
Theoretical Physics 1
Answers to Examination 2006

Warning — these answers have been completely retyped. . .
Please report any typos/errors to emt1000@cam.ac.uk

Q1. The gravity potential is −GMm/R so we need to determine the distances of
two masses to the centre. From the sketch, the projections are:
R1,2 = r ± a cos θ, so the total potential energy is

V = −GMm
(

1

r + a cos θ
+

1

r − a cos θ

)

≈ −2GMm

r

(

1 +
a2

r2
cos2 θ

)

.

There are two separate motions, of a centre of mass of the pair and the
rotation about this centre. The kinetic energy is made of these two parts:

T =
1

2
(2m)[(ṙ)2 + r2(φ̇)2] +

1

2
(2ma2)(θ̇)2.

Writing Euler-Lagrange equations for the Lagrangian L = T − V , depending
on the three variables, is a straightforward task:

(r :) r̈ − rφ̇2 +
GM(r2 + 3a2 cos2 θ)

r4
= 0;

(φ :) Jφ = mr2φ̇ = const;

(θ :) θ̈ +
GM

r3
sin 2θ = 0.

Obviously the positions of θ = 0 and π/2 are equilibrium. There are several
ways to determine stability, e.g., from the small increments of force, or from
the second derivative of the potential. Just looking at the − cos2 θ factor in
the potential energy V suggests that θ = 0 is stable and π/2 is unstable.

In the vicinity of θ = 0 we have the oscillation in θ(t),

θ̈ +
2GM

r3
θ = 0

with the frequency Ω =
√

2GM/r3. The question is, how is it related to the

orbital period (or frequency ω = φ̇)? For circular orbit we have r =const,
and so ω ≈ GM/r3 + ... from the equation for r̈. Hence Ω = 2ω, or the
period of θ-oscillations is twice as short as the orbital period.

Q2. Bookwork: The generalised Bernoulli equation reads

ρφ̇ +
1

2
ρv2 + P + ρgh = const,
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where ρ is the mass density of a fluid, φ is a velocity potential (such that
v = ∇φ in a fluid with zero vorticity), 1

2
ρv2 the density of kinetic energy, P

the local pressure and ρgh the density of gravitational potential energy. The
equation remains a constant along the flow line. To be valid, the Bernoulli
equation requires the potential flow condition, i.e. that the vorticity
Ω = curlv to be zero, exactly or approximately. In that case there is no
viscous dissipation either and the equation represents the local conservation
of energy density.

There are two separate short questions here, both exploring Bernoulli
equation in action:

(a) In the bath, if we assume that the top surface is almost stationary (i.e.
moves much slower than the liquid through the plug hole) and the process is
steady-state, we have to conclude that φ̇ = 0 and the pressure is constant at
every point (equilibrated open system). Then taking the line of motion
between the top free surface of water (ρgh) and the plug hole (1

2
ρv2) we

obtain:

ρgh = const =
1

2
ρv2,

or v =
√

2gh, as always in the “free fall”. The change in the volume of
incompressible liquid, V̇ = Abathḣ is equal to the discharge rate through the
plug hole Q =

∫

vdAplug. Since we are asked to “estimate”, let us crudely
assume the velocity is constant across the hole, giving the equation for the
depth h(t):

ḣ =
Aplug

Abath

√

2gh,

or h = (Aplug/Abath)
2(g/2)t2. Putting in the values we estimate the time to

reduce h to zero as t = 120 s!

(If you assumed a parabolic profile of v across the plug hole, you may obtain
a 4 min answer instead. This would earn you respect, but no extra points,
since the questions asks for an estimate and ∼ 1 min is accurate enough.)

(b) The two colliding jets are in a steady-state, and no gravity is evident in
the question, so our Bernoulli equation reduces to 1

2
ρv2 + P = const along

any flow line. But the pressure has to be the same, atmospheric P0, away
from the collision zone. This means that connecting a flow line between two
points in the original jet and in the spread sheet, we have on both sides:
1
2
ρv2 + P0 = const = 1

2
ρv2 + P0. In other words, the velocity remains v in the

sheet! Then we only need to consider the mass conservation: the initial flow
rate, 2vπa2, is equal to the flow rate through the perimeter of the sheet,
vd2πr, giving the required d = a2/r.

