THEORETICAL PHYSICS I - Solutions

1 Question on Lagrangian mechanics - see handwritten solution.

2 Question on Hamiltonian mechanics - see handwritten solution.

3 (a) The given Lagrangian density is

$$
\mathcal{L}=\frac{\hbar}{2 i}\left(\Psi \frac{\partial \Psi^{*}}{\partial t}-\Psi^{*} \frac{\partial \Psi}{\partial t}\right)-\frac{\hbar^{2}}{2 m} \nabla \Psi \cdot \nabla \Psi^{*}-V(\boldsymbol{r}) \Psi \Psi^{*}
$$

Under $\Psi \rightarrow \Psi e^{-i \alpha}, \Psi^{*} \rightarrow \Psi^{*} e^{+i \alpha}$, where α is a real constant, each term is unchanged, so there is a global phase symmetry.
(b) The Noether 4-current is

$$
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi\right)} \delta \Psi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi^{*}\right)} \delta \Psi^{*}
$$

where $\delta \Psi$ is the small change in Ψ. In this case $\delta \Psi=-i \alpha \Psi$, and so, dropping the overall factor of α,

$$
J^{\mu}=-i \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi\right)} \Psi+i \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi^{*}\right)} \Psi^{*}=(c \rho, \boldsymbol{J})
$$

where

$$
\rho=-i \frac{\partial \mathcal{L}}{\partial \dot{\Psi}} \Psi+i \frac{\partial \mathcal{L}}{\partial \dot{\Psi}^{*}} \Psi^{*}=\hbar \Psi \Psi^{*}
$$

and

$$
\boldsymbol{J}=-i \frac{\partial \mathcal{L}}{\partial(\nabla \Psi)} \Psi+i \frac{\partial \mathcal{L}}{\partial\left(\nabla \Psi^{*}\right)} \Psi^{*}=\frac{i \hbar^{2}}{2 m}\left(\Psi \nabla \Psi^{*}-\Psi^{*} \nabla \Psi\right)
$$

The equation of motion (the Schrödinger equation) is

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi
$$

so that

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =\hbar \Psi^{*} \frac{\partial \Psi}{\partial t}+\hbar \Psi \frac{\partial \Psi^{*}}{\partial t} \\
& =\frac{i \hbar^{2}}{2 m} \Psi^{*} \nabla^{2} \Psi-\frac{i \hbar^{2}}{2 m} \Psi \nabla^{2} \Psi^{*} \\
& =-\nabla \cdot \boldsymbol{J}
\end{aligned}
$$

(TURN OVER for continuation of question 3
which is the conservation equation for the probability density.
(c) The stress-energy tensor is

$$
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi\right)} \partial^{\nu} \Psi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Psi^{*}\right)} \partial^{\nu} \Psi^{*}-g^{\mu \nu} \mathcal{L}
$$

i.e.

$$
\begin{aligned}
T^{00} & =\frac{\partial \mathcal{L}}{\partial \dot{\Psi}} \frac{\partial \Psi}{\partial t}+\frac{\partial \mathcal{L}}{\partial \dot{\Psi}^{*}} \frac{\partial \Psi^{*}}{\partial t}-\mathcal{L} \\
& =\frac{\hbar}{2 i}\left(-\Psi^{*} \frac{\partial \Psi}{\partial t}+\Psi \frac{\partial \Psi^{*}}{\partial t}\right)-\mathcal{L} \\
& =\frac{\hbar^{2}}{2 m} \nabla \Psi \cdot \nabla \Psi^{*}+V(\boldsymbol{r}) \Psi \Psi^{*} \quad(=\mathcal{H})
\end{aligned}
$$

and

$$
\begin{aligned}
T^{j 0} & =\frac{\partial \mathcal{L}}{\partial \nabla_{j} \Psi} \frac{\partial \Psi}{\partial t}+\frac{\partial \mathcal{L}}{\partial \nabla_{j} \Psi^{*}} \frac{\partial \Psi^{*}}{\partial t} \\
& =\frac{-\hbar^{2}}{2 m}\left(\nabla_{j} \Psi^{*} \frac{\partial \Psi}{\partial t}+\nabla_{j} \Psi \frac{\partial \Psi^{*}}{\partial t}\right)
\end{aligned}
$$

