Theoretical Physics 1
 Answers to Examination 2003

Warning - these answers have been completely retyped. . . Please report any typos/errors.
steve@mrao.cam.ac.uk
Q1. Bookwork: Hamilton's principle is $\delta \int \mathrm{d} t L\left(q_{i}, \dot{q}_{i}, t\right)=0$ and leads (via the calculus of variations) to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}_{i}}=\frac{\partial L}{\partial q_{i}} \tag{1}
\end{equation*}
$$

i.e. $N 2$ nd-order equations for the coordinates q_{i}. The position of the mass is

$$
\begin{equation*}
x=a \sin \omega t+l \sin \theta ; \quad y=-a \cos \omega t-l \cos \theta \tag{2}
\end{equation*}
$$

where $q=\theta(t)$ is the single variable of the problem. The Lagrangian is

$$
\begin{equation*}
L=T-V=\frac{m}{2}\left(a^{2} \omega^{2}+l^{2} \dot{\theta}^{2}+2 a l \omega \dot{\theta} \cos (\omega t-\theta)\right)+m g(a \cos \omega t+l \cos \theta) \tag{3}
\end{equation*}
$$

and the canonical momentum is

$$
\begin{equation*}
p_{\theta}=m l^{2} \dot{\theta}+m l a \omega \cos (\omega t-\theta) \tag{4}
\end{equation*}
$$

After considerable simplifications, the equation of motion is

$$
\begin{equation*}
m l^{2} \ddot{\theta}+m g l \sin \theta=m a \omega^{2} \sin (\omega t-\theta) \tag{5}
\end{equation*}
$$

For small oscillations $(\theta \ll 1)$ and in the limit $a \omega^{2} / l g \ll 1$ we can set $\sin \theta \approx \theta$ and $\sin (\omega t-\theta) \approx \sin \omega t$ so that the linearised equation is

$$
\begin{equation*}
l^{2} \ddot{\theta}+g l \theta \approx a \omega^{2} \sin \omega t \tag{6}
\end{equation*}
$$

This has general solution

$$
\begin{equation*}
\theta=A \sin \left(\omega_{0} t+\delta\right)+\frac{a \omega^{2}}{g l-l^{2} \omega^{2}} \sin \omega t \tag{7}
\end{equation*}
$$

where $\omega_{0}^{2}=g / l$ and A, δ are arbitrary constants. This shows resonance at $\omega=\omega_{0}$ as required.

Q2. Bookwork: the canonical momenta are $p_{i} \equiv \partial L / \partial \dot{q}_{i}$. The Hamiltonian is

$$
\begin{equation*}
H \equiv \sum_{i} p_{i} \dot{q}_{i}-L \tag{8}
\end{equation*}
$$

which is a function of $\left(q_{i}, p_{i}\right)$ but not \dot{q}_{i}. Hamilton's equations are

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} ; \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \tag{9}
\end{equation*}
$$

(15 January 2003)
i.e. a set of $2 N$ first-order equations for the coordinates and momenta. For a charged particle we add the scalar $-q(\phi-\boldsymbol{A} \cdot \dot{\boldsymbol{x}})$ to the Lagrangian. The canonical momentum is then $\boldsymbol{p}=m \dot{\boldsymbol{x}}+q \boldsymbol{A}$, but the Hamiltonian is still $H=\frac{1}{2} m \dot{\boldsymbol{x}}^{2}+q \phi$. Expressed as a function of \boldsymbol{p} we have

$$
\begin{equation*}
H=\frac{(\boldsymbol{p}-q \boldsymbol{A})^{2}}{2 m}+q \phi \tag{10}
\end{equation*}
$$

The vector potential $(0, B x, 0)$ has $\nabla \times \boldsymbol{A}=(0,0, B)$ as required and $\boldsymbol{E}=-\nabla \phi$ is clearly OK. The Hamiltonian is

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{\left(p_{y}-q B x\right)^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}-q E x \tag{11}
\end{equation*}
$$

The Hamiltonian doesn't depend on y, z or t, so p_{y}, p_{z} and H are constants of the motion. The equations for p_{x}, x and y are

$$
\begin{equation*}
\dot{p}_{x}=\frac{q B}{m}\left(p_{y}-q B x\right)+q E ; \quad \dot{x}=\frac{p_{x}}{m} ; \quad \dot{y}=\frac{p_{y}-q B x}{m} \tag{12}
\end{equation*}
$$

Differentiating the \dot{x} equation and substituting we get the required result

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=\frac{q E}{m}+\frac{\omega_{0} p_{y}}{m} \tag{13}
\end{equation*}
$$

where $\omega_{0}=q B / m$, the Larmor frequency. This has general solution

$$
\begin{equation*}
x=A \sin \left(\omega_{0} t+\delta\right)+\frac{p_{y}}{\omega_{0} m}+\frac{q E}{m \omega_{0}^{2}} \tag{14}
\end{equation*}
$$

where A, δ are arbitrary constants. It shows that, in this gauge, the p_{y} parameter represents an offset in x. We complete the solution by substituting $x(t)$ into the \dot{y} equation. The p_{y} term cancels and we have

$$
\begin{equation*}
\dot{y}=-\omega_{0} A \sin \left(\omega_{0} t+\delta\right)-\frac{E}{B} \tag{15}
\end{equation*}
$$

which has general solution

$$
\begin{equation*}
y=A \cos \left(\omega_{0} t+\delta\right)-\frac{E t}{B} \tag{16}
\end{equation*}
$$

The path is a helix (free motion in z) that drifts at a rate $-E / B$ in the y direction.