Q3. Bookwork: There are two ways of showing the need for the revised
electromagnetic potential energy in the Lagrangian dynamics. The one used
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in the lectures was to work back from the Lorentz force F = e(E + v × B)
through the condition

F = −∂V

∂q
+

d

dt

(

∂V

∂q̇

)

for the velocity-dependent potential. The requirement of Lorentz invariance
is an alternative way.

(a) The definition B = curlA is frame independent. If you don’t like
evaluating differential operators in polar coordinates, take the flux over the
circular area in the (x, y) plane,

∫

BdSz = πr2B, which gives you
∮

A · dl

around the circle 2πr, with only Aθ = rB/2 component in action.

(b) The Lagrangian in polar coordinates is

L =
m

2
(ṙ2 + r2θ̇2 + ż2) + e(rθ̇)Aθ

and the three equation of motion are, after the standard evaluation and
noticing that two of the coordinates conserve their momentum:

(r :) mr̈ − mrθ̇2 − erBθ̇ = 0;

(θ :) mr2θ̇ +
1

2
eBr2 = const;

(z :) ż = const.

The second equation gives the required condition. Note that we have no
apriori knowledge of the sign of the constant J (you may find an unexpected
zero somewhere down the line if you accidentally choose it wrongly, because
the r-equation is insensitive to this sign).

(c) Substituting θ̇ from the angular momentum balance into the r-equation
gives

r̈ =
J2

r3
− e2B2r

4m2
.

Note how increasing the magnitude of B could change the sign of this
acceleration. The stable helical orbit (helical - due to the constant velocity vz

along the B-axis) is when r̈ = 0, giving the condition for the radius:

r =

√

2mJ

eB

Substituting this back into the θ̇ gives the required angular frequency.

(d) This is straightforward: the angle of inclination is determined by the
ratio of vθ = rθ̇ to the (constant) vz. Substituting in what we know about r
and θ̇ gives the required tangent.
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Q4. Integral (1): If a complex function f(z) contains no poles within some
contour then: ∮

f(z) = 0

In order to perform a definite integral using this relation you should: (1)
choose a form for f(z) that is simply related to the function in your integral.
(2) choose a contour where one part of it will return your integral, or
something simply related to it, and all other parts can be performed
analytically.

For the suggested example consider the following contour integral

∮

eiz2

dz = 0

on the the closed contour shown in the sketch below.

p/4
R x

y

0 C1

CR
C2

Along the real axis C1 we have z = x, dz = dx so that

∫

C1

eiz2

dz =
∫

∞

0
eix2

dx =
∫

∞

0
cos(x2)dx + i

∫

∞

0
sin(x2)dx

Along the contour C2 at angle π/4 we have z = reiπ/4 = r(1 + i)/
√

2 with
dz = dr(1 + i)/

√
2 so that

∫

C2

eiz2

dz =
∫ 0

∞

ei(reiπ/4)2dr(1 + i)/
√

2 =
∫ 0

∞

e−r2

dr(1 + i)/
√

2 = −
√

π

2
.
1 + i√

2

Along the contour CR we have z = Reiθ with dz = iReiθdθ so that

∫

CR

eiz2

dz =
∫ π/4

0
eiR2(cos(2θ)+i sin(2θ)iReiθdθ =

∫ π/4

0
eiφ(R,θ).e− sin(2θ)R2

Rdθ

The function exp(iφ) has modulus unity and sin(2θ) ≥ 0 on the contour CR.
This implies that both the real and imaginary parts of this integral will be
less than:

∫ π/4

0
e−R2

Rdθ = πe−R2

R/4
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In the limit R → ∞ this integral tends to zero. Therefore

lim
R→∞

∫

CR

eiz2

dz = 0

Collecting together the terms we have:
∮

eiz2

dz =
∫

C1

eiz2

dz +
∫

C2

eiz2

dz = 0

because the contour contains no poles. This implies

∫

∞

0
cos(x2)dx + i

∫

∞

0
sin(x2)dx =

√
π

2
.
1 + i√

2

Taking the real part of this relation we find:

∫

∞

0
cos(x2)dx =

√
π

2
√

2

Integral (2): If a contour passes through a pole half of its residue is
included in the residue sum.