Similarly (N.B. $\partial^{k}=-\nabla_{k}$)

$$
T^{0 k}=\frac{\hbar}{2 i}\left(\Psi^{*} \nabla_{k} \Psi-\Psi \nabla_{k} \Psi^{*}\right)
$$

and

$$
T^{j k}=\frac{\hbar^{2}}{2 m}\left(\nabla_{j} \Psi^{*} \nabla_{k} \Psi+\nabla_{j} \Psi \nabla_{k} \Psi^{*}\right)+\delta_{j k} \mathcal{L}
$$

(d) From the above equations we have

$$
\nabla_{j} T^{j 0}=\frac{-\hbar^{2}}{2 m}\left(\nabla^{2} \Psi^{*} \frac{\partial \Psi}{\partial t}+\nabla^{2} \Psi \frac{\partial \Psi^{*}}{\partial t}+\nabla \Psi^{*} \cdot \nabla \frac{\partial \Psi}{\partial t}+\nabla \Psi \cdot \nabla \frac{\partial \Psi^{*}}{\partial t}\right)
$$

Using the Schrödinger equation to eliminate $\nabla^{2} \Psi$ and $\nabla^{2} \Psi^{*}$, this becomes

$$
\nabla_{j} T^{j 0}=\frac{-\hbar^{2}}{2 m}\left(-V \Psi^{*} \frac{\partial \Psi}{\partial t}-V \Psi{\frac{\partial \Psi^{*}}{\partial t}}^{*}+\nabla \Psi^{*} \cdot \nabla \frac{\partial \Psi}{\partial t}+\nabla \Psi \cdot \nabla \frac{\partial \Psi^{*}}{\partial t}\right)=-\frac{\partial T^{00}}{\partial t}
$$

which is the conservation equation for the energy density.
Similarly

$$
\begin{aligned}
\nabla_{j} T^{j k} & =\frac{\hbar^{2}}{2 m}\left(\nabla^{2} \Psi^{*} \nabla_{k} \Psi+\nabla^{2} \Psi \nabla_{k} \Psi^{*}+\nabla \Psi^{*} \cdot \nabla\left(\nabla_{k} \Psi\right)+\nabla \Psi \cdot \nabla\left(\nabla_{k} \Psi^{*}\right)\right)+\nabla_{k} \mathcal{L} \\
& =\left(V \Psi^{*}+i \hbar \frac{\partial \Psi^{*}}{\partial t}\right) \nabla_{k} \Psi+\left(V \Psi-i \hbar \frac{\partial \Psi}{\partial t}\right) \nabla_{k} \Psi^{*}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\hbar}{2 i}\left(\nabla_{k} \Psi \frac{\partial \Psi^{*}}{\partial t}-\nabla_{k} \Psi^{*} \frac{\partial \Psi}{\partial t}+\Psi \nabla_{k} \frac{\partial \Psi^{*}}{\partial t}-\Psi^{*} \nabla_{k} \frac{\partial \Psi}{\partial t}\right) \\
& -V \Psi \nabla_{k} \Psi^{*}-V \Psi^{*} \nabla_{k} \Psi-\Psi \Psi^{*} \nabla_{k} V \\
= & \frac{\hbar}{2 i}\left(-\nabla_{k} \Psi \frac{\partial \Psi^{*}}{\partial t}+\nabla_{k} \Psi^{*} \frac{\partial \Psi}{\partial t}+\Psi \nabla_{k} \frac{\partial \Psi^{*}}{\partial t}-\Psi^{*} \nabla_{k} \frac{\partial \Psi}{\partial t}\right)-\Psi \Psi^{*} \nabla_{k} V \\
= & -\frac{\partial T^{0 k}}{\partial t}+\Psi \Psi^{*} F_{k}
\end{aligned}
$$

where $\boldsymbol{F}=-\nabla V$ is the applied force. Thus

$$
\frac{\partial T^{0 k}}{\partial t}=-\nabla_{j} T^{j k}+\Psi \Psi^{*} F_{k}
$$

which is the expected conservation equation for the momentum density:
Rate of change of mom. density $=-($ mom. flux $)+($ prob. density $) \times$ force

