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THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains ??? sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

1 A bead of mass m slides freely on a light wire of parabolic shape, which is
forced to rotate with angular velocity ω about a vertical axis. The equation of the
parabola is

z =
1

2
ar2

where z is the height and r is the distance from the axis of rotation.

(a) Show that the Lagrangian for this system is [5]

L =
1

2
m
[(

1 + a2r2
)

ṙ2 +
(

ω2 − ag
)

r2
]

(b) Find a constant of the motion. [6]

(c) The bead is released at r = 1/a with ṙ = v. Show that if ω2 ≥ ag the
bead escapes to infinity. Show that if ω2 < ag it oscillates about r = 0 , and
find the maximum value of r. [9]

(d) Now suppose the wire is not forced but rotates freely about the vertical
axis with angular velocity φ̇. Find the new Lagrangian and constants of the
motion. [7]

(e) If the bead is released with the same initial conditions as before, i.e.
r = 1/a, ṙ = v, φ̇ = ω, show that in this case it cannot escape to infinity for
any value of ω, and find the maximum and minimum values of r. [6]

Answer: (a) The kinetic energy is

T =
1

2
m
(

ṙ2 + ż2 + r2ω2
)

where ż = arṙ. The potential energy is mgz = magr2/2. Hence

L = T − V =
1

2
m
[(

1 + a2r2
)

ṙ2 +
(

ω2 − ag
)

r2
]

A

(TURN OVER for continuation of question 1



2

(b) The Lagrangian is not explicitly time-dependent and therefore the Hamiltonian
is conserved. Now H = prṙ − L where

pr =
∂L

∂ṙ
= m

(

1 + a2r2
)

ṙ

Hence

H =
1

2
m
[(

1 + a2r2
)

ṙ2 −
(

ω2 − ag
)

r2
]

N.B. H 6= T + V .
(c) Initially

H =
1

2
m
[

2v2 −
(

ω2 − ag
)

/a2
]

Hence the motion is such that
(

1 + a2r2
)

ṙ2 =
(

ω2 − ag
)

(r2 − 1/a2) + 2v2

i.e.

ṙ2 =
(ω2 − ag)(r2 − 1/a2) + 2v2

1 + a2r2

Thus ṙ = 0 when

r2 =
1

a2
− 2v2

ω2 − ag
≡ r2

0

For ω2 > ag, this means r0 < 1/a. If v > 0, the bead moves outwards, ṙ is
never zero, and so the bead moves to r = ∞. If v < 0, the bead moves inwards to
r = r0, then ṙ becomes and remains positive, so again the bead moves to r = ∞.

For ω2 < ag, this means r0 > 1/a. If v > 0, the bead moves outwards to
r = r0, then ṙ becomes negative and the bead moves inwards to r = 0 then out to
r = r0 again on the other side of the parabola, i.e. it oscillates about r = 0 with
amplitude r0. If v < 0, the bead moves inwards to r = 0, then out to r = r0 on the
other side of the parabola, i.e. again it oscillates about r = 0 with amplitude r0.
Thus the maximum value of r is

rmax = r0 =

√

1

a2
+

2v2

ag − ω2

(d) When the rotation is not forced, the angle φ is another generalized
coordinate. The Lagrangian becomes

L = T − V =
1

2
m
[(

1 + a2r2
)

ṙ2 + r2φ̇2 − agr2
]

The Hamiltonian is now H = prṙ + pφφ̇− L where

pφ =
∂L

∂φ̇
= mr2φ̇
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is a constant of the motion, since L does not depend explicitly on φ. Hence

H =
1

2
m
[(

1 + a2r2
)

ṙ2 + r2φ̇2 + agr2
]

,

which is also constant of the motion, since L does not depend explicitly on time.
N.B. H = T + V now.

