THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains 4 sides and is accompanied by a book giving values of constants and containing mathematical formulae which you may quote without proof.

1 Describe briefly how Hamilton's principle of least action leads to Lagrange's equations of motion for a dynamical system having generalised coordinates q_{i} and velocities \dot{q}_{i}.

A pendulum consists of a mass m at the end of a rigid massless rod of length l, and moves in the $x-y$ plane, making an angle θ with the vertical. This pendulum is attached by means of a free hinge to a ring of radius a, which rotates with a constant angular velocity ω (see sketch).

Find the Lagrangian for this dynamical system.
Derive the Euler-Lagrange equation of motion for θ.

Examine the form of the equation of motion in the limit of small oscillations, that is, when both conditions $\theta \ll 1$ and $a^{2} \omega^{2} \ll g l$ are satisfied.

Find the general solution of this simplified equation and show in particular that there is a resonance at $\omega^{2}=g / l$.

2 A dynamical system has Lagrangian $L\left(q_{i}, \dot{q}_{i}, t\right)$. Define the canonical momenta p_{i} and the Hamiltonian $H\left(q_{i}, p_{i}, t\right)$. A non-relativistic particle of mass m and charge q moves in an electromagnetic field produced by an electrostatic potential ϕ and magnetic vector potential \boldsymbol{A}. Show that the Hamiltonian is

$$
\begin{equation*}
H=\frac{|\boldsymbol{p}-q \boldsymbol{A}|^{2}}{2 m}+q \phi . \tag{8}
\end{equation*}
$$

In Cartesian coordinates (x, y, z) the electric field is $(\boldsymbol{E}=E, 0,0)$ and the magnetic field is $\boldsymbol{B}=(0,0, B)$. Show that $\phi=-E x, \boldsymbol{A}=(0, B x, 0)$ are suitable choices for the potentials.

For a particle moving in this field, show that the momenta p_{y}, p_{z} and the Hamiltonian H are constants of the motion.

Find Hamilton's equations of motion for the variables p_{x}, x, y and z and show that

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=\frac{q B p_{y}}{m^{2}}+\frac{q E}{m}, \tag{10}
\end{equation*}
$$

where $\omega_{0} \equiv q B / m$.
Hence find the general solutions for $x(t), y(t)$ and demonstrate that the particle has mean velocity $-E / B$ in the y direction.

3 A system comprises N particles. The i th particle has rest mass m_{i}, is at position \boldsymbol{x}_{i} and is moving with relativistic velocity $\boldsymbol{v}_{i} \equiv \dot{\boldsymbol{x}}_{i}$. Show that the action $S=\int \mathrm{d} t L$ is Lorentz-invariant, where

$$
L=-\sum_{i} m_{i} c^{2} / \gamma_{i}
$$

and $\gamma_{i} \equiv\left(1-\left|\boldsymbol{v}_{i}\right|^{2} / c^{2}\right)^{-1 / 2}$. Find the canonical momenta \boldsymbol{p}_{i} and the Hamiltonian H.

A ring of rest mass m_{0} has zero net momentum in frame F, but rotates relativistically with angular velocity ω. Determine the Lagrangian L, the angular momentum J and the Hamiltonian H.

The system is now viewed in frame F^{\prime}, which moves with velocity \boldsymbol{v} with respect to frame F. Determine how the transformed quantities $S^{\prime}, L^{\prime}, \omega^{\prime}, H^{\prime}$ and J^{\prime} are related to their values in frame F.

4 Describe how the Cauchy integral theorem can be used to evaluate contour integrals in the complex plane. Illustrate your answer by showing that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \frac{1}{x^{2}+1}=\pi \tag{10}
\end{equation*}
$$

Calculate the integrals

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} x \frac{1}{x^{4}+1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{dx} \frac{\cos a x}{x^{2}+b^{2}} . \tag{12}
\end{equation*}
$$

5 Define the Fourier transform $\tilde{f}(\omega)$ of a function $f(t)$ and write down the expression for the inverse transform. Describe how the Fourier transform can be used to solve linear dynamical equations.

Find the causal Green function $G\left(t ; t^{\prime}\right)$ for a damped harmonic oscillator described by the equation

$$
\ddot{y}+\gamma \dot{y}+\omega_{\mathrm{o}}^{2} y=\delta\left(t-t^{\prime}\right)
$$

with $\gamma<2 \omega_{0}$.
Show how the Green function can be used to determine the response of the system to an external force which is constant $f\left(t^{\prime}\right)=f_{0}$ during the period $0<t^{\prime}<\tau$, and zero otherwise. For the case $t<\tau$ show that the response is

$$
\begin{equation*}
y(t)=\frac{1}{2 \omega_{0}^{2}}\left(2 \Omega-e^{-\frac{1}{2} \gamma t}(2 \Omega \cos \Omega t+\gamma \sin \Omega t)\right) \tag{10}
\end{equation*}
$$

where $\Omega=\sqrt{\omega_{o}^{2}-\gamma^{2} / 4}$.
Find also the response for the case $t>\tau$. It is sufficient to express the answer as a definite integral.
[You may quote the following indefinite integral:

$$
\int \mathrm{d} x e^{-\frac{1}{2} \gamma x} \sin \Omega x=-\frac{1}{2 \omega_{0}^{2}} e^{-\frac{1}{2} \gamma x}(2 \Omega \cos \Omega x+\gamma \sin \Omega x)
$$

where $\Omega=\sqrt{\omega_{\mathrm{o}}^{2}-\gamma^{2} / 4}$.]

6 Discuss the concept of discrete transition probability $w\left(k, k^{\prime}\right)$ for a discrete one-dimensional random walk.

Consider an ensemble of small identical spherical Brownian particles, of radius a and density ρ, suspended in a container filled with water (density ρ_{0}). Derive the modified diffusion equation for the probability $P(z, t)$ of finding a particle at a height z taking into account only first-order corrections in powers of $\tilde{m} g a / k_{\mathrm{B}} T$ (assumed small):

$$
\frac{\partial P}{\partial t}=\frac{1}{2} D\left(\frac{\partial^{2} P}{\partial z^{2}}+\frac{\tilde{m} g}{k_{\mathrm{B}} T} \frac{\partial P}{\partial z}\right)
$$

where $\tilde{m}=4 \pi\left(\rho-\rho_{0}\right) a^{3} / 3$.
Derive the equilibrium Boltzmann distribution of these particles along the vertical z-axis.

For $\rho=1.1 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and $\rho_{0}=1 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ estimate the order of magnitude of the radius a of a particle for which the effect of Brownian diffusion is relevant, such that the trajectory of moving particle deviates significantly from a straight line.
[At room temperature $k_{\mathrm{B}} T \sim 4 \times 10^{-21} \mathrm{~J}$.]