4 (a) The first term is the free particle action, where m is the (rest-)mass and τ is the proper time. The second term is the interaction between the particle and the field, where e is the charge, A^{μ} is the 4 -vector potential and $d x^{\mu}$ is the element of path taken by the particle. The final term is the free field action, where $F^{\alpha \beta}$ is the field-strength tensor, related to the 4 -vector potential by

$$
F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}
$$

(b) We have $S=\int L d t, d \tau=d t / \gamma(v)\left(\right.$ where $\gamma(v)=1 / \sqrt{1-v^{2} / c^{2}}$ and $d x^{\mu}=\left(d x^{\mu} / d t\right) d t$, so the Lagrangian for the charged particle is

$$
L=-\frac{m c^{2}}{\gamma(v)}-e(\phi-\boldsymbol{A} \cdot \boldsymbol{v})
$$

where ϕ is the scalar potential and \boldsymbol{A} is the 3 -vector potential. The equation of motion is

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \boldsymbol{v}}\right)=\frac{\partial L}{\partial \boldsymbol{x}}=\nabla L
$$

i.e.

$$
\frac{d}{d t}(\gamma m \boldsymbol{v}+e \boldsymbol{A})=-e \nabla \phi+\nabla(\boldsymbol{A} \cdot \boldsymbol{v})
$$

Now

$$
\frac{d \boldsymbol{A}}{d t}=\frac{\partial \boldsymbol{A}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{A}
$$

and

$$
\nabla(\boldsymbol{A} \cdot \boldsymbol{v})-(\boldsymbol{v} \cdot \nabla) \boldsymbol{A}=\boldsymbol{v} \times(\nabla \times \boldsymbol{A})=\boldsymbol{v} \times \boldsymbol{B}
$$

so the equation of motion for the particle is

$$
\frac{d}{d t}(\gamma m \boldsymbol{v}+e \boldsymbol{A})=-e \nabla \phi+e \boldsymbol{v} \times \boldsymbol{B}
$$

or, since $\boldsymbol{E}=-\nabla \phi-\partial \boldsymbol{A} / \partial t$,

$$
\frac{d}{d t}(\gamma m \boldsymbol{v})=e(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) .
$$

Writing

$$
\int A_{\mu} d x^{\mu}(t)=\int A_{\mu} \frac{d x^{\mu}}{d t} \delta^{3}(\boldsymbol{r}-\boldsymbol{x}(t)) d^{3} \boldsymbol{r} d t
$$

the part of \mathcal{L} concerning the e.m. field is

$$
\mathcal{L}_{e m}=-e A_{\mu} \frac{d x^{\mu}}{d t} \delta^{3}(\boldsymbol{r}-\boldsymbol{x}(t))-\frac{1}{4 \mu_{0}} F_{\alpha \beta} F^{\alpha \beta}
$$

Treating A_{α} as the field variables, the equation of motion for the e.m. field is

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\alpha}\right)}\right)=\frac{\partial \mathcal{L}}{\partial A_{\alpha}}
$$

Writing

$$
F_{\alpha \beta} F^{\alpha \beta}=g^{\alpha \mu} g^{\beta \nu}\left(\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)
$$

we see that the derivative on the l.h.s. has four equal terms, giving

$$
\frac{1}{\mu_{0}} \partial_{\mu} F^{\mu \alpha}=e \frac{d x^{\alpha}}{d t} \delta^{3}(\boldsymbol{r}-\boldsymbol{x}(t))
$$

The r.h.s. is the 4 -current density J^{α} due to the moving charged particle. Writing $J^{\mu}=(c \rho, \boldsymbol{J}), c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ and using the expression given for $F^{\alpha \beta}$, this gives

$$
\nabla \cdot \boldsymbol{E}=\rho / \varepsilon_{0}, \quad-\varepsilon_{0} \partial \boldsymbol{E} / \partial t+(\nabla \times \boldsymbol{B})=\mu_{0} \boldsymbol{J}
$$

which are the inhomogeneous Maxwell equations.
(c) A gauge transformation is performed by adding the derivative of a scalar function to the 4 -vector potential:

$$
A_{\alpha} \rightarrow A_{\alpha}+\partial_{\alpha} f
$$

This does not affect $F_{\alpha \beta}$ since $\partial_{\alpha} \partial_{\beta} f=\partial_{\beta} \partial_{\alpha} f$. The term involving the current density changes by

$$
\delta \mathcal{L}_{e m}=-\left(\partial_{\alpha} f\right) J^{\alpha}
$$

corresponding to a change in the action

$$
\delta S=-\int\left(\partial_{\alpha} f\right) J^{\alpha} d^{4} x=\int f \partial_{\alpha} J^{\alpha} d^{4} x-\int \partial_{\alpha}\left(f J^{\alpha}\right) d^{4} x
$$

