) in a conductor due to an applied electric field £(¢) is
given by

Jjt) = /a(t —tHEW) dt’

where the linear response function o(t — t’) vanishes for ¢t < ¢ and its Fourier
transform gives the conductivity as a function of the frequency w:

o(w) = /OOO o(T)e™ dr

(a) For a real electric field
E(t) = Fe ™ 4 F*e™!
show that the current density is
j(t) = o(w)Fe ™" + o(—w) F*e™!

and hence that the real and imaginary parts of o are even and odd functions
of w, respectively.

(b) At high frequencies the conductor can be treated as a free electron gas.
By considering the motion of an electron in the above electric field, show
that this implies

ow) —_ i
where n is the electron number density and e and m are the electron charge
and mass.

(c) At low frequencies the conductivity has the form
olw) — i—

where A is a real constant.

(TURN OVER
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4 Im(e")

+e ®-€ Ot+e
> N > ~ >
-R ®'=0 ©'=0 R Re(o')

By considering the integral /
7{ ff/(w ) i
W —w
on the contour shown in the figure and taking the limits R — oo and € — 0,
show that the real and imaginary parts of the conductivity, o;(w) and o3(w)
respectively, satisfy the Kramers-Kronig relations 8]

iw) = _P/w —w
oy(w) = __p/

(d) Show also that 3]

1
A= ne 1 o (W) du’

m ™

w—w

(e) Given that the real part of the conductivity has the form
Ja—f
= 3 [Mos = —26(w — wga)
o, Wha

where M3 is a quantum-mechanical matrix element between states o and 3
with energies E, and Ejg, f, = f(E,) where f(F) is the Fermi-Dirac

distribution function, and wg, = (Es — E,)/fi, show that 8]
o(w) = ZE — lim —Z |Mags \QM
mw =0t Tw Wha — W — i€
.
[You may assume that lim = P— Find(x) |

e—0+t T + 1€ T
Answer: (a) Changing variable to T =t — 1,

jit) = /Ooo o(T)E(t —T)dt’
= /oo o(r)[Fe @t 4 prewt=m)]
= Uo(w)Fe_w + o(—w)Fre™!
(TURN OVER
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This must be real, so o(—w) = o(w)*. Hence, writing o(w) = o1(w) + ioe(w) we

have

1
3 [0(w) + o(—w)] = even
w) = Hlolw) o)) = L.low) ~ o(-~w)] = odd

nw) = glow) +olw)]=

N | —

(b) The equation of motion of an electron is

mi = e&
Writing . .
T = Ae—zwt+A*€zwt
this gives
F
A=
mw
The current density is
§(t) = nei = —inew[Ae™ ™" — A*e™']
Hence )
ne , ,
i(t) = i—[F 7uut_F* 1wt
j(t) = in[Fe =

which, comparing with the earlier expression, shows that
2
ne
o(lw) =1i—
(w) =i —

for a free electron gas.
(¢) Inverting the Fourier transform

1 oo —wT d

o(t) = — o(w)e w
(M =5-[ oW
When T < 0 we can close the contour in the upper half plane and this must give
zero by causality. Hence all singularities of o(w) must lie in the lower half plane.
It follows that the integrand in the given integral has no singularities in the upper
half plane. Furthermore since the integrand falls off like (W')~% at infinity, the
semicircle of radius R gives no contribution as R — oo. Therefore

%70@/) dw' =0
w —w
Now if we write o(w) = ¢p(w)/w then ¢(0) = iA and the integrand becomes

¢(W') 1(#¢)_M¢§

w —w W'

Ww—-w)  w
(TURN OVER
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Using the formula given, we then have

Pl o) ¢W) i

= (w,_w -2 — Zfs(w) - 6(0)] = 0
Rearranging terms, this gives

W= —tp [ 2 4y A
™ w —w w

Taking real and imaginary parts on each side gives the KK relations required.
(d) Taking w — oo in the second KK relation and using

1 1 !
L) Le(d)
W —w w w w w

gives

1 A 2
o(w) — —/U(w') d + = =25
W= T woomw
Hence -
= E——/al(cu)du)
m
(e) Substituting in the second KK relation
1 fo— I3 1 A
= —=> [Mayg|? P —
) = =2 S MoP Ll 2

Substituting the above expression for A

1 o« — 1 1 2
) = ST Ml (p L 2] 20
T Wa Wa — W W mw
1 o — 1 ne’
= ——Z!Maﬁ!ﬁ Iop +
s w W — W Mw
Hence
: { 9 , ne?
o1(w) +ioe(w) = _EZ’MW’ (fa— [3) ng — + 00 (wWpe — W) +i—
o2
— " fim —Z\Ma \Q—fﬁ
mw  e—0t Tw Waa — W — 1€
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