NATURAL SCIENCES TRIPOS Part II

Wednesday 16 January 2008 10.30am to 12.30pm

THEORETICAL PHYSICS I - Solutions

1 Question on Lagrangian mechanics — see handwritten solution.
2 Question on Hamiltonian mechanics — see handwritten solution.

3 (a) The given Lagrangian density is
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(b) The Noether 4-current is
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The equation of motion (the Schrédinger equation) is
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which is the conservation equation for the probability density.
(c) The stress-energy tensor is
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(d) From the above equations we have
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which is the conservation equation for the energy density.
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which is the expected conservation equation for the momentum density:
Rate of change of mom. density = — (mom. flux) + (prob. density)x force
4 (a) The first term is the free particle action, where m is the (rest-)mass and

7 is the proper time. The second term is the interaction between the particle and
the field, where e is the charge, A* is the 4-vector potential and dz* is the element
of path taken by the particle. The final term is the free field action, where F*? is
the field-strength tensor, related to the 4-vector potential by

FoP = 09*AP — 9P A
(b) We have S = [ Ldt, dr = dt/~v(v) (where y(v) =1/4/1 —v?/c? and

dx* = (dz*/dt)dt, so the Lagrangian for the charged particle is
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so the equation of motion for the particle is
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or, since E = —V¢ — 0A/0t,

i(vmv) =e(E+vxB).
Writing
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the part of £ concerning the e.m. field is
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Treating A, as the field variables, the equation of motion for the e.m. field is
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we see that the derivative on the Lh.s. has four equal terms, giving
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The r.h.s. is the 4-current density J* due to the moving charged particle. Writing
JH = (cp,J), ¢ = 1/ /oo and using the expression given for F*?  this gives
V-FE = ,0/60 s —503E/3t—|— (V X B) = /L()J

which are the inhomogeneous Maxwell equations.
(c) A gauge transformation is performed by adding the derivative of a scalar
function to the 4-vector potential:

Aa = Ao+ 0o f

This does not affect Fi,3 since 0,03f = 030, f. The term involving the current
density changes by
Lo = —(0af)J*

corresponding to a change in the action

58 = —/(8af)Jad4x:/f8aJ“d4x—/8a(f,]“) dz

The first term on the r.h.s. is zero since the electromagnetic current is conserved,
0,J“ = 0. The second term can be integrated to give a surface term, which
contributes at most a constant to S, which cannot affect the equations of motion.
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(d) A charged scalar field is represented by a complex field . Its
free-particle Lagrangian density is of the Klein-Gordon form

Lrc = (0,0)*(0"p) —m>p*p

The interaction with an electromagnetic field is included by replacing the
derivative 0, by the covariant derivative

Oy — D, =0, +ieA,
Thus a scalar field is included by adding the term
Lrc = (Dup) (Do) = m*p™¢

to the Lagrangian density. The symmetry under the gauge transformation
Ay, — Ay + 0. f is preserved by making a compensating phase change in the scalar
field:
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5 (a) The given Lagrangian density is
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The equation of motion is
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The Hamiltonial density is
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For this to be bounded from below we require either b < 0 or (b =0 and a < 0).
(b) For constant ¢ we have H = —(a p? + bp?)/2. When b < 0, this has a
minimum at ¢y where
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90 = —5(a+2bgj) =0
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i.e. when a > 0 and
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The system must choose either the + or — root, so the symmetry is spontaneously
broken when a > 0 and b < 0. The minimum energy density is then
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(c) Write ¢ = o + x. Then

ap® +bp* = a(ph+200x + x%) + b (s + 4ppx + 605x> + dpox” + x*)
= apf+bog+ 2p0(x(a+2bp3) + x*(a+ 6bpy) + O(x)
= apj+byp;—2ax"+ 0%

Hence the Lagrangian density becomes
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and the equation of motion for y is

82
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For x small the r.h.s. is negligible and the dispersion relation, obtained by
substituting e.g. x = cos(kz — wt), is —w? + k? + 2a = 0, i.e.

w=Vk?+2a

which corresponds to a real mass m = v/2a (in natural units) for the quanta of the
field.

6 Question on Green’s functions — see handwritten solution.

END OF PAPER



The co-ordinate system we will use is as follows: the mass m is at (z,y), the
pendulum makes an angle ¢ to the downward vertical, the centre of the cylinder
is at (X, R) and the cylinder rotates at angular velocity 6 such that X = R6.
Then, = X 4+ c¢sing, y = R — ccos¢ and & = RO + cgf)cosqs, Y = cq.SsingZ).
The kinetic and rotational energies of the cylinder are both M R262 /2, and the
potential energy of the mass m is —mga cos ¢. The Lagrangian is therefore

L= % (R292 + 2% + QCRéé cos (b) + M R?6* + mga cos ¢
and the Euler-Lagrange equations are

chg.b. + mcRA cos o — mcRéd) sin¢ + mgesing = 0
(m +2M)R*0 + mcRpcosd =

for some constant x (as %{; = 0 so % is constant). Rearranging the second

equation and differentiating,

0 = m (7¢COS¢) + ¢2 Sln¢) .