(e) The intial conditions give

H =
1

2
m
[

2v2 +
(

ω2 + ag
)

/a2
]

as before, and pφ = mω/a2, so that φ̇ = ω/(ar)2 and

(

1 + a2r2
)

ṙ2 + ω2/(a4r2) + agr2 = 2v2 +
(

ω2 + ag
)

/a2

Hence
(

1 + a2r2
)

ṙ2 = 2v2 +
1

a2

[

ω2
(

1 − 1

a2r2

)

+ ag
(

1 − a2r2
)

]

If we let r → ∞ then the terms involving r2 dominate on each side and we get
ṙ2 → −ag, which is impossible. Hence the bead cannot escape to r = ∞. The
points where ṙ = 0 are given by

2a2v2 + ω2
(

1 − 1

a2r2

)

+ ag
(

1 − a2r2
)

= 0

which is a quadratic equation for u = a2r2:

ω2 −
(

2a2v2 + ω2 + ag
)

u+ agu2 = 0

therefore the maximum and minimum values of r are r± where

a2r2
± =

1

ag

(

2a2v2 + ω2 + ag ±
√

(2a2v2 + ω2 + ag)2 − 4agω2

)

.

2 Define the Hamiltonian of a dynamical system with a finite number of
degrees of freedom. [3]

Explain briefly the concept of a canonical transformation. [3]
Show by means of a canonical transformation that the Hamiltonian

H =
p2

2m
+ pf(q) +

1

2
kq2

describes the motion of a particle of mass m in some potential U(q), and express
U(q) in terms of f(q). [8]

A
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Show that the following transformation is canonical:

Q = tan−1 λq

p
, P =

p2 + λ2q2

2λ
+ g

(

p

q

)

,

where λ is an arbitrary constant and g(x) is an arbitrary function. [8]
Hence, or otherwise, calculate the motion of the particle in the potential

U(q) =
1

2
kq2 − 1

2

A2

q2

where k > 0. [8]
Discuss your answer. [3]
Answer: The Hamiltonian is defined as

H({qj}, {pj}) =
∑

j

pj q̇j − L

where qj are the generalized coordinates and pj are the corresponding canonical
momenta, defined from the Lagrangian L({qj}, {q̇j}) by

pj =
∂L

∂q̇j

A canonical transformation is a transformation of the generalized coordinates
and canonical momenta to new variables Qk({qj}, {pj}) and Pk({qj}, {pj}) that
preserve the canonical Poisson brackets

{Qk, Pk} = {qk, pk} = 1

(all other Poisson brackets vanishing), where

{f, g} ≡
∑

j

(

∂f

∂qj

∂g

∂pj

− ∂f

∂pj

∂g

∂qj

)

It then follows that Qk and Pk satisfy Hamilton’s equations of motion:

Q̇k =
∂H

∂Pk

, Ṗk = − ∂H

∂Qk

We have

q̇ =
∂H

∂p
=

p

m
+ f(q)

Hence p = m[q̇ − f(q)] and

L = pq̇ −H =
p2

2m
− 1

2
kq2 =

1

2
m{q̇2 − 2q̇f(q) + [f(q)]2} − 1

2
kq2

A
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The transformation Q = q, P = p+mf(q) is canonical since
{Q,P} = 1 − 0 = 1. Then

H =
P 2

2m
+

1

2
kQ2 − 1

2
m[f(Q)]2 = T + U

where

U(Q) =
1

2
kQ2 − 1

2
m[f(Q)]2

The transformation given,

Q = tan−1 λq

p
, P =

p2 + λ2q2

2λ
+ g

(

p

q

)

,

has

dQ =
λqp

p2 + λ2q2

(

dq

q
− dp

p

)

dP =

[

λq − p

q2
g′
(

p

q

)]

dq +

[

p

λ
+

1

q
g′
(

p

q

)]

dp

Thus

{Q,P} =
λqp

p2 + λ2q2

(

1

q

[

p

λ
+

1

q
g′
(

p

q

)]

+
1

p

[

λq − p

q2
g′
(

p

q

)])

