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Wednesday 16 January 2008 10.30am to 12.30pm

THEORETICAL PHYSICS I - Solutions

1 Question on Lagrangian mechanics – see handwritten solution.

2 Question on Hamiltonian mechanics – see handwritten solution.

3 (a) The given Lagrangian density is

L =
h

2i

(

Ψ
∂Ψ ∗

∂t
− Ψ ∗

∂Ψ

∂t

)

− h2

2m
∇Ψ · ∇Ψ ∗ − V (r)ΨΨ ∗

Under Ψ → Ψe−iα, Ψ ∗ → Ψ ∗e+iα, where α is a real constant, each term is
unchanged, so there is a global phase symmetry.

(b) The Noether 4-current is

Jµ =
∂L

∂(∂µΨ )
δΨ +

∂L
∂(∂µΨ ∗)

δΨ ∗

where δΨ is the small change in Ψ . In this case δΨ = −iαΨ , and so, dropping the
overall factor of α,

Jµ = −i
∂L

∂(∂µΨ )
Ψ + i

∂L
∂(∂µΨ ∗)

Ψ ∗ = (cρ, J)

where

ρ = −i
∂L
∂Ψ̇

Ψ + i
∂L
∂Ψ̇ ∗

Ψ ∗ = hΨΨ ∗

and

J = −i
∂L

∂(∇Ψ )
Ψ + i

∂L
∂(∇Ψ ∗)

Ψ ∗ =
ih2

2m
(Ψ∇Ψ ∗ − Ψ ∗∇Ψ )

The equation of motion (the Schrödinger equation) is

ih
∂Ψ

∂t
= − h2

2m
∇2Ψ + V Ψ

so that

∂ρ

∂t
= hΨ ∗

∂Ψ

∂t
+ hΨ

∂Ψ

∂t

∗

=
ih2

2m
Ψ ∗∇2Ψ − ih2

2m
Ψ∇2Ψ ∗

= −∇ · J

A
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which is the conservation equation for the probability density.
(c) The stress-energy tensor is

T µν =
∂L

∂(∂µΨ )
∂νΨ +

∂L
∂(∂µΨ ∗)

∂νΨ ∗ − gµνL

i.e.

T 00 =
∂L
∂Ψ̇

∂Ψ

∂t
+

∂L
∂Ψ̇ ∗

∂Ψ

∂t

∗

−L

=
h

2i

(

−Ψ ∗
∂Ψ

∂t
+ Ψ

∂Ψ

∂t

∗
)

−L

=
h2

2m
∇Ψ · ∇Ψ ∗ + V (r)ΨΨ ∗ (= H)

and

T j0 =
∂L

∂∇jΨ

∂Ψ

∂t
+

∂L
∂∇jΨ ∗

∂Ψ

∂t

∗

=
−h2

2m

(

∇jΨ
∗
∂Ψ

∂t
+ ∇jΨ

∂Ψ

∂t

∗
)

Similarly (N.B. ∂k = −∇k)

T 0k =
h

2i
(Ψ ∗∇kΨ − Ψ∇kΨ

∗)

and

T jk =
h2

2m
(∇jΨ

∗∇kΨ + ∇jΨ∇kΨ
∗) + δjkL

(d) From the above equations we have

∇jT
j0 =

−h2

2m

(

∇2Ψ ∗
∂Ψ

∂t
+ ∇2Ψ

∂Ψ

∂t

∗

+ ∇Ψ ∗ · ∇∂Ψ

∂t
+ ∇Ψ · ∇∂Ψ

∂t

∗
)

Using the Schrödinger equation to eliminate ∇2Ψ and ∇2Ψ ∗, this becomes

∇jT
j0 =

−h2

2m

(

−V Ψ ∗
∂Ψ

∂t
− V Ψ

∂Ψ

∂t

∗

+ ∇Ψ ∗ · ∇∂Ψ

∂t
+ ∇Ψ · ∇∂Ψ

∂t

∗
)

= −∂T 00

∂t

which is the conservation equation for the energy density.
Similarly

∇jT
jk =

h2

2m

(

∇2Ψ ∗∇kΨ + ∇2Ψ∇kΨ
∗ + ∇Ψ ∗ · ∇(∇kΨ ) + ∇Ψ · ∇(∇kΨ

∗)
)

+ ∇kL

=

(

V Ψ ∗ + ih
∂Ψ

∂t

∗
)

∇kΨ +

(

V Ψ − ih
∂Ψ

∂t

)