Substituting this into the equation of motion for 6,

9 (mcR)? P - 2(mcR)? ., L
<mc —mc% d))qb + m(b cos ¢ sin ¢

mcRk .
— ————¢sing +mgcesing =0
R2(m + 207) VS @+ myesing
For small oscillations, ¢ ~ esinwt, ¢ ~ ewcoswt, cosp ~ 1 and we can ignore
terms proportional to ¢? and ¢sin ¢ which are second order in e. The above

equation then becomes
2Mc

m + 2M
This is the equation of motion for a pendulum of length A = 2M¢/(m + 2M).
The Hamiltonian is

H = p99'+p¢qf}—L

1 . 1 . . ..
= 5m02¢2 + imR292 + M R%6% + mcRO cos ¢ — mge cos ¢

b+ gsing =0

which is independent of time and therefore conserved. Initially ¢ = 0, X =
RO =V, and &z =V +¢cp = 0so ¢ = —V/c. Substituting this into the
Hamiltonian, we see that the initial energy of the system is E = MV? — mgc.
We also found earlier that the angular momentum is conserved; in terms of V,
the initial angular momentum is k = 2M RV. Equating the initial energy of the
system to the Hamiltonian, substituting the previously derived expressions for
0 and k, and rearranging we find
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Advantages of the Hamiltonian formulation over the Lagrangian formulation
include:

e The Lagrangian formulation leads to N second order differential equations
while the Hamiltonian formulation leads to 2N first order differential equa-
tions, which may be easier to solve.

e The g; in the Lagrangian formulation must be position co-ordinates, whereas
in the Hamiltonian formulation the ¢; and p; are on an equal footing and
the ¢; need not be position co-ordinates. This also means that canonical
transformations with mixed momenta and postion can be used to greatly
simplify Hamilton’s equations. (This will be illustrated later in this ques-
tion)

e The Hamiltonian formulation can lead to easily identifiable constants of
motion (for example, if H is independent of ¢ then energy is conserved).
The presence of a conserved quantity immediately simplifies Hamilton’s
equations, whereas no immediate simplification would occur in the La-
grangian formulation.

e There is a simple relationship between the (classical) Hamiltonian formu-
lation and quantum mechanics.

Starting from the Hamiltonian
H(Qapv t) :pq - L(Q7Q7t)
we find the differential dH and substitute using the Euler-Lagrange equation:
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Comparing the first and third lines therefore gives Hamilton’s equations,
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We then write the first two of Hamilton’s equations in matrix form,

(D=2 0(#)

and note that our co-ordinate transformation means that
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dq dp op op op oP



and so
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Performing one of the matrix multiplications, we then note that for Hamilton’s
equations to be obeyed in the @, P co-ordinates we require

01 _0q 0@\ [ 0@ or
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The 2,1 element of this matrix equation then tells us that

0P 0@ 0P 0Q
ap aq + aq ap {Q? }q,:D

as required.
For the co-ordinate transformation given in the question,
0Q mwp 0Q —mwq oP OP P

aq - p2 + (qu)Qv ap - p2 + (qu>2, aq = qua aip = %

from which it follows that the above Poisson bracket holds. Now, the inverse
co-ordinate transform is

p = V2mwPcos@
V2mwP |
q = ——sin@
mw

so in the @, P co-ordinate system the Hamiltonian for the simple harmonic
oscillator is H = wP. Hamilton’s equations are then
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the solutions to which are
Q=wt+a, P=p

for some constants «, 5. Finally, we rewrite this solution in the ¢, p co-ordinate

system:
V2
q= v2mwl cos(wt + ), p=+/2mwfsin(wt + a)
mw

which is the familiar solution for a simple harmonic oscillator.



The Green’s function (by definition) satisfies the equation
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The Fourier transform of the right hand side is 1. To Fourier transform the left
hand side, we will change variables to 7 =t — t/, so

ih/dTei”/h%(tT) = —ih/ %ei”/hG(T) dr = 2G(r,7’;2)

where we have integrated by parts, noting that the boundary term is zero. Thus,
h2
— V% G(r, 7' 2) =83(r — o'
<Z+2m > (r,r";2) (r—r')

Next, we note that V2 «» —k? under Fourier transformation and let p = r — r/
so that
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where the symmetry properties of the k integrand were used to change the range
of k integration. The integrand has poles at k = +v/2mz/h. We first consider
the case z = F + ie, which has poles at ky o = +(v/2m/h)E'/2e'/2 (because
(EY/2¢%€/?)2 = Ee'* ~ E + ie when ¢ is small). We will close the contour of
integration with a semi-circle in the upper half plane; the contribution from
the semi-circular arc vanishes due to Jordan’s lemma. Only the pole at k; is
enclosed which has residue —e™17/2, using 'Hopital’s rule. When z = E — ie
the poles move to ky o = +(v/2m/h)EY/2e7%/2 and the pole enclosed by the
contour is the one at ky = —(v/2m/h)E'/?e~%/? with residue —e™*2P. (For the
F < 0 cases, we just need to replace v/E by iv/E). We multiply the resiudes by
2mi to arrive at the required integrals, and then use the definition of AG given
in the question along with the integrals for the £ > 0 cases to arrive at
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For a particle in free space, E = h*k?/2m so dk/dE = v/2m/2hVE. Each
state in k-space occupies a volume (27)2, so the number in a sphere of radius k
is n = 4nk3/3(27)3. Therefore, the density of states is

dn ATk dk
dE ~ (2n)3dE
212 R

Noting that the limit of sin(z)/z as = tends to zero is 1, comparing this to the
earlier equation for AG shows that in this case

/.
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For the last part we again use G = 1/(z — E,,), so
) {n|
G = —
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because the eigenstates |n) form a complete set, and
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Writing z = E +1s,
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Using the identity given in the question,
AG(r,r;E) = =210 Y dn(r)os(r')(E — Ey)

and so AG ' g
p(E) = lim 7(7’,1", )

r—r’ —27T’L

as required.