The first term on the r.h.s. is zero since the electromagnetic current is conserved, $\partial_{\alpha} J^{\alpha}=0$. The second term can be integrated to give a surface term, which contributes at most a constant to S, which cannot affect the equations of motion.
(d) A charged scalar field is represented by a complex field φ. Its free-particle Lagrangian density is of the Klein-Gordon form

$$
\mathcal{L}_{K G}=\left(\partial_{\mu} \varphi\right)^{*}\left(\partial^{\mu} \varphi\right)-m^{2} \varphi^{*} \varphi
$$

The interaction with an electromagnetic field is included by replacing the derivative ∂_{μ} by the covariant derivative

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i e A_{\mu}
$$

Thus a scalar field is included by adding the term

$$
\mathcal{L}_{K G}=\left(D_{\mu} \varphi\right)^{*}\left(D^{\mu} \varphi\right)-m^{2} \varphi^{*} \varphi
$$

to the Lagrangian density. The symmetry under the gauge transformation $A_{\alpha} \rightarrow A_{\alpha}+\partial_{\alpha} f$ is preserved by making a compensating phase change in the scalar field:

$$
\varphi \rightarrow \varphi e^{-i e f}
$$

5 (a) The given Lagrangian density is

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left[\left(\partial^{\mu} \varphi\right)\left(\partial_{\mu} \varphi\right)+a \varphi^{2}+b \varphi^{4}\right] \\
& =\frac{1}{2}\left[\left(\frac{\partial \varphi}{\partial t}\right)^{2}-(\nabla \varphi)^{2}+a \varphi^{2}+b \varphi^{4}\right]
\end{aligned}
$$

The equation of motion is

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \varphi}=0
$$

i.e.

$$
\frac{\partial^{2} \varphi}{\partial t^{2}}-\nabla^{2} \varphi-a \varphi-2 b \varphi^{3}=0
$$

The momentum density is

$$
\pi=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=\frac{\partial \varphi}{\partial t}
$$

The Hamiltonial density is

$$
\mathcal{H}=\pi \dot{\varphi}-\mathcal{L}=\frac{1}{2}\left[\left(\frac{\partial \varphi}{\partial t}\right)^{2}+(\nabla \varphi)^{2}-a \varphi^{2}-b \varphi^{4}\right]
$$

For this to be bounded from below we require either $b<0$ or $(b=0$ and $a<0)$.
(b) For constant φ we have $\mathcal{H}=-\left(a \varphi^{2}+b \varphi^{4}\right) / 2$. When $b<0$, this has a minimum at φ_{0} where

$$
\frac{\partial \mathcal{H}}{\partial \varphi^{2}}=-\frac{1}{2}\left(a+2 b \varphi_{0}^{2}\right)=0
$$

i.e. when $a>0$ and

$$
\varphi_{0}= \pm \sqrt{\frac{-a}{2 b}}
$$

The system must choose either the + or - root, so the symmetry is spontaneously broken when $a>0$ and $b<0$. The minimum energy density is then

$$
\mathcal{H}_{0}=\frac{1}{2} \frac{a^{2}}{2 b}-\frac{b}{2}\left(\frac{-a}{2 b}\right)^{2}=\frac{a^{2}}{8 b}<0
$$

(c) Write $\varphi=\varphi_{0}+\chi$. Then

$$
\begin{aligned}
a \varphi^{2}+b \varphi^{4} & =a\left(\varphi_{0}^{2}+2 \varphi_{0} \chi+\chi^{2}\right)+b\left(\varphi_{0}^{4}+4 \varphi_{0}^{3} \chi+6 \varphi_{0}^{2} \chi^{2}+4 \varphi_{0} \chi^{3}+\chi^{4}\right) \\
& =a \varphi_{0}^{2}+b \varphi_{0}^{4}+2 \varphi_{0}\left(\chi\left(a+2 b \varphi_{0}^{2}\right)+\chi^{2}\left(a+6 b \varphi_{0}^{2}\right)+\mathcal{O}\left(\chi^{3}\right)\right. \\
& =a \varphi_{0}^{2}+b \varphi_{0}^{4}-2 a \chi^{2}+\mathcal{O}\left(\chi^{3}\right)
\end{aligned}
$$