= 1

We can write

H =
p2

2m
+

1

2
kq2 − 1

2

A2

q2

and go back, defining p′ = p−A
√
m/q, q′ = q, to give

H =
p′2

2m
+

1

2
kq′2 +

A√
m

p′

q′

Hence H = ωP where

ω

λ
=

1

m
, ωλ = k , ωg(x) =

A√
m
x

Hence

ω =

√

k

m
, λ =

√
km , g(x) =

A√
k
x

The equations of motion are
Q̇ = ω , Ṗ = 0

so that Q = ωt+ φ and P is constant (which is obvious since P = H/ω). Hence

p′ = q
√
km cot(ωt+ φ) , H =

1

2
kq2[cot2(ωt+ φ) + 1] + A

√
k cot(ωt+ φ)

A
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and so

q2 =
2

k
sin(ωt+ φ)

[

H sin(ωt+ φ) − A
√
k cos(ωt+ φ)

]

Given H and φ from the initial conditions, this solves for the motion. When A = 0
we get SHM as expected. For A 6= 0 the r.h.s. is an oscillating function. Therefore
q2 always evolves to 0 and thereafter there is no real solution, i.e. the particle gets
trapped at the origin by the strong attractive 1/q2 potential.

3 Show that the Lagrangian density

L = − 1

4µ0

FαβF
αβ

leads to Maxwell’s equations for a free electromagnetic field. [6]
Given that the electromagnetic stress-energy tensor is

T µν = − 1

µ0
F µ

λF
νλ − gµνL ,

show explicitly that this tensor is conserved. [6]
An electromagnetic wave is represented by the 4-vector potential

Aµ = (0, A cos(kz − ωt), A sin(kz − ωt), 0) .

(a) Evaluate the electric and magnetic fields. [6]

(b) Evaluate the Lagrangian density. [6]

(c) Evaluate the stress-energy tensor and interpret its components. [9]











You may assume that F αβ = ∂αAβ − ∂βAα =











0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0





















Answer: The equation of motion for Aν is

∂µ

(

∂L
∂(∂µAν)

)

=
∂L
∂Aν

The r.h.s. is zero and the l.h.s. gets four equal terms. Hence

∂µF
µν = 0

Using the expression given for F µν , the first column (ν = 0) gives ∇ · E = 0. The
second column gives

− 1

c2
∂Ex

∂t
+
∂Bz

∂y
− ∂By

∂z
= 0

A
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i.e.
(∇ × B)x = µ0ǫ0Ėx

Similarly the other columns give the corresponding components of this equation.
The other Maxwell equations follow from the definitions

B = ∇ × A , Ej = cF j0 = c(∂jA0 − ∂0Aj) = (c∇A0 − Ȧ)j

so that ∇ · B = 0 and ∇ × E = −Ḃ

We have to show that ∂µT
µν = 0, i.e. that

− 1

µ0
∂µ(F µ

λF
νλ) +

1

4µ0
∂ν(FαβF

αβ) = 0

Now
∂µ(F µ

λF
νλ) = (∂µF

µ
λ)F

νλ + F µ
λ∂µF

νλ

From the equation of motion above, the first term on the r.h.s. is zero. Changing
the summed labels µ, λ to α, β, the second term is

Fαβ∂
αF νβ = Fαβ(∂α∂νAβ − ∂α∂βAν)

The second term on the r.h.s. is symmetric in α, β while Fαβ is antisymmetric, so
that term sums to zero. Furthermore

∂ν(FαβF
αβ) = 2Fαβ∂

νF αβ = 2Fαβ(∂ν∂αAβ − ∂ν∂βAα)

Therefore
2µ0∂µT

µν = Fαβ(−2∂α∂νAβ + ∂ν∂αAβ − ∂ν∂βAα) = 0

since the expression in brackets is symmetric in α, β while Fαβ is antisymmetric.
(a) The electric field is

E = −Ȧ = Aω (− sin(kz − ωt), cos(kz − ωt), 0)

The magnetic field is

B = ∇ × A = Ak (− cos(kz − ωt),− sin(kz − ωt), 0)