Q3. The quantity $-\int m_{i} c^{2} \mathrm{~d} t / \gamma_{i}=-\int m_{i} c^{2} \mathrm{~d} \tau_{i}$, where τ_{i} is the proper time of the particle, so Lorentz invariance is assured. The canonical momentum $\boldsymbol{p}_{i}=m_{i} \gamma_{i} \dot{\boldsymbol{x}}_{i}$ as expected (also a way to derive the Lagrangian) and the Hamiltonian is $\sum m_{i} c^{2} \gamma_{i}$.

For the ring $L=-m_{0} c^{2}\left(1-\omega^{2} a^{2} / c^{2}\right)^{1 / 2}$. The generalised coordinate is the rotation angle, so the angular momentum is the canonical momentum $J=\partial L / \partial \omega$. The Hamiltonian is $H=\omega \partial L / \partial \omega-L$. These evaluate to

$$
\begin{equation*}
J=\frac{m a^{2} \omega}{\sqrt{\left(1-\omega^{2} a^{2} / c^{2}\right)}} ; H=\frac{m c^{2}}{\sqrt{\left(1-\omega^{2} a^{2} / c^{2}\right)}} \tag{17}
\end{equation*}
$$

We have already seen that the action S is Lorentz invariant. The transformation of the time interval is $\mathrm{d} t^{\prime}=\gamma_{v} \mathrm{~d} t$, where γ_{v} is the Lorentz factor of the frame F^{\prime} relative to F. The Lagrangian therefore is $L^{\prime}=L / \gamma_{v}$. In frame f^{\prime} the time dilation means that the ring rotates more slowly, so $\omega^{\prime}=\omega / \gamma_{v}$. The Hamiltonian is the transformed energy, so $H^{\prime}=H \gamma_{v}$. The angular momentum is $j^{\prime}=\partial L^{\prime} / \partial \omega^{\prime}$ so is invariant $J^{\prime}=J$.

Q4. Cauchy theorem says

$$
\begin{equation*}
\oint_{C} \mathrm{~d} z f(z)=2 \pi i \sum(\text { residues }) \tag{18}
\end{equation*}
$$

with the counterclockwise closed contour C. This is proved by expanding $f(z)$ in a Laurent series about a singular point z_{0}

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{\infty} f_{n}\left(z-z_{0}\right)^{n} \tag{19}
\end{equation*}
$$

and showing that only the f_{-1} term contributes (proof will not be required). The example has poles at $z= \pm i$. We convert to a closed contour by completion in (say) the upper half-plane. The residue at i is $1 / 2 i$, hence result. Closing the contour in the lower half-plane is also possible, the residue is $-1 / 2 i$ and the sign in Cauchy's theorem must be reversed (clockwise contour).
(a) Integrand has poles at $e^{ \pm \pi i / 4}, e^{ \pm 3 \pi i / 4}$ and we can close over the upper half-plane (either way is fine). The residue at $x=e^{\pi i / 4}$ is (draw a diagram!)

$$
\begin{equation*}
\frac{1}{\left(e^{\pi i / 4}-e^{-\pi i / 4}\right)\left(e^{\pi i / 4}-e^{3 \pi i / 4}\right)\left(e^{\pi i / 4}-e^{-3 \pi i / 4}\right)}=\frac{1}{\sqrt{2} \sqrt{2} i \sqrt{2}(1+i)}=\frac{-1-i}{4 \sqrt{2}} \tag{20}
\end{equation*}
$$

Similarly the residue at $x=e^{-\pi i / 4}$ is $(1-i) / 4 \sqrt{2}$. Using Cauchy's theorem we have the result $2 \pi i \sum$ (residues $)=\pi / \sqrt{2}$.
(b)

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \frac{\cos a x}{x^{2}+b^{2}}=\Re\left(\int_{-\infty}^{\infty} \mathrm{d} x \frac{e^{i a x}}{x^{2}+b^{2}}\right) \tag{21}
\end{equation*}
$$

For $a>0$ close over the upper half-plane. Residue of the pole ar $x=i b$ is $e^{-a b} /(2 i b)$, so integral evaluates to $\pi e^{-a b} / b$.