Hence the Lagrangian density becomes

$$
\mathcal{L}=\frac{1}{2}\left[\left(\partial^{\mu} \chi\right)\left(\partial_{\mu} \chi\right)-2 a \chi^{2}+\mathcal{O}\left(\chi^{3}\right)\right]-\mathcal{H}_{0}
$$

and the equation of motion for χ is

$$
\frac{\partial^{2} \chi}{\partial t^{2}}-\nabla^{2} \chi+2 a \chi=\mathcal{O}\left(\chi^{2}\right)
$$

For χ small the r.h.s. is negligible and the dispersion relation, obtained by substituting e.g. $\chi=\cos (k x-\omega t)$, is $-\omega^{2}+k^{2}+2 a=0$, i.e.

$$
\omega=\sqrt{k^{2}+2 a}
$$

which corresponds to a real mass $m=\sqrt{2 a}$ (in natural units) for the quanta of the field.

6 Question on Green's functions - see handwritten solution.

END OF PAPER

The co-ordinate system we will use is as follows: the mass m is at (x, y), the pendulum makes an angle ϕ to the downward vertical, the centre of the cylinder is at (X, R) and the cylinder rotates at angular velocity $\dot{\theta}$ such that $\dot{X}=R \dot{\theta}$. Then, $x=X+c \sin \phi, y=R-c \cos \phi$ and $\dot{x}=R \dot{\theta}+c \dot{\phi} \cos \phi, \dot{y}=c \dot{\phi} \sin \phi$. The kinetic and rotational energies of the cylinder are both $M R^{2} \dot{\theta}^{2} / 2$, and the potential energy of the mass m is $-m g a \cos \phi$. The Lagrangian is therefore

$$
L=\frac{m}{2}\left(R^{2} \dot{\theta}^{2}+c^{2} \dot{\phi}^{2}+2 c R \dot{\theta} \dot{\phi} \cos \phi\right)+M R^{2} \dot{\theta}^{2}+m g a \cos \phi
$$

and the Euler-Lagrange equations are

$$
\begin{aligned}
m c^{2} \ddot{\phi}+m c R \ddot{\theta} \cos \phi-m c R \dot{\theta} \dot{\phi} \sin \phi+m g c \sin \phi & =0 \\
(m+2 M) R^{2} \dot{\theta}+m c R \dot{\phi} \cos \phi & =\kappa
\end{aligned}
$$

for some constant κ (as $\frac{\partial L}{\partial \theta}=0$ so $\frac{\partial L}{\partial \dot{\theta}}$ is constant). Rearranging the second equation and differentiating,

$$
\ddot{\theta}=\frac{m c R}{R^{2}(m+2 M)}\left(-\ddot{\phi} \cos \phi+\dot{\phi}^{2} \sin \phi\right) .
$$

Substituting this into the equation of motion for θ,

$$
\begin{aligned}
\left(m c^{2}-\frac{(m c R)^{2}}{R^{2}(m+2 M)} \cos ^{2} \phi\right) \ddot{\phi} & +\frac{2(m c R)^{2}}{R^{2}(m+2 M)} \dot{\phi}^{2} \cos \phi \sin \phi \\
& -\frac{m c R \kappa}{R^{2}(m+2 M)} \dot{\phi} \sin \phi+m g c \sin \phi=0
\end{aligned}
$$