(b) From the expression given,

Fαβ =











0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0











Hence

L = − 1

4µ0
FαβF

αβ =
1

2µ0
(E2/c2 − B2) =

1

2µ0
(−A2ω2/c2 + A2k2) = 0

A
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(c) Since L = 0 for this field, we have

T µν = − 1

µ0
F µ

λF
νλ

where, writing φ = kz − ωt,

F µ
λ = Ak











0 − sinφ cosφ 0
− sinφ 0 0 sinφ

cosφ 0 0 − cosφ
0 − sinφ cosφ 0











and

F νλ = Ak











0 sinφ − cos φ 0
− sinφ 0 0 − sin φ

cosφ 0 0 cosφ
0 sinφ − cos φ 0











Hence

T µν =
A2k2

µ0











1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1











T 00 is the energy density:
T 00 = B2/µ0 = ǫ0E

2

In units where c = 1, T 03 is the density of pz, T
30 is the energy flux in the

z-direction, and T 33 is the flux of pz in the z-direction. All of these are equal in a
plane wave travelling in the z-direction.

4 A real scalar field ϕ(x) has Lagrangian density

L =
1

2
(∂µϕ)(∂µϕ)

(a) Derive the equation of motion, the canonical momentum density and the
Hamiltonian density. [6]

(b) Write a Fourier representation of the field and find the dispersion
relation between the frequency and wave vector. [5]

(c) Derive the stress-energy tensor and show that it is conserved. [6]

(d) The system has a shift symmetry under ϕ→ ϕ′ = ϕ+ c where c is a
constant. Derive the associated Noether current and show that it is
conserved. [6]

(e) Discuss whether you would expect the shift symmetry to be
spontaneously broken. [5]

A
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(f) State Goldstone’s theorem and discuss its applicability to this case. [5]

Answer: (a) The equation of motion is given by

∂µ

(

∂L
∂(∂µϕ)

)

=
∂L
∂ϕ

which gives the wave equation
∂µ∂

µϕ = 0

The canonical momentum density is

π =
∂L
∂ϕ̇

=
ϕ̇

c2

and the Hamiltonian density is thus

H = πϕ̇−L =
1

2

[

c2π2 + (∇ϕ)2
]

(b) The Fourier representation of a real field takes the form

ϕ =
∫

d3kN(k)
(

a(k)ei(k·r−ωt) + a∗(k)e−i(k·r−ωt)
)

where N(k) is a normalization factor. Applying the equation of motion,

∂µ∂
µϕ = −

∫

d3kN(k)
(

ω2/c2 − k2
) (

a(k)ei(k·r−ωt) + a∗(k)e−i(k·r−ωt)
)

= 0

and hence the dispersion relation is ω2/c2 − k2 = 0, i.e. ω = c|k|.
(c) The stress-energy tensor is

T µν =
∂L

∂(∂µϕ)
∂νϕ− gµνL

Hence

T µν = (∂µϕ)(∂νϕ) − 1

2
gµν(∂λϕ)(∂λϕ)

This is conserved if ∂µT
µν = 0. Now

∂µT
µν = (∂µ∂

µϕ)(∂νϕ) + (∂µϕ)(∂µ∂
νϕ) − 1

2
∂ν [(∂λϕ)(∂λϕ)]

The first term vanishes due to the equation of motion. The third term involves

∂ν [(∂λϕ)(∂λϕ)] = (∂λ∂νϕ)(∂λϕ) + (∂λϕ)(∂λ∂
νϕ) = 2(∂µϕ)(∂µ∂

νϕ)

since λ and µ are just summed indices. Thus the second and third terms cancel,
giving ∂µT

µν = 0 as required.

A
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(d) The Noether current associated with symmetry under ϕ→ ϕ+ δϕ is

Jµ ∝ ∂L
∂(∂µϕ)

δϕ

In this case δϕ = constant, so we can take

Jµ =
∂L

∂(∂µϕ)
= ∂µϕ

By the equation of motion, this is conserved:

∂µJ
µ = ∂µ∂

µϕ = 0

(e) We see from the Hamiltonian density in (a) that the minimum-energy
form of the field is simply ϕ = constant. The system must choose some particular
value, so we do expect the symmetry to be spontaneously broken.