∇kΨ
∗

A
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+
h

2i

(

∇kΨ
∂Ψ

∂t

∗

−∇kΨ
∗
∂Ψ

∂t
+ Ψ∇k

∂Ψ

∂t

∗

− Ψ ∗∇k

∂Ψ

∂t

)

−V Ψ∇kΨ
∗ − V Ψ ∗∇kΨ − ΨΨ ∗∇kV

=
h

2i

(

−∇kΨ
∂Ψ

∂t

∗

+ ∇kΨ
∗
∂Ψ

∂t
+ Ψ∇k

∂Ψ

∂t

∗

− Ψ ∗∇k

∂Ψ

∂t

)

− ΨΨ ∗∇kV

= −∂T 0k

∂t
+ ΨΨ ∗Fk

where F = −∇V is the applied force. Thus

∂T 0k

∂t
= −∇jT

jk + ΨΨ ∗Fk

which is the expected conservation equation for the momentum density:
Rate of change of mom. density = – (mom. flux) + (prob. density)×force

4 (a) The first term is the free particle action, where m is the (rest-)mass and
τ is the proper time. The second term is the interaction between the particle and
the field, where e is the charge, Aµ is the 4-vector potential and dxµ is the element
of path taken by the particle. The final term is the free field action, where F αβ is
the field-strength tensor, related to the 4-vector potential by

F αβ = ∂αAβ − ∂βAα .

(b) We have S =
∫

L dt, dτ = dt/γ(v) (where γ(v) = 1/
√

1 − v2/c2 and

dxµ = (dxµ/dt)dt, so the Lagrangian for the charged particle is

L = −mc2

γ(v)
− e(φ − A · v)

where φ is the scalar potential and A is the 3-vector potential. The equation of
motion is

d

dt

(

∂L

∂v

)

=
∂L

∂x
= ∇L

i.e.
d

dt
(γmv + eA) = −e∇φ + ∇(A · v)

Now
dA

dt
=

∂A

∂t
+ (v · ∇)A

and
∇(A · v) − (v · ∇)A = v × (∇× A) = v × B

so the equation of motion for the particle is

d

dt
(γmv + eA) = −e∇φ + e v × B

A
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or, since E = −∇φ − ∂A/∂t,

d

dt
(γmv) = e(E + v × B) .

Writing
∫

Aµ dxµ(t) =
∫

Aµ

dxµ

dt
δ3(r − x(t))d3

r dt

the part of L concerning the e.m. field is

Lem = −eAµ

dxµ

dt
δ3(r − x(t)) − 1

4µ0

FαβF αβ

Treating Aα as the field variables, the equation of motion for the e.m. field is

∂µ

(

∂L
∂(∂µAα)

)

=
∂L
∂Aα

Writing
FαβF αβ = gαµgβν(∂αAβ − ∂βAα)(∂µAν − ∂νAµ)

we see that the derivative on the l.h.s. has four equal terms, giving

1

µ0

∂µF
µα = e

dxα

dt
δ3(r − x(t))

The r.h.s. is the 4-current density Jα due to the moving charged particle. Writing
Jµ = (cρ, J), c = 1/

√
µ0ε0 and using the expression given for F αβ, this gives

∇ · E = ρ/ε0 , −ε0∂E/∂t + (∇× B) = µ0 J

which are the inhomogeneous Maxwell equations.
(c) A gauge transformation is performed by adding the derivative of a scalar

function to the 4-vector potential:

Aα → Aα + ∂αf

This does not affect Fαβ since ∂α∂βf = ∂β∂αf . The term involving the current
density changes by

δLem = −(∂αf)Jα

corresponding to a change in the action

δS = −
∫

(∂αf)Jα d4x =
∫

f ∂αJα d4x −
∫

∂α(fJα) d4x

The first term on the r.h.s. is zero since the electromagnetic current is conserved,
∂αJα = 0. The second term can be integrated to give a surface term, which
contributes at most a constant to S, which cannot affect the equations of motion.

A
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(d) A charged scalar field is represented by a complex field ϕ. Its
free-particle Lagrangian density is of the Klein-Gordon form

LKG = (∂µϕ)∗(∂µϕ) − m2ϕ∗ϕ

The interaction with an electromagnetic field is included by replacing the
derivative ∂µ by the covariant derivative

∂µ → Dµ = ∂µ + ieAµ

Thus a scalar field is included by adding the term

LKG = (Dµϕ)∗(Dµϕ) − m2ϕ∗ϕ

to the Lagrangian density. The symmetry under the gauge transformation
Aα → Aα + ∂αf is preserved by making a compensating phase change in the scalar
field:

ϕ → ϕ e−ief .