For small oscillations, $\phi \sim \epsilon \sin \omega t, \dot{\phi} \sim \epsilon \omega \cos \omega t, \cos \phi \sim 1$ and we can ignore terms proportional to $\dot{\phi}^{2}$ and $\dot{\phi} \sin \phi$ which are second order in ϵ. The above equation then becomes

$$
\frac{2 M c}{m+2 M} \ddot{\phi}+g \sin \phi=0
$$

This is the equation of motion for a pendulum of length $\lambda=2 M c /(m+2 M)$.
The Hamiltonian is

$$
\begin{aligned}
H & =p_{\theta} \dot{\theta}+p_{\phi} \dot{\phi}-L \\
& =\frac{1}{2} m c^{2} \dot{\phi}^{2}+\frac{1}{2} m R^{2} \dot{\theta}^{2}+M R^{2} \dot{\theta}^{2}+m c R \dot{\theta} \dot{\phi} \cos \phi-m g c \cos \phi
\end{aligned}
$$

which is independent of time and therefore conserved. Initially $\phi=0, \dot{X}=$ $R \dot{\theta}=V$, and $\dot{x}=V+c \dot{\phi}=0$ so $\dot{\phi}=-V / c$. Substituting this into the Hamiltonian, we see that the initial energy of the system is $E=M V^{2}-m g c$. We also found earlier that the angular momentum is conserved; in terms of V, the initial angular momentum is $\kappa=2 M R V$. Equating the initial energy of the system to the Hamiltonian, substituting the previously derived expressions for $\dot{\theta}$ and κ, and rearranging we find

$$
\frac{1}{2} m c^{2}\left(1-\frac{m \cos ^{2} \phi}{m+2 M}\right) \dot{\phi}^{2}=\frac{m M}{m+2 M} V^{2}-m g c(1-\cos \phi)
$$

Advantages of the Hamiltonian formulation over the Lagrangian formulation include:

- The Lagrangian formulation leads to N second order differential equations while the Hamiltonian formulation leads to $2 N$ first order differential equations, which may be easier to solve.
- The q_{i} in the Lagrangian formulation must be position co-ordinates, whereas in the Hamiltonian formulation the q_{i} and p_{i} are on an equal footing and the q_{i} need not be position co-ordinates. This also means that canonical transformations with mixed momenta and postion can be used to greatly simplify Hamilton's equations. (This will be illustrated later in this question)
- The Hamiltonian formulation can lead to easily identifiable constants of motion (for example, if H is independent of t then energy is conserved). The presence of a conserved quantity immediately simplifies Hamilton's equations, whereas no immediate simplification would occur in the Lagrangian formulation.
- There is a simple relationship between the (classical) Hamiltonian formulation and quantum mechanics.

Starting from the Hamiltonian

$$
H(q, p, t)=p \dot{q}-L(q, \dot{q}, t)
$$

we find the differential $\mathrm{d} H$ and substitute using the Euler-Lagrange equation:

$$
\begin{aligned}
\mathrm{d} H & =\frac{\partial H}{\partial p} \mathrm{~d} p+\frac{\partial H}{\partial q} \mathrm{~d} q+\frac{\partial H}{\partial t} \mathrm{~d} t \\
& =p \mathrm{~d} \dot{q}+\dot{q} \mathrm{~d} p-\frac{\partial L}{\partial q} \mathrm{~d} q-\frac{\partial L}{\partial \dot{q}} \mathrm{~d} \dot{q}-\frac{\partial L}{\partial t} \mathrm{~d} t \\
& =\dot{q} \mathrm{~d} p-\dot{p} \mathrm{~d} q-\frac{\partial L}{\partial t} \mathrm{~d} t .
\end{aligned}
$$

Comparing the first and third lines therefore gives Hamilton's equations,

$$
\dot{q}=\frac{\partial H}{\partial p}, \quad-\dot{p}=\frac{\partial H}{\partial q}, \quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} .
$$

We then write the first two of Hamilton's equations in matrix form,

$$
\binom{\dot{q}}{\dot{p}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial q}}{\frac{\partial H}{\partial p}}
$$

and note that our co-ordinate transformation means that

$$
\binom{\dot{Q}}{\dot{P}}=\left(\begin{array}{cc}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right)\binom{\dot{q}}{\dot{p}}, \quad\binom{\frac{\partial H}{\partial q}}{\frac{\partial H}{\partial p}}=\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial P}{\partial q} \\
\frac{\partial Q}{\partial p} & \frac{\partial P}{\partial p}
\end{array}\right)\binom{\frac{\partial H}{\partial Q}}{\frac{\partial H}{\partial P}}
$$

and so

$$
\binom{\dot{Q}}{\dot{P}}=\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial P}{\partial q} \\
\frac{\partial Q}{\partial p} & \frac{\partial P}{\partial p}
\end{array}\right)\binom{\frac{\partial H}{\partial Q}}{\frac{\partial H}{\partial P}} .
$$