(f) Goldstone’s theorem states that for every spontaneously broken
continuous global symmetry there is a field with massless quanta.

In this case the field ϕ itself satifies the Klein-Gordon equation
∂µ∂

µϕ+m2ϕ = 0 with m = 0 and dispersion relation ω = c|k|. The quanta will
have energy E = hω and momentum p = hk, so E = c|p| and the quanta are
indeed massless, so Goldstone’s theorem is obeyed.

5 In the Nambu-Jona-Lasinio model, a Dirac field ψ has Lagrangian density

L = iψγµ∂µψ +
λ

4

[

(ψψ)2 − (ψγ5ψ)2
]

where ψ = ψ†γ0 and λ is a real, positive constant.

(a) Derive the equations of motion for ψ and ψ and show that they are
consistent. [8]

(b) Express L in terms of the left- and right-handed fields

ψL =
1

2
(1 − γ5)ψ , ψR =

1

2
(1 + γ5)ψ ,

and derive the equations of motion for ψL and ψR. [8]

(c) Show that there is a global symmetry with respect to independent phase
changes in these fields, i.e.

ψL → eiαψL , ψR → eiβψR

where α and β are real constants. [8]

(d) Show that this symmetry is spontaneously broken but there remains a
global symmetry with respect to identical phase changes in these fields, i.e.
α = β. [9]

A
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[You may assume that γµγν + γνγµ = 2gµν , γµγ5 + γ5γµ = 0 ,

γ5γ5 = 1 , γ5† = γ5 and γ0γµ†γ0 = γµ .]

Answer: (a) The equation of motion for ψ is

∂µ

(

∂L
∂(∂µψ)

)

=
∂L
∂ψ

The left-hand side is zero, so

0 = iγµ∂µψ +
λ

2

[

(ψψ)ψ − (ψγ5ψ)γ5ψ
]

The equation of motion for ψ is

∂µ

(

∂L
∂(∂µψ)

)

=
∂L
∂ψ

Hence

i∂µψγ
µ =

λ

2

[

(ψψ)ψ − (ψγ5ψ)ψγ5
]

Now ψ = ψ†γ0 and γ0† = γ0. Therefore, hermitian conjugating the whole equation

−iγµ†γ0∂µψ =
λ

2

[

(ψψ)∗γ0ψ − (ψγ5ψ)∗γ5γ0ψ
]

Multiplying on the left by γ0 and using the results given

−iγµ∂µψ =
λ

2

[

(ψψ)∗ψ + (ψγ5ψ)∗γ5ψ
]

Now
(ψψ)∗ = (ψ†γ0ψ)∗

and since this is just a number we may transpose the whole expression to obtain

(ψψ)∗ = ψ†γ0ψ = ψψ

On the other hand

(ψγ5ψ)∗ = (ψ†γ0γ5ψ)∗ = ψ†γ5γ0ψ = −ψγ5ψ

so that

−iγµ∂µψ =
λ

2

[

(ψψ)ψ − (ψγ5ψ)γ5ψ
]

which is indeed consistent with the above equation of motion for ψ.
(b) Clearly

ψ = ψR + ψL , γ5ψ = ψR − ψL

A
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Now

ψR =
1

2
ψ†(1 + γ5)γ0 =

1

2
ψ(1 − γ5)

and similarly

ψL =
1

2
ψ(1 + γ5)

Therefore ψRψR = ψLψL = 0 and

ψLψ = ψLψR , ψRψ = ψRψL , ψψ = ψRψL + ψLψR

while
ψLγ

5ψ = ψLψR , ψRγ
5ψ = −ψRψL , ψγ5ψ = ψRψL − ψLψR

so that
(ψψ)2 − (ψγ5ψ)2 = 4(ψRψL)(ψLψR)