5 (a) The given Lagrangian density is

L =
1

2

[

(∂µϕ)(∂µϕ) + a ϕ2 + b ϕ4
]

=
1

2





(

∂ϕ

∂t

)2

− (∇ϕ)2 + a ϕ2 + b ϕ4





The equation of motion is

∂µ

(

∂L
∂(∂µϕ)

)

− ∂L
∂ϕ

= 0

i.e.
∂2ϕ

∂t2
−∇2ϕ − a ϕ − 2b ϕ3 = 0

The momentum density is

π =
∂L
∂ϕ̇

=
∂ϕ

∂t

The Hamiltonial density is

H = πϕ̇ − L =
1

2





(

∂ϕ

∂t

)2

+ (∇ϕ)2 − a ϕ2 − b ϕ4





For this to be bounded from below we require either b < 0 or (b = 0 and a < 0).
(b) For constant ϕ we have H = −(a ϕ2 + bϕ4)/2. When b < 0, this has a

minimum at ϕ0 where
∂H
∂ϕ2

= −1

2
(a + 2b ϕ2

0) = 0

A
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i.e. when a > 0 and

ϕ0 = ±
√

−a

2b

The system must choose either the + or − root, so the symmetry is spontaneously
broken when a > 0 and b < 0. The minimum energy density is then

H0 =
1

2

a2

2b
− b

2

(−a

2b

)2

=
a2

8b
< 0

(c) Write ϕ = ϕ0 + χ. Then

a ϕ2 + b ϕ4 = a (ϕ2

0 + 2ϕ0χ + χ2) + b (ϕ4

0 + 4ϕ3

0χ + 6ϕ2

0χ
2 + 4ϕ0χ

3 + χ4)

= a ϕ2

0 + b ϕ4

0 + 2ϕ0(χ(a + 2bϕ2

0) + χ2(a + 6bϕ2

0) + O(χ3)

= a ϕ2

0 + b ϕ4

0 − 2a χ2 + O(χ3)

Hence the Lagrangian density becomes

L =
1

2

[

(∂µχ)(∂µχ) − 2a χ2 + O(χ3)
]

−H0

and the equation of motion for χ is

∂2χ

∂t2
−∇2χ + 2a χ = O(χ2)

For χ small the r.h.s. is negligible and the dispersion relation, obtained by
substituting e.g. χ = cos(kx − ωt), is −ω2 + k2 + 2a = 0, i.e.

ω =
√

k2 + 2a

which corresponds to a real mass m =
√

2a (in natural units) for the quanta of the
field.

6 Question on Green’s functions – see handwritten solution.

END OF PAPER
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The co-ordinate system we will use is as follows: the mass m is at (x, y), the
pendulum makes an angle φ to the downward vertical, the centre of the cylinder
is at (X,R) and the cylinder rotates at angular velocity θ̇ such that Ẋ = Rθ̇.
Then, x = X + c sinφ, y = R − c cosφ and ẋ = Rθ̇ + cφ̇ cosφ, ẏ = cφ̇ sinφ.
The kinetic and rotational energies of the cylinder are both MR2θ̇2/2, and the
potential energy of the mass m is −mga cosφ. The Lagrangian is therefore

L =
m

2

(
R2θ̇2 + c2φ̇2 + 2cRθ̇φ̇ cosφ

)
+MR2θ̇2 +mga cosφ

and the Euler-Lagrange equations are

mc2φ̈+mcRθ̈ cosφ−mcRθ̇φ̇ sinφ+mgc sinφ = 0
(m+ 2M)R2θ̇ +mcRφ̇ cosφ = κ

for some constant κ (as ∂L
∂θ = 0 so ∂L

∂θ̇
is constant). Rearranging the second

equation and differentiating,

θ̈ =
mcR

R2(m+ 2M)

(
−φ̈ cosφ+ φ̇2 sinφ

)
.