Performing one of the matrix multiplications, we then note that for Hamilton's equations to be obeyed in the Q, P co-ordinates we require

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-\frac{\partial Q}{\partial p} & \frac{\partial Q}{\partial q} \\
-\frac{\partial P}{\partial p} & \frac{\partial P}{\partial q}
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial P}{\partial q} \\
\frac{\partial Q}{\partial p} & \frac{\partial P}{\partial p}
\end{array}\right) .
$$

The 2,1 element of this matrix equation then tells us that

$$
-1=-\frac{\partial P}{\partial p} \frac{\partial Q}{\partial q}+\frac{\partial P}{\partial q} \frac{\partial Q}{\partial p}=-\{Q, P\}_{q, p}
$$

as required.
For the co-ordinate transformation given in the question,

$$
\frac{\partial Q}{\partial q}=\frac{m \omega p}{p^{2}+(m \omega q)^{2}}, \quad \frac{\partial Q}{\partial p}=\frac{-m \omega q}{p^{2}+(m \omega q)^{2}}, \quad \frac{\partial P}{\partial q}=m \omega q, \quad \frac{\partial P}{\partial p}=\frac{p}{m \omega}
$$

from which it follows that the above Poisson bracket holds. Now, the inverse co-ordinate transform is

$$
\begin{aligned}
p & =\sqrt{2 m \omega P} \cos Q \\
q & =\frac{\sqrt{2 m \omega P}}{m \omega} \sin Q
\end{aligned}
$$

so in the Q, P co-ordinate system the Hamiltonian for the simple harmonic oscillator is $H=\omega P$. Hamilton's equations are then

$$
\dot{Q}=\frac{\partial H}{\partial P}=\omega, \quad-\dot{P}=\frac{\partial H}{\partial Q}=0
$$

the solutions to which are

$$
Q=\omega t+\alpha, \quad P=\beta
$$

for some constants α, β. Finally, we rewrite this solution in the q, p co-ordinate system:

$$
q=\frac{\sqrt{2 m \omega \beta}}{m \omega} \cos (\omega t+\alpha), \quad p=\sqrt{2 m \omega \beta} \sin (\omega t+\alpha)
$$

which is the familiar solution for a simple harmonic oscillator.

The Green's function (by definition) satisfies the equation

$$
\left(i \hbar \frac{\partial}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t, t^{\prime}\right)=\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

The Fourier transform of the right hand side is 1 . To Fourier transform the left hand side, we will change variables to $\tau=t-t^{\prime}$, so

$$
i \hbar \int \mathrm{~d} \tau e^{i z \tau / \hbar} \frac{\partial G(\tau)}{\partial t}=-i \hbar \int \frac{i z}{\hbar} e^{i z \tau / \hbar} G(\tau) \mathrm{d} \tau=z G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)
$$

where we have integrated by parts, noting that the boundary term is zero. Thus,

$$
\left(z+\frac{\hbar^{2}}{2 m} \nabla^{2}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

Next, we note that $\nabla^{2} \leftrightarrow-k^{2}$ under Fourier transformation and let $\boldsymbol{p}=\boldsymbol{r}-\boldsymbol{r}^{\prime}$ so that

$$
\begin{aligned}
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right) & =\int \frac{\mathrm{d} \boldsymbol{k}}{(2 \pi)^{3}} \frac{e^{i \boldsymbol{k} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}}{z-\hbar^{2} k^{2} / 2 m} \\
& =\frac{1}{(2 \pi)^{3}} \int k^{2} \mathrm{~d} k \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \frac{e^{i \boldsymbol{k} \cdot \boldsymbol{p}}}{z-\hbar^{2} k^{2} / 2 m} \\
& =\frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} \frac{k^{2} \mathrm{~d} k}{z-\hbar^{2} k^{2} / 2 m} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta e^{i k p \cos \theta} \\
& =\frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} \frac{k^{2} \mathrm{~d} k}{z-\hbar^{2} k^{2} / 2 m} \frac{e^{i k p}-e^{-i k p}}{i k p} \\
& =\frac{2 m}{i(2 \pi)^{2} p \hbar^{2}} \int_{-\infty}^{\infty} \frac{k e^{i k p}}{2 m z / \hbar^{2}-k^{2}} \mathrm{~d} k
\end{aligned}
$$