The integral in the suggested example does not have any poles but if it is
rewritten as a complex integral there is a pole at the origin z = 0

∫

∞

−∞

sin(x)

x
dx = ℑ

∫

∞

−∞

eix

x
dx

We perform the following contour integral

∮ eiz

z
dz

on the contour shown in the figure

R x

y

0 C1

CR

+

Along C1 we have z = x so that the integral takes the form:

∫

C1

eiz

z
dz =

∫

∞

−∞

eix

x
dx
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Along CR we have z = Reiθ so that the integral takes the form:

∫

CR

eiz

z
dz =

∫ π

0
ei.(cos(θ)+i sin(θ))RiReiθdθ

since sin(θ) ≥ 0 along this contour in the limit R → ∞ both the real and
imaginary parts of this integral are zero.

The function exp(iz)/z has one pole at z = 0. The residue of this pole is:

lim
z→0

z.
eiz

z
= ei.0 = 1

Collecting everything together we therefore have

∮ eiz

z
dz =

∫

∞

−∞

eix

x
dx = 2πi.1/2 = iπ

Taking the imaginary part of this integral

∫

∞

−∞

sin(x)

x
dx = π

Integral (3): No contour can pass across a branch cut but contours can
pass infinitesimally above and below a branch cut. Since there is some
freedom in choosing the location of a branch cut, this can sometimes be used
to advantage in evaluating some definite integrals. The following is an
example of this:

We consider the contour integral

∮ zα

1 +
√

2z + z2
dz

on contour shown in the figure below.

Along CR the integral is:

O(Rα/R2).2πR = O(Rα−1) → 0 as R → ∞

Along Cǫ the integral is

∫ 0

2π

ǫαeiαθ

1 +
√

2ǫeiθ + ǫ2e2iθ
iǫeiθdθ = O(ǫα+1) → 0 as epsilon → 0

Along C1
∫

∞

0

xα

1 +
√

2x + x2
dx = I
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R x

y

C1

CR

C2

Ce

+

+

Along C2
∫ 0

∞

xαe2απi

1 +
√

2x + x2
dx = −e2απiI

The function in the contour integral has simple poles at z = exp(3πi/4) and
z = exp(5πi/4) so by Cauchy’s theorem

∮ zα

1 +
√

2z + z2
dz = 2πi

(

e3πi/4

√
2i

− e5πi/4

√
2i

)

Collecting together the non-zero terms we have:

∮ zα

1 +
√

2z + z2
dz = I − e2απiI = 2πi

(

e3πi/4

√
2i

− e5πi/4

√
2i

)

Rearranging this expression we get:

I =
∫

∞

0

xα

1 +
√

2x + x2
dx =

√
2π

sin(απ/4)

sin(απ)

Q5. The derivation of the Kramers-Kronig relations is given in the lecture notes.

The relationship between x,G and f can be found in the following way.
Define the operator

Lt =
d2

dt2
+ γ

d

dt
+ ω2

0

so that the equation of motion has the form

Ltx(t) = f(t)

insert a delta function into the rhs

Ltx(t) =
∫

dt′δ(t − t′)f(t′)
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and substitute for it using the definition of the Green’s function

LtG(t − t′) = δ(t − t′)

we get

Ltx(t) =
∫

dt′LtG(t − t′)f(t′) = Lt

∫

dt′G(t − t′)f(t′)

which implies

x(t) =
∫

dt′G(t − t′)f(t′)

Note that from this we can deduce that G(t − t′) is a generalized
susceptibility and therefore, its Fourier transform G(ω) will obey the
Kramers-Kronig relations.

By definition
(

d2

dt2
+ γ

d

dt
+ ω2

0

)

G(t − t′) = δ(t − t′)

Taking the Fourier transform we get
(

−ω2 − iγω + ω2
0

)

G(ω) = 1

Hence

G(ω) =
1

−ω2 − iγω + ω2
0

To simplify the algebra we rewrite G(ω) in the form

G(ω) =
1

(ω + b + ia)(ω − b + ia)

where a = γ/2 > 0 and b =
√

ω2
0 − γ2/4 > 0. This corresponds to damped

oscillation. Splitting G(ω) into its real and imaginary parts we have

G(ω) =
(ω2 − b2 − a2) − 2iaω

(ω + b + ia)(ω − b + ia)(ω + b − ia)(ω − b − ia)