Substituting this into the equation of motion for θ,(
mc2 − (mcR)2

R2(m+ 2M)
cos2 φ

)
φ̈ +

2(mcR)2

R2(m+ 2M)
φ̇2 cosφ sinφ

− mcRκ

R2(m+ 2M)
φ̇ sinφ+mgc sinφ = 0

For small oscillations, φ ∼ ε sinωt, φ̇ ∼ εω cosωt, cosφ ∼ 1 and we can ignore
terms proportional to φ̇2 and φ̇ sinφ which are second order in ε. The above
equation then becomes

2Mc

m+ 2M
φ̈+ g sinφ = 0

This is the equation of motion for a pendulum of length λ = 2Mc/(m+ 2M).
The Hamiltonian is

H = pθ θ̇ + pφφ̇− L

=
1
2
mc2φ̇2 +

1
2
mR2θ̇2 +MR2θ̇2 +mcRθ̇φ̇ cosφ−mgc cosφ

which is independent of time and therefore conserved. Initially φ = 0, Ẋ =
Rθ̇ = V , and ẋ = V + cφ̇ = 0 so φ̇ = −V/c. Substituting this into the
Hamiltonian, we see that the initial energy of the system is E = MV 2 −mgc.
We also found earlier that the angular momentum is conserved; in terms of V ,
the initial angular momentum is κ = 2MRV . Equating the initial energy of the
system to the Hamiltonian, substituting the previously derived expressions for
θ̇ and κ, and rearranging we find

1
2
mc2

(
1− m cos2 φ

m+ 2M

)
φ̇2 =

mM

m+ 2M
V 2 −mgc(1− cosφ)

1



Advantages of the Hamiltonian formulation over the Lagrangian formulation
include:

• The Lagrangian formulation leads to N second order differential equations
while the Hamiltonian formulation leads to 2N first order differential equa-
tions, which may be easier to solve.

• The qi in the Lagrangian formulation must be position co-ordinates, whereas
in the Hamiltonian formulation the qi and pi are on an equal footing and
the qi need not be position co-ordinates. This also means that canonical
transformations with mixed momenta and postion can be used to greatly
simplify Hamilton’s equations. (This will be illustrated later in this ques-
tion)

• The Hamiltonian formulation can lead to easily identifiable constants of
motion (for example, if H is independent of t then energy is conserved).
The presence of a conserved quantity immediately simplifies Hamilton’s
equations, whereas no immediate simplification would occur in the La-
grangian formulation.

• There is a simple relationship between the (classical) Hamiltonian formu-
lation and quantum mechanics.

Starting from the Hamiltonian

H(q, p, t) = pq̇ − L(q, q̇, t)

we find the differential dH and substitute using the Euler-Lagrange equation:

dH =
∂H

∂p
dp+

∂H

∂q
dq +

∂H

∂t
dt

= pdq̇ + q̇dp− ∂L

∂q
dq − ∂L

∂q̇
dq̇ − ∂L

∂t
dt

= q̇dp− ṗdq − ∂L

∂t
dt.

Comparing the first and third lines therefore gives Hamilton’s equations,

q̇ =
∂H

∂p
, −ṗ =

∂H

∂q
,

∂H

∂t
= −∂L

∂t
.

We then write the first two of Hamilton’s equations in matrix form,(
q̇
ṗ

)
=
(

0 1
−1 0

)( ∂H
∂q
∂H
∂p

)
and note that our co-ordinate transformation means that(

Q̇

Ṗ

)
=

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)(
q̇
ṗ

)
,

(
∂H
∂q
∂H
∂p

)
=

(
∂Q
∂q

∂P
∂q

∂Q
∂p

∂P
∂p

)( ∂H
∂Q
∂H
∂P

)

1



and so (
Q̇

Ṗ

)
=

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)(
0 1
−1 0

)( ∂Q
∂q

∂P
∂q

∂Q
∂p

∂P
∂p

)( ∂H
∂Q
∂H
∂P

)
.

Performing one of the matrix multiplications, we then note that for Hamilton’s
equations to be obeyed in the Q,P co-ordinates we require(

0 1
−1 0

)
=

(
−∂Q

∂p
∂Q
∂q

−∂P
∂p

∂P
∂q

)(
∂Q
∂q

∂P
∂q

∂Q
∂p

∂P
∂p

)
.