where the symmetry properties of the k integrand were used to change the range of k integration. The integrand has poles at $k= \pm \sqrt{2 m z} / \hbar$. We first consider the case $z=E+i \epsilon$, which has poles at $k_{1,2}= \pm(\sqrt{2 m} / \hbar) E^{1 / 2} e^{i \epsilon / 2}$ (because $\left(E^{1 / 2} e^{i \epsilon / 2}\right)^{2}=E e^{i \epsilon} \simeq E+i \epsilon$ when ϵ is small). We will close the contour of integration with a semi-circle in the upper half plane; the contribution from the semi-circular arc vanishes due to Jordan's lemma. Only the pole at k_{1} is enclosed which has residue $-e^{i k_{1} p} / 2$, using l'Hôpital's rule. When $z=E-i \epsilon$ the poles move to $k_{1,2}= \pm(\sqrt{2 m} / \hbar) E^{1 / 2} e^{-i \epsilon / 2}$ and the pole enclosed by the contour is the one at $k_{2}=-(\sqrt{2 m} / \hbar) E^{1 / 2} e^{-i \epsilon / 2}$ with residue $-e^{i k_{2} p}$. (For the $E<0$ cases, we just need to replace \sqrt{E} by $i \sqrt{E}$). We multiply the resiudes by $2 \pi i$ to arrive at the required integrals, and then use the definition of ΔG given in the question along with the integrals for the $E>0$ cases to arrive at

$$
\Delta G=-2 \pi i \frac{2 m}{\hbar^{2}} \frac{\sin \left(\sqrt{2 m E}\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / \hbar\right)}{4 \pi^{2}\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \Theta(E)
$$

For a particle in free space, $E=\hbar^{2} k^{2} / 2 m$ so $\mathrm{d} k / \mathrm{d} E=\sqrt{2 m} / 2 \hbar \sqrt{E}$. Each state in k-space occupies a volume $(2 \pi)^{3}$, so the number in a sphere of radius k is $n=4 \pi k^{3} / 3(2 \pi)^{3}$. Therefore, the density of states is

$$
\begin{aligned}
\frac{\mathrm{d} n}{\mathrm{~d} E} & =\frac{4 \pi k^{2}}{(2 \pi)^{3}} \frac{\mathrm{~d} k}{\mathrm{~d} E} \\
& =\frac{m}{2 \pi^{2} \hbar^{3}} \sqrt{2 m E}
\end{aligned}
$$

Noting that the limit of $\sin (x) / x$ as x tends to zero is 1 , comparing this to the earlier equation for ΔG shows that in this case

$$
\rho(E)=\lim _{\boldsymbol{r} \rightarrow \boldsymbol{r}^{\prime}} \frac{\Delta G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E\right)}{-2 \pi i}
$$

For the last part we again use $G=1 /\left(z-E_{n}\right)$, so

$$
G=\sum_{n} \frac{|n\rangle\langle n|}{z-E_{n}}
$$

because the eigenstates $|n\rangle$ form a complete set, and

$$
\begin{aligned}
G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right) \equiv\langle r| G\left|r^{\prime}\right\rangle & =\sum_{n} \frac{\langle r \mid n\rangle\left\langle n \mid r^{\prime}\right\rangle}{z-E_{n}} \\
& =\sum_{n} \frac{\phi_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right)}{z-E_{n}}
\end{aligned}
$$

Writing $z=E \pm i s$,

$$
G^{ \pm}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; z\right)=\sum_{n} \frac{\phi_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right)}{\left(E-E_{n}\right) \pm i s}
$$

Using the identity given in the question,

$$
\Delta G(\boldsymbol{r}, \boldsymbol{r} ; E)=-2 \pi i \sum_{n} \phi_{n}(\boldsymbol{r}) \phi_{n}^{*}\left(\boldsymbol{r}^{\prime}\right) \delta\left(E-E_{n}\right)
$$

and so

$$
\rho(E)=\lim _{\boldsymbol{r} \rightarrow \boldsymbol{r}^{\prime}} \frac{\Delta G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; E\right)}{-2 \pi i}
$$

as required.