On the other hand

ψLγ
µ∂µψ = ψLγ

µ∂µψL , ψRγ
µ∂µψ = ψRγ

µ∂µψR

Therefore
L = iψRγ

µ∂µψR + iψLγ
µ∂µψL + λ(ψRψL)(ψLψR)

The fields ψL and ψR can be treated as independent (or check this explicitly).
Then, as above,

∂µ

(

∂L
∂(∂µψR)

)

= 0 =
∂L
∂ψR

gives
iγµ∂µψR + λ(ψLψR)ψL = 0

Similarly
iγµ∂µψL + λ(ψRψL)ψR = 0

(c) When
ψL → eiαψL , ψR → eiβψR

we have
ψL → e−iαψL , ψR → e−iβψR

Hence in the Lagrangian density

L = iψRγ
µ∂µψR + iψLγ

µ∂µψL + λ(ψRψL)(ψLψR)

the first two terms do not change, while

ψRψL → ei(α−β)ψRψL , ψLψR → e−i(α−β)ψLψR ,

so the last term doesn’t change either.

A
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(d) The minimum-energy configuration of the field will have ψ constant, and
then the Hamiltonian density will be

Hmin = −λ(ψRψL)(ψLψR)

Noticing that ψRψL = (ψLψR)∗, we see that this is

Hmin = −λ|ψLψR|2 < 0

so that the field ψ will assume some large value, limited only by higher-order terms
not shown. Once this has happened, ψ → eiαψ implies γ5ψ → eiαγ5ψ and hence
ψR → eiαψR and ψL → eiαψL. Thus the only remaining symmetry is a change of
ψR and ψL by the same phase.

6 The current density j(t) in a conductor due to an applied electric field E(t) is
given by

j(t) =
∫

σ(t− t′)E(t′) dt′

where the linear response function σ(t− t′) vanishes for t < t′ and its Fourier
transform gives the conductivity as a function of the frequency ω:

σ(ω) =
∫ ∞

0
σ(τ)eiωτ dτ

(a) For a real electric field

E(t) = Fe−iωt + F ∗eiωt

show that the current density is

j(t) = σ(ω)Fe−iωt + σ(−ω)F ∗eiωt

and hence that the real and imaginary parts of σ are even and odd functions
of ω, respectively. [7]

(b) At high frequencies the conductor can be treated as a free electron gas.
By considering the motion of an electron in the above electric field, show
that this implies

σ(ω)
ω → ∞

→ i
ne2

mω
where n is the electron number density and e and m are the electron charge
and mass. [7]

(c) At low frequencies the conductivity has the form

σ(ω)
ω → 0
→ i

A

ω

where A is a real constant.

A
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Re(w')

Im(w')

-R Rw'=ww'=0
-e +e w-e w+e

By considering the integral
∮

σ(ω′)

ω′ − ω
dω′

on the contour shown in the figure and taking the limits R→ ∞ and ǫ→ 0,
show that the real and imaginary parts of the conductivity, σ1(ω) and σ2(ω)
respectively, satisfy the Kramers-Kronig relations [8]

σ1(ω) =
1

π
P
∫

σ2(ω
′)

ω′ − ω
dω′

σ2(ω) = −1

π
P
∫

σ1(ω
′)

ω′ − ω
dω′ +

A

ω

(d) Show also that [3]

A =
ne2

m
− 1

π

∫

σ1(ω
′) dω′

(e) Given that the real part of the conductivity has the form

σ1(ω) =
∑

α,β

|Mαβ|2
fα − fβ

ωβα

δ(ω − ωβα)

where Mαβ is a quantum-mechanical matrix element between states α and β
with energies Eα and Eβ, fα = f(Eα) where f(E) is the Fermi-Dirac
distribution function, and ωβα = (Eβ − Eα)/h, show that [8]

σ(ω) = i
ne2

mω
− lim

ǫ→0+

i

πω

∑

α,β

|Mαβ|2
fα − fβ

ωβα − ω − iǫ

[You may assume that lim
ǫ→0+

1

x± iǫ
= P

1

x
∓ iπδ(x) ]