The 2,1 element of this matrix equation then tells us that

−1 = −∂P
∂p

∂Q

∂q
+
∂P

∂q

∂Q

∂p
= −{Q,P}q,p

as required.
For the co-ordinate transformation given in the question,

∂Q

∂q
=

mωp

p2 + (mωq)2
,

∂Q

∂p
=

−mωq
p2 + (mωq)2

,
∂P

∂q
= mωq,

∂P

∂p
=

p

mω

from which it follows that the above Poisson bracket holds. Now, the inverse
co-ordinate transform is

p =
√

2mωP cosQ

q =
√

2mωP
mω

sinQ

so in the Q,P co-ordinate system the Hamiltonian for the simple harmonic
oscillator is H = ωP . Hamilton’s equations are then

Q̇ =
∂H

∂P
= ω, −Ṗ =

∂H

∂Q
= 0

the solutions to which are

Q = ωt+ α, P = β

for some constants α, β. Finally, we rewrite this solution in the q, p co-ordinate
system:

q =
√

2mωβ
mω

cos(ωt+ α), p =
√

2mωβ sin(ωt+ α)

which is the familiar solution for a simple harmonic oscillator.
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The Green’s function (by definition) satisfies the equation(
ih̄
∂

∂t
+
h̄2

2m
∇2

)
G(r, r′; t, t′) = δ3(r − r′)δ(t− t′)

The Fourier transform of the right hand side is 1. To Fourier transform the left
hand side, we will change variables to τ = t− t′, so

ih̄

∫
dτ eizτ/h̄

∂G(τ)
∂t

= −ih̄
∫
iz

h̄
eizτ/h̄G(τ) dτ = zG(r, r′; z)

where we have integrated by parts, noting that the boundary term is zero. Thus,(
z +

h̄2

2m
∇2

)
G(r, r′; z) = δ3(r − r′)

Next, we note that ∇2 ↔ −k2 under Fourier transformation and let p = r − r′

so that

G(r, r′; z) =
∫

dk

(2π)3

eik·(r−r′)

z − h̄2k2/2m

=
1

(2π)3

∫
k2 dk sin θ dθ dφ

eik·p

z − h̄2k2/2m

=
1

(2π)2

∫ ∞
0

k2 dk
z − h̄2k2/2m

∫ π

0

dθ sin θeikp cos θ

=
1

(2π)2

∫ ∞
0

k2 dk
z − h̄2k2/2m

eikp − e−ikp

ikp

=
2m

i(2π)2ph̄2

∫ ∞
−∞

keikp

2mz/h̄2 − k2
dk

where the symmetry properties of the k integrand were used to change the range
of k integration. The integrand has poles at k = ±

√
2mz/h̄. We first consider

the case z = E + iε, which has poles at k1,2 = ±(
√

2m/h̄)E1/2eiε/2 (because
(E1/2eiε/2)2 = Eeiε ' E + iε when ε is small). We will close the contour of
integration with a semi-circle in the upper half plane; the contribution from
the semi-circular arc vanishes due to Jordan’s lemma. Only the pole at k1 is
enclosed which has residue −eik1p/2, using l’Hôpital’s rule. When z = E − iε
the poles move to k1,2 = ±(

√
2m/h̄)E1/2e−iε/2 and the pole enclosed by the

contour is the one at k2 = −(
√

2m/h̄)E1/2e−iε/2 with residue −eik2p. (For the
E < 0 cases, we just need to replace

√
E by i

√
E). We multiply the resiudes by

2πi to arrive at the required integrals, and then use the definition of ∆G given
in the question along with the integrals for the E > 0 cases to arrive at

∆G = −2πi
2m
h̄2

sin
(√

2mE|r − r′|/h̄
)

4π2|r − r′|
Θ(E)

1



For a particle in free space, E = h̄2k2/2m so dk/dE =
√

2m/2h̄
√
E. Each

state in k-space occupies a volume (2π)3, so the number in a sphere of radius k
is n = 4πk3/3(2π)3. Therefore, the density of states is

dn
dE

=
4πk2

(2π)3

dk
dE

=
m

2π2h̄3

√
2mE.

Noting that the limit of sin(x)/x as x tends to zero is 1, comparing this to the
earlier equation for ∆G shows that in this case

ρ(E) = lim
r→r′

∆G(r, r′;E)
−2πi

.

For the last part we again use G = 1/(z − En), so

G =
∑
n

|n〉〈n|
z − En

because the eigenstates |n〉 form a complete set, and

G(r, r′; z) ≡ 〈r|G|r′〉 =
∑
n

〈r|n〉〈n|r′〉
z − En

=
∑
n

φn(r)φ∗n(r′)
z − En

Writing z = E ± is,

G±(r, r′; z) =
∑
n

φn(r)φ∗n(r′)
(E − En)± is

.

Using the identity given in the question,

∆G(r, r;E) = −2πi
∑
n

φn(r)φ∗n(r′)δ(E − En)

and so

ρ(E) = lim
r→r′

∆G(r, r′;E)
−2πi

as required.
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