In order to show that G(ω) satisfies the first Kramers-Kronig relation we
need to prove:

P
∫

∞

−∞

ℑG(ω).
1

ω − ζ

dω

π
= ℜG(ζ)

In the complex plane

f(z) = ℑG(z).
1

z − ζ
=

−2az

(z + b + ia)(z − b + ia)(z + b − ia)(z − b − ia)(z − ζ)

The easiest way to integrate this function is to rewrite as the sum of two
functions

f1(z) =
−2a

(z + b + ia)(z − b + ia)(z + b − ia)(z − b − ia)
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f2(z) = − −2aζ

(z + b + ia)(z − b + ia)(z + b − ia)(z − b − ia)(z − ζ)

So that
f(z) = f1 + f2

The poles of these functions are shown in the figure. The pole at z = ζ on
the real axis is not present in f1(z).

R x

y

0 C1

CR

+

+ +

+

+

For both functions the integral along the path CR vanishes as R → ∞.
Therefore for f1:

∮

f1(z) = P
∫

∞

−∞

f1(z)dz = 2πi(Res1 + Res2)

= −2a.2πi.

[

1

(2ia)(−2b + 2ia)(−2b)
+

1

(2b + 2ia)(2ia)(2b)

]

= − π

b2 + a2

For f2 we have:

∮

f2(z) = P
∫

∞

−∞

f1(z)dz = 2πi(Res1 + Res2 +
Res3

2
)

= −2aζ.2πi.

[

1

(2ia)(−2b + 2ia)(−2b)(ia − b − ζ)
+

1

(2b + 2ia)(2ia)(2b)(ia + b − ζ)
+

1

2

1

(ζ + b + ia)(ζ − b + ia)(ζ + b − ia)(ζ − b − ia)

]

= − ζ2π(−b2 + 3a2 + ζ2)

(ζ + b + ia)(ζ − b + ia)(ζ + b − ia)(ζ − b − ia)(b2 + a2)
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We therefore have

P
∫

∞

−∞

ℑG(ω).
1

ω − ζ
dω = P

∫

∞

−∞

f1dω + P
∫

∞

−∞

f2dω

= − π

b2 + a2
− ζ2π(−b2 + 3a2 + ζ2)

(ζ + b + ia)(ζ − b + ia)(ζ + b − ia)(ζ − b − ia)(b2 + a2)

rearranging this we find

P
∫

∞

−∞

ℑG(ω).
1

ω − ζ
dω =

ζ2 − aa − b2

(ζ + b + ia)(ζ − b + ia)(ζ + b − ia)(ζ − b − ia)
= ℜG(ζ)

Q6. The circuit is as shown in the figure below

V

R

C

The sum of the voltage across the resistor and capacitor is equal to the
voltage across the voltage source.

V = IR +
Q

C

since I = dQ/dt we can rearrange this equation and write it in Langevin form

dQ

dt
= −γQ +

√
ΓA

where γ = 1/RC and
√

Γ =
√

2RkBT/R. Here A is uncorrelated white noise
with mean zero and unit variance.

The next part of the question is book work and can be found in the lecture
notes.
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Making the correspondences between the Langevin and Fokker-Plank
equations:

q = Q

F (q) = −γQ

G(q) =
√

Γ

K = −γQ

Q = Γ

This results in a Fokker-Plank equation of the form

∂f

∂t
=

∂

∂Q
(γQf) +

Γ

2

∂2f

∂Q2

In equilibrium
∂f

∂t
= 0

The equilibrium equation can then be rearranged to give

γ
∂

∂Q
(Qf) = −Γ

2

∂2f

∂Q2

Integrating w.r.t Q we have

γQf = −Γ

2

∂f

∂Q

assuming there is no net charge on the capacitor. Solving for f we find

f = f0 exp
(

−γ

Γ
Q2
)

Substituting for the definitions of γ and Γ from above, this becomes

f = f0 exp

(

− Q2

2CkBT

)

The energy dissipated in charging a capacitor is W = Q2/2C so the above
equation had the form

f = f0 exp
(

− W

kBT

)

which is just the Boltzmann distribution.
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