Q5. Preferred version of (t, ω) Fourier transform and its inverse is

$$
\begin{equation*}
\tilde{f}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t f(t) e^{i \omega t} ; \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \tilde{f}(\omega) e^{-i \omega t} \tag{22}
\end{equation*}
$$

For the (x, k) pair I prefer the opposite sign - the reason being the it is the convention in QM that $e^{i(k x-\omega t)}$ represents a positive energy wave travelling in the $+x$-direction (remember $i \hbar \dot{\psi}=E \psi$). The Green function can be calculated as

$$
\begin{equation*}
G(t ; 0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \frac{e^{-i \omega t}}{-\omega^{2}-i \omega \gamma+\omega_{0}^{2}} \tag{23}
\end{equation*}
$$

There are poles at $\omega=i \gamma / 2 \pm i \Omega$, where $\Omega \equiv \sqrt{\omega_{0}^{2}-\gamma^{2} / 4}$. Complete using lower half-plane for $t<0$) and upper half-plane for $t>0$, generating a Heaviside
function step $\theta(t)$ as required for causality. The residues are $\pm e^{-\frac{1}{2} \gamma t \pm i \Omega} / 2 \Omega$ so, by Cauchy's theorem we have (generalising to $G\left(t ; t^{\prime}\right)$

$$
\begin{equation*}
G\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right) \frac{e^{-\frac{1}{2} \gamma\left(t-t^{\prime}\right)} \sin \Omega\left(t-t^{\prime}\right)}{\Omega} \tag{24}
\end{equation*}
$$

We use the Green function to solve for the response to source $f(t)$ by calculating

$$
\begin{equation*}
y(t)=\int \mathrm{d} t^{\prime} G\left(t ; t^{\prime}\right) f\left(t^{\prime}\right) \tag{25}
\end{equation*}
$$

For the present case we have $f\left(t^{\prime}\right)=f_{0}$ for $0<t^{\prime}<\tau$. We have to be careful about the step functions; for $t<\tau$ we need $\int_{0}^{t} \mathrm{~d} t^{\prime}$, for $t>\tau$ we use $\int_{0}^{\tau} \mathrm{d} t^{\prime}$.
Changing variable to $s \equiv t-t^{\prime}$ we get for $t<\tau$ and $t>\tau$ respectively

$$
\begin{equation*}
f(t)=\int_{0}^{t} \mathrm{~d} s \frac{e^{-\frac{1}{2} \gamma s} \sin \Omega s}{\Omega} ; \quad f(t)=\int_{t-\tau}^{t} \mathrm{~d} s \frac{e^{-\frac{1}{2} \gamma s} \sin \Omega s}{\Omega} \tag{26}
\end{equation*}
$$

The final expressions for $f(t)$ are for $t<\tau$

$$
\begin{equation*}
y(t)=\frac{1}{2 \omega_{0}^{2}}\left(2 \Omega-e^{-\frac{1}{2} \gamma t}(2 \Omega \cos \Omega t+\gamma \sin \Omega t)\right) \tag{27}
\end{equation*}
$$

and for $t>\tau$

$$
\begin{equation*}
y(t)=\left[\frac{1}{2 \omega_{0}^{2}}\left(-e^{-\frac{1}{2} \gamma t^{\prime}}\left(2 \Omega \cos \Omega t^{\prime}+\gamma \sin \Omega t^{\prime}\right)\right)\right]_{t-\tau}^{t} \tag{28}
\end{equation*}
$$

Q6. - Need to describe, for a discrete ID process with length scale a and timescale τ the idea that the transitions rates into $P_{N+1}(m)$ are given by $w\left(m, m^{\prime}\right) P_{N}\left(m^{\prime}\right)$

- Principle of detailed balance is $w\left(m, m^{\prime}\right) P\left(m^{\prime}\right)=w\left(m^{\prime}, m\right) P(m)$ for each pair m, m^{\prime}
- The idea of the derivation presented in the notes was to consider the case when transitions are made only from m to $m \pm 1$, so that

$$
\begin{align*}
P_{N+1}(m)= & w(m, m+1) P_{N}(m+1)-w(m+1, m) P_{N}(m) \\
& +w(m, m-1) P_{N}(m-1)-w(m-1, m) P_{N}(m) \tag{29}
\end{align*}
$$

- If the diffusion is symmetric $w=1 / 2$, and we get the diffusion equation with coefficient $D=a^{2} / \tau$
- If there is a vertical asymmetry due to gravity, then transitions to $k-1$ are preferred over those to $k+1$, giving the first-derivative term in

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\frac{1}{2} D\left(\frac{\partial^{2} P}{\partial z^{2}}+\frac{\tilde{m} g}{k_{\mathrm{B}} T} \frac{\partial P}{\partial z}\right) \tag{30}
\end{equation*}
$$

- The argument leading to the coefficient on this term will probably be circular (appeal to Boltzmann factors...), but never mind.
The steady-state solution of this equation is

$$
\begin{equation*}
P(z) \propto \exp (-\tilde{m} g z / k T) \tag{31}
\end{equation*}
$$

The critical size of particle is that for which $\tilde{m} g a / k T \sim 1$. Evaluating this for the given parameters we find $a \sim 10^{-6} \mathrm{~m}$.

