THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains five sides and is accompanied by a booklet giving values of constants and containing mathematical formulae which you may quote without proof.

1 A bead of mass m slides freely on a light wire of parabolic shape, which is forced to rotate with angular velocity ω about a vertical axis. The equation of the parabola is

$$
z=\frac{1}{2} a r^{2}
$$

where z is the height and r is the distance from the axis of rotation.
(a) Show that the Lagrangian for this system is

$$
L=\frac{1}{2} m\left[\left(1+a^{2} r^{2}\right) \dot{r}^{2}+\left(\omega^{2}-a g\right) r^{2}\right]
$$

(b) Find a constant of the motion.
(c) The bead is released at $r=1 / a$ with $\dot{r}=v$. Show that if $\omega^{2} \geq a g$ the bead escapes to infinity. Show that if $\omega^{2}<a g$ it oscillates about $r=0$, and find the maximum value of r.
(d) Now suppose the wire is not forced but rotates freely about the vertical axis with angular velocity $\dot{\phi}$. Find the new Lagrangian and constants of the motion.
(e) If the bead is released with the same initial conditions as before, i.e. $r=1 / a, \dot{r}=v, \dot{\phi}=\omega$, show that in this case it cannot escape to infinity for any value of ω, and find the maximum and minimum values of r.

2 Define the Hamiltonian of a dynamical system with a finite number of degrees of freedom.

Explain briefly the concept of a canonical transformation.
Show by means of a canonical transformation that the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+p f(q)+\frac{1}{2} k q^{2}
$$

(TURN OVER for continuation of question 2
describes the motion of a particle of mass m in some potential $U(q)$, and express $U(q)$ in terms of $f(q)$.

Show that the following transformation is canonical:

$$
Q=\tan ^{-1} \frac{\lambda q}{p}, \quad P=\frac{p^{2}+\lambda^{2} q^{2}}{2 \lambda}+g\left(\frac{p}{q}\right)
$$

where λ is an arbitrary constant and $g(x)$ is an arbitrary function.
Hence, or otherwise, calculate the motion of the particle in the potential

$$
U(q)=\frac{1}{2} k q^{2}-\frac{1}{2} \frac{A^{2}}{q^{2}}
$$

where $k>0$.
Discuss your answer.

3 Show that the Lagrangian density

$$
\mathcal{L}=-\frac{1}{4 \mu_{0}} F_{\alpha \beta} F^{\alpha \beta}
$$

leads to Maxwell's equations for a free electromagnetic field.
Given that the electromagnetic stress-energy tensor is

$$
T^{\mu \nu}=-\frac{1}{\mu_{0}} F_{\lambda}^{\mu} F^{\nu \lambda}-g^{\mu \nu} \mathcal{L},
$$

show explicitly that this tensor is conserved.
An electromagnetic wave is represented by the 4 -vector potential

$$
A^{\mu}=(0, A \cos (k z-\omega t), A \sin (k z-\omega t), 0) .
$$

(a) Evaluate the electric and magnetic fields.
(b) Evaluate the Lagrangian density.
(c) Evaluate the stress-energy tensor and interpret its components.
$\left[\right.$ You may assume that $\left.F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=\left(\begin{array}{rrrr}0 & -E_{x} / c & -E_{y} / c & -E_{z} / c \\ E_{x} / c & 0 & -B_{z} & B_{y} \\ E_{y} / c & B_{z} & 0 & -B_{x} \\ E_{z} / c & -B_{y} & B_{x} & 0\end{array}\right)\right]$

4 A real scalar field $\varphi(x)$ has Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \varphi\right)\left(\partial_{\mu} \varphi\right)
$$

(a) Derive the equation of motion, the canonical momentum density and the Hamiltonian density.
(b) Write a Fourier representation of the field and find the dispersion relation between the frequency and wave vector.
(c) Derive the stress-energy tensor and show that it is conserved.
(d) The system has a shift symmetry under $\varphi \rightarrow \varphi^{\prime}=\varphi+c$ where c is a constant. Derive the associated Noether current and show that it is conserved.
(e) Discuss whether you would expect the shift symmetry to be spontaneously broken.
(f) State Goldstone's theorem and discuss its applicability to this case.

