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Q1. Bookwork: Hamilton’s principle is δ
∫

dt L(qi, q̇i, t) = 0 and leads (via the calculus
of variations) to

d

dt

∂L

∂q̇i
=
∂L

∂qi
(1)

i.e. N 2nd-order equations for the coordinates qi. The position of the mass is

x = a sinωt+ l sin θ; y = −a cosωt− l cos θ (2)

where q = θ(t) is the single variable of the problem. The Lagrangian is

L = T − V =
m

2

(
a2ω2 + l2θ̇2 + 2alωθ̇ cos(ωt− θ)

)
+mg(a cosωt+ l cos θ) (3)

and the canonical momentum is

pθ = ml2θ̇ +mlaω cos(ωt− θ) (4)

After considerable simplifications, the equation of motion is

ml2θ̈ +mgl sin θ = maω2 sin(ωt− θ) (5)

For small oscillations (θ � 1) and in the limit aω2/lg � 1 we can set sin θ ≈ θ
and sin(ωt− θ) ≈ sinωt so that the linearised equation is

l2θ̈ + glθ ≈ aω2 sinωt (6)

This has general solution

θ = A sin(ω0t+ δ) +
aω2

gl − l2ω2
sinωt (7)

where ω2
0 = g/l and A, δ are arbitrary constants. This shows resonance at ω = ω0

as required.

Q2. Bookwork: the canonical momenta are pi ≡ ∂L/∂q̇i. The Hamiltonian is

H ≡
∑

i

piq̇i − L , (8)

which is a function of (qi, pi) but not q̇i. Hamilton’s equations are

q̇i =
∂H

∂pi

; ṗi = −∂H
∂qi

, (9)
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i.e. a set of 2N first-order equations for the coordinates and momenta. For a
charged particle we add the scalar −q(φ−A·ẋ ) to the Lagrangian. The canonical
momentum is then p = mẋ + qA, but the Hamiltonian is still H = 1

2
mẋ 2 + qφ.

Expressed as a function of p we have

H =
(p − qA)2

2m
+ qφ (10)

The vector potential (0, Bx, 0) has ∇×××××A = (0, 0, B) as required and E = −∇φ is
clearly OK. The Hamiltonian is

H =
p2

x

2m
+

(py − qBx)2

2m
+

p2
z

2m
− qEx (11)

The Hamiltonian doesn’t depend on y, z or t, so py, pz and H are constants of the
motion. The equations for px, x and y are

ṗx =
qB

m
(py − qBx) + qE ; ẋ =

px

m
; ẏ =

py − qBx

m
(12)

Differentiating the ẋ equation and substituting we get the required result

ẍ+ ω2
0x =

qE

m
+
ω0py

m
(13)

where ω0 = qB/m, the Larmor frequency. This has general solution

x = A sin(ω0t+ δ) +
py

ω0m
+

qE

mω2
0

(14)

where A, δ are arbitrary constants. It shows that, in this gauge, the py parameter
represents an offset in x. We complete the solution by substituting x(t) into the ẏ
equation. The py term cancels and we have

ẏ = −ω0A sin(ω0t+ δ)− E

B
(15)

which has general solution

y = A cos(ω0t+ δ)− Et

B
(16)

The path is a helix (free motion in z) that drifts at a rate −E/B in the y
direction.

Q3. The quantity −
∫
mic

2dt/γi = −
∫
mic

2dτi, where τi is the proper time of the
particle, so Lorentz invariance is assured. The canonical momentum pi = miγiẋi

as expected (also a way to derive the Lagrangian) and the Hamiltonian is∑
mic

2γi.
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For the ring L = −m0c
2(1− ω2a2/c2)1/2. The generalised coordinate is the

rotation angle, so the angular momentum is the canonical momentum
J = ∂L/∂ω. The Hamiltonian is H = ω∂L/∂ω − L. These evaluate to

J =
ma2ω√

(1− ω2a2/c2)
;H =

mc2√
(1− ω2a2/c2)

(17)

We have already seen that the action S is Lorentz invariant. The transformation
of the time interval is dt′ = γvdt, where γv is the Lorentz factor of the frame F ′

relative to F . The Lagrangian therefore is L′ = L/γv. In frame f ′ the time
dilation means that the ring rotates more slowly, so ω′ = ω/γv. The Hamiltonian
is the transformed energy, so H ′ = Hγv. The angular momentum is j′ = ∂L′/∂ω′

so is invariant J ′ = J .