Answer: (a) Changing variable to τ = t− t′,

j(t) =
∫ ∞

0
σ(τ)E(t− τ) dt′

=
∫ ∞

0
σ(τ)[Fe−iω(t−τ) + F ∗eiω(t−τ)]

= σ(ω)Fe−iωt + σ(−ω)F ∗eiωt

A

(TURN OVER
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This must be real, so σ(−ω) = σ(ω)∗. Hence, writing σ(ω) = σ1(ω) + iσ2(ω) we
have

σ1(ω) =
1

2
[σ(ω) + σ(ω)∗] =

1

2
[σ(ω) + σ(−ω)] = even

σ2(ω) =
1

2i
[σ(ω) − σ(ω)∗] =

1

2i
[σ(ω) − σ(−ω)] = odd

(b) The equation of motion of an electron is

mẍ = eE

Writing
x = Ae−iωt + A∗eiωt

this gives

A = − eF

mω2

The current density is

j(t) = neẋ = −ineω[Ae−iωt −A∗eiωt]

Hence

j(t) = i
ne2

mω
[Fe−iωt − F ∗eiωt]

which, comparing with the earlier expression, shows that

σ(ω) = i
ne2

mω

for a free electron gas.
(c) Inverting the Fourier transform

σ(τ) =
1

2π

∫ +∞

−∞
σ(ω)e−iωτ dω

When τ < 0 we can close the contour in the upper half plane and this must give
zero by causality. Hence all singularities of σ(ω) must lie in the lower half plane.
It follows that the integrand in the given integral has no singularities in the upper
half plane. Furthermore since the integrand falls off like (ω′)−2 at infinity, the
semicircle of radius R gives no contribution as R → ∞. Therefore

∮

σ(ω′)

ω′ − ω
dω′ = 0

Now if we write σ(ω) = φ(ω)/ω then φ(0) = iA and the integrand becomes

φ(ω′)

ω′(ω′ − ω)
=

1

ω

(

φ(ω′)

ω′ − ω
− φ(ω′)

ω′

)

A

(TURN OVER
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Using the formula given, we then have

P

ω

∫

(

φ(ω′)

ω′ − ω
− φ(ω′)

ω′

)

dω′ − iπ

ω
[φ(ω) − φ(0)] = 0

Rearranging terms, this gives

σ(ω) = − i

π
P
∫ σ(ω′)

ω′ − ω
dω′ +

iA

ω

Taking real and imaginary parts on each side gives the KK relations required.
(d) Taking ω → ∞ in the second KK relation and using

1

ω′ − ω
= − 1

ω

(

1 − ω′

ω

)

= − 1

ω
+ O

(

1

ω2

)

gives

σ2(ω)
ω → ∞

→ 1

πω

∫

σ(ω′) dω′ +
A

ω
=
ne2

mω

Hence

A =
ne2

m
− 1

π

∫

σ1(ω
′) dω′

(e) Substituting in the second KK relation

σ2(ω) = −1

π

∑

α,β

|Mαβ|2
fα − fβ

ωβα

P
1

ωβα − ω
+
A

ω

Substituting the above expression for A

σ2(ω) = −1

π

∑

α,β

|Mαβ|2
fα − fβ

ωβα

(

P
1

ωβα − ω
+

1

ω

)

+
ne2

mω

= −1

π

∑

α,β

|Mαβ|2
fα − fβ

ω
P

1

ωβα − ω
+
ne2

mω

Hence

σ1(ω) + iσ2(ω) = − i

πω

∑

α,β

|Mαβ|2(fα − fβ)

(

P
1

ωβα − ω
+ iδ(ωβα − ω)

)

+ i
ne2

mω

= i
ne2

mω
− lim

ǫ→0+

i

πω

∑

α,β

|Mαβ|2
fα − fβ

ωβα − ω − iǫ

END OF PAPER
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