5 In the Nambu-Jona-Lasinio model, a Dirac field ψ has Lagrangian density

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+\frac{\lambda}{4}\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \gamma^{5} \psi\right)^{2}\right]
$$

where $\bar{\psi}=\psi^{\dagger} \gamma^{0}$ and λ is a real, positive constant.
(a) Derive the equations of motion for ψ and $\bar{\psi}$ and show that they are consistent.
(b) Express \mathcal{L} in terms of the left- and right-handed fields

$$
\psi_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \psi, \quad \psi_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) \psi,
$$

and derive the equations of motion for ψ_{L} and ψ_{R}.
(c) Show that there is a global symmetry with respect to independent phase changes in these fields, i.e.

$$
\psi_{L} \rightarrow e^{i \alpha} \psi_{L}, \quad \psi_{R} \rightarrow e^{i \beta} \psi_{R}
$$

where α and β are real constants.
(d) Show that this symmetry is spontaneously broken but there remains a global symmetry with respect to identical phase changes in these fields, i.e. $\alpha=\beta$.
[You may assume that

$$
\begin{aligned}
& \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}, \quad \gamma^{\mu} \gamma^{5}+\gamma^{5} \gamma^{\mu}=0, \\
& \gamma^{5} \gamma^{5}=1, \quad \gamma^{5 \dagger}=\gamma^{5} \text { and } \gamma^{0} \gamma^{\mu \dagger} \gamma^{0}=\gamma^{\mu} .
\end{aligned}
$$

$6 \quad$ The current density $j(t)$ in a conductor due to an applied electric field $\mathcal{E}(t)$ is given by

$$
j(t)=\int \sigma\left(t-t^{\prime}\right) \mathcal{E}\left(t^{\prime}\right) d t^{\prime}
$$

where the linear response function $\sigma\left(t-t^{\prime}\right)$ vanishes for $t<t^{\prime}$ and its Fourier transform gives the conductivity as a function of the frequency ω :

$$
\sigma(\omega)=\int_{0}^{\infty} \sigma(\tau) e^{i \omega \tau} d \tau
$$

(a) For a real electric field

$$
\mathcal{E}(t)=F e^{-i \omega t}+F^{*} e^{i \omega t}
$$

show that the current density is

$$
j(t)=\sigma(\omega) F e^{-i \omega t}+\sigma(-\omega) F^{*} e^{i \omega t}
$$

and hence that the real and imaginary parts of σ are even and odd functions of ω, respectively.
(b) At high frequencies the conductor can be treated as a free electron gas.

By considering the motion of an electron in the above electric field, show that this implies

$$
\sigma(\omega) \underset{\omega \rightarrow \infty}{\rightarrow} i \frac{n e^{2}}{m \omega}
$$

where n is the electron number density and e and m are the electron charge and mass.
(c) At low frequencies the conductivity has the form

$$
\sigma(\omega) \underset{\omega \rightarrow 0}{\rightarrow} i \frac{A}{\omega}
$$

where A is a real constant.

By considering the integral

$$
\oint \frac{\sigma\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}
$$

on the contour shown in the figure and taking the limits $R \rightarrow \infty$ and $\epsilon \rightarrow 0$, show that the real and imaginary parts of the conductivity, $\sigma_{1}(\omega)$ and $\sigma_{2}(\omega)$ respectively, satisfy the Kramers-Kronig relations

$$
\begin{aligned}
\sigma_{1}(\omega) & =\frac{1}{\pi} P \int \frac{\sigma_{2}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime} \\
\sigma_{2}(\omega) & =-\frac{1}{\pi} P \int \frac{\sigma_{1}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}+\frac{A}{\omega}
\end{aligned}
$$

(d) Show also that

$$
A=\frac{n e^{2}}{m}-\frac{1}{\pi} \int \sigma_{1}\left(\omega^{\prime}\right) d \omega^{\prime}
$$

(e) Given that the real part of the conductivity has the form

$$
\sigma_{1}(\omega)=\sum_{\alpha, \beta}\left|\mathcal{M}_{\alpha \beta}\right|^{2} \frac{f_{\alpha}-f_{\beta}}{\omega_{\beta \alpha}} \delta\left(\omega-\omega_{\beta \alpha}\right)
$$

where $\mathcal{M}_{\alpha \beta}$ is a quantum-mechanical matrix element between states α and β with energies E_{α} and $E_{\beta}, f_{\alpha}=f\left(E_{\alpha}\right)$ where $f(E)$ is the Fermi-Dirac distribution function, and $\omega_{\beta \alpha}=\left(E_{\beta}-E_{\alpha}\right) / \hbar$, show that

$$
\sigma(\omega)=i \frac{n e^{2}}{m \omega}-\lim _{\epsilon \rightarrow 0^{+}} \frac{i}{\pi \omega} \sum_{\alpha, \beta}\left|\mathcal{M}_{\alpha \beta}\right|^{2} \frac{f_{\alpha}-f_{\beta}}{\omega_{\beta \alpha}-\omega-i \epsilon}
$$

[You may assume that $\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{x \pm i \epsilon}=P \frac{1}{x} \mp i \pi \delta(x)$]