Q4. Cauchy theorem says ∮
C

dzf(z) = 2πi
∑

(residues) (18)

with the counterclockwise closed contour C. This is proved by expanding f(z) in
a Laurent series about a singular point z0

f(z) =
∞∑

n=−∞
fn(z − z0)

n (19)

and showing that only the f−1 term contributes (proof will not be required). The
example has poles at z = ±i. We convert to a closed contour by completion in
(say) the upper half-plane. The residue at i is 1/2i, hence result. Closing the
contour in the lower half-plane is also possible, the residue is −1/2i and the sign
in Cauchy’s theorem must be reversed (clockwise contour).
(a) Integrand has poles at e±πi/4, e±3πi/4 and we can close over the upper
half-plane (either way is fine). The residue at x = eπi/4 is (draw a diagram!)

1

(eπi/4 − e−πi/4)(eπi/4 − e3πi/4)(eπi/4 − e−3πi/4)
=

1√
2
√

2i
√

2(1 + i)
=
−1− i

4
√

2
(20)

Similarly the residue at x = e−πi/4 is (1− i)/4
√

2. Using Cauchy’s theorem we
have the result 2πi

∑
(residues) = π/

√
2.

(b) ∫ ∞

−∞
dx

cos ax

x2 + b2
= <

(∫ ∞

−∞
dx

eiax

x2 + b2

)
(21)

For a > 0 close over the upper half-plane. Residue of the pole ar x = ib is
e−ab/(2ib), so integral evaluates to πe−ab/b.

Q5. Preferred version of (t, ω) Fourier transform and its inverse is

f̃(ω) =
∫ ∞

−∞
dt f(t)eiωt ; f(t) =

1

2π

∫ ∞

−∞
dω f̃(ω)e−iωt (22)
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For the (x, k) pair I prefer the opposite sign – the reason being the it is the
convention in QM that ei(kx−ωt) represents a positive energy wave travelling in the
+x-direction (remember ihψ̇ = Eψ). The Green function can be calculated as

G(t; 0) =
1

2π

∫ ∞

−∞
dω

e−iωt

−ω2 − iωγ + ω2
0

(23)

There are poles at ω = iγ/2± iΩ, where Ω ≡
√
ω2

0 − γ2/4. Complete using lower
half-plane for t < 0) and upper half-plane for t > 0, generating a Heaviside

function step θ(t) as required for causality. The residues are ±e−
1
2

γt±iΩ/2Ω so, by
Cauchy’s theorem we have (generalising to G(t; t′)

G(t; t′) = θ(t− t′)
e−

1
2

γ(t−t′) sin Ω(t− t′)

Ω
(24)

We use the Green function to solve for the response to source f(t) by calculating

y(t) =
∫

dt′ G(t; t′)f(t′) (25)

For the present case we have f(t′) = f0 for 0 < t′ < τ . We have to be careful
about the step functions; for t < τ we need

∫ t
0 dt′, for t > τ we use

∫ τ
0 dt′.

Changing variable to s ≡ t− t′ we get for t < τ and t > τ respectively

f(t) =
∫ t

0
ds

e−
1
2

γs sin Ωs

Ω
; f(t) =

∫ t

t−τ
ds

e−
1
2

γs sin Ωs

Ω
(26)

The final expressions for f(t) are for t < τ

y(t) =
1

2ω2
0

(
2Ω− e−

1
2

γt (2Ω cos Ωt+ γ sin Ωt)
)

(27)

and for t > τ

y(t) =

[
1

2ω2
0

(
−e−

1
2

γt′ (2Ω cos Ωt′ + γ sin Ωt′)
)]t

t−τ

(28)

Q6. • Need to describe, for a discrete ID process with length scale a and timescale
τ the idea that the transitions rates into PN+1(m) are given by
w(m,m′)PN(m′)

• Principle of detailed balance is w(m,m′)P (m′) = w(m′,m)P (m) for each
pair m,m′

• The idea of the derivation presented in the notes was to consider the case
when transitions are made only from m to m± 1, so that

PN+1(m) = w(m,m+ 1)PN(m+ 1)− w(m+ 1,m)PN(m)
+w(m,m− 1)PN(m− 1)− w(m− 1,m)PN(m)

(29)
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• If the diffusion is symmetric w = 1/2, and we get the diffusion equation with
coefficient D = a2/τ

• If there is a vertical asymmetry due to gravity, then transitions to k − 1 are
preferred over those to k + 1, giving the first-derivative term in

∂P

∂t
=

1

2
D

(
∂2P

∂z2
+

m̃g

kBT

∂P

∂z

)
(30)

• The argument leading to the coefficient on this term will probably be
circular (appeal to Boltzmann factors. . . ), but never mind.

The steady-state solution of this equation is

P (z) ∝ exp(−m̃gz/kT ) (31)

The critical size of particle is that for which m̃ga/kT ∼ 1. Evaluating this for the
given parameters we find a ∼ 10−6 m.
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