Theoretical Physics 1 Answers to Examination 2002

Warning - these answers have been completely retyped... Please report any typos/errors.
steve@mrao.cam.ac.uk
Q1. Bookwork: the conjugate momenta are $p_{i} \equiv \partial L / \partial q_{i}$. The Hamiltonian is

$$
\begin{equation*}
H \equiv \sum_{i} p_{i} \dot{q}_{i}-L \tag{1}
\end{equation*}
$$

which is a function of $\left(q_{i}, p_{i}\right)$ but not \dot{q}_{i}. Hamilton's equations are

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} ; \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \tag{2}
\end{equation*}
$$

i.e. a set of $2 N$ first-order equations for the coordinates and momenta.

The Poisson bracket $\{f, g\}$ of functions $f\left(q_{i} p_{i}\right)$ and $g\left(q_{i} p_{i}\right)$ is defined as

$$
\begin{equation*}
\{f, g\} \equiv \sum_{i}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right) \tag{3}
\end{equation*}
$$

It is useful because the evolution equation of any quantity $f(\boldsymbol{q}, \boldsymbol{p}, t)$ can be expressed (using Hamilon's equations) as

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial t}+\{f, H\} \tag{4}
\end{equation*}
$$

To see this write

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial t}+\sum_{i} \frac{\mathrm{~d} q_{i}}{\mathrm{dt}} \frac{\partial f}{\partial q_{i}}+\sum_{i} \frac{\mathrm{~d} p_{i}}{\mathrm{dt}} \frac{\partial f}{\partial p_{i}} \tag{5}
\end{equation*}
$$

and use Hamilton's equations.
For a vector field $\boldsymbol{A}(\boldsymbol{x})$ function of position \boldsymbol{x}, we have $q_{i}=x_{i}$. Then, for the k th component of \boldsymbol{A} and j th component of \boldsymbol{p}

$$
\begin{equation*}
\left\{p_{j} A_{k}\right\}=\sum_{i}\left(\frac{\partial p_{j}}{\partial x_{i}} \frac{\partial A_{k}}{\partial p_{i}}-\frac{\partial p_{j}}{\partial p_{i}} \frac{\partial A_{k}}{\partial x_{i}}\right) \tag{6}
\end{equation*}
$$

The first term is zero and the second evaluates to $-\partial A_{k} / \partial x_{j}$. The Langrangian is $L=\frac{1}{2} m \dot{\boldsymbol{x}}^{2}-e(\phi-\dot{\boldsymbol{x}} \cdot \boldsymbol{A})$. The canonical momentum is $\boldsymbol{p}=m \boldsymbol{v}+e \boldsymbol{A}$. The classical Hamiltonian is $(\boldsymbol{p}-e \boldsymbol{A})^{2} / 2 m+e \phi$. The corresponding quantum operator is

$$
\begin{align*}
\hat{H} & =\frac{1}{2 m}\left(\hat{\boldsymbol{p}}^{2}-e \hat{\boldsymbol{A}} \cdot \hat{\boldsymbol{p}}-e \hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{A}}+e^{2} \hat{\boldsymbol{A}}^{2}\right)+e \phi \\
& =\frac{1}{2 m}\left(\hat{\boldsymbol{p}}^{2}-2 e \hat{\boldsymbol{A}} \cdot \hat{\boldsymbol{p}}-e\left[\hat{p}_{j}, \hat{A}_{j}\right]+e^{2} \hat{\boldsymbol{A}}^{2}\right)+e \phi \tag{7}
\end{align*}
$$

The commutator term evaluates to $\left[\hat{p}_{j}^{2}, \hat{A}_{j}\right]=-i \hbar \nabla \cdot \boldsymbol{A}$, which vanishes in the given gauge. After that it's plain sailing using $\hat{p}=-i \hbar \nabla$ to get

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{i \hbar e}{m} \boldsymbol{A} \cdot \nabla+\frac{e^{2} \boldsymbol{A}^{2}}{2 m}+e \phi \tag{8}
\end{equation*}
$$

and the Schrödinger equation is just $i \hbar \partial \psi / \partial t=\hat{H} \psi$.
Q2. Bookwork: Hamilton's principle is $\delta \int \mathrm{d} t L\left(q_{i}, \dot{q}_{i}, t\right)=0$ and leads (via the calculus of variations) to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}_{1}}=\frac{\partial L}{\partial q_{i}} \tag{9}
\end{equation*}
$$

i.e. $N 2$ nd-order equations for the coordinates q_{i}.

Using generalised coordinates θ, x, the kinetic energy is

$$
\begin{equation*}
\frac{1}{2} m a^{2} \dot{\theta}^{2}+\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{4} m(\dot{x}+a \dot{\theta})^{2} \tag{10}
\end{equation*}
$$

where $I=m a^{2}$ for the disc of mass $2 m$. The potential energy is $-m g a \cos \theta-\frac{1}{2} m g(x+a \theta)+\frac{1}{2} k x^{2}$, so the Lagrangian is

$$
\begin{equation*}
L=\frac{5}{4} m a^{2} \dot{\theta}^{2}+\frac{1}{2} m a \dot{\theta} \dot{x}+\frac{1}{4} m \dot{x}^{2}+m g a \cos \theta+\frac{1}{2} m(x+a \theta)-\frac{1}{2} k x^{2} \tag{11}
\end{equation*}
$$

and Lagrange's equations are

$$
\begin{align*}
\frac{5}{2} m a^{2} \ddot{\theta}+\frac{1}{2} m a \ddot{x} & =-m g a \sin \theta+\frac{1}{2} m g a \tag{12}\\
\frac{1}{2} m a \ddot{\theta}+\frac{1}{2} m \ddot{x} & =\frac{1}{2} m g-k x
\end{align*}
$$

The conditions for equilibrium are, for zero LHS,

$$
\begin{equation*}
x_{0}=m g / 2 k ; \quad \sin \theta_{0}=\frac{1}{2} \Rightarrow \theta_{0}=\pi / 6 \tag{13}
\end{equation*}
$$

Expanding about this position $\delta \theta \equiv \theta-\theta_{0}$ we need the result
$\sin \theta \approx \sin \theta_{0}+\delta \theta \cos \theta_{0}$, where $\cos \theta_{0}=\sqrt{3} / 2$ For oscillations like $\exp (-i \omega t)$, we tidy up to get

$$
\left(\begin{array}{cc}
\frac{\sqrt{3} g}{2 a}-\frac{5 m \omega^{2}}{2} & -\frac{m \omega^{2}}{2} \tag{14}\\
-\frac{m \omega^{2}}{2} & k-\frac{m \omega^{2}}{2}
\end{array}\right)\binom{\delta \theta}{\delta x}=\binom{0}{0}
$$

For non-trivial solutions, the determinant must vanish leading to

$$
\begin{equation*}
m^{2} \omega^{4}-\left(\frac{5 k}{2}+\frac{\sqrt{3} g}{4}\right) m \omega^{2}+\frac{\sqrt{3} g k}{2 a}=0 \tag{15}
\end{equation*}
$$

as required.
For the limit $k \gg g / a$ the upper root is about the same as the sum of roots, so $\omega^{2} \approx 5 k / 2 m$. The product of the roots is $\sqrt{3} g k / 2 a m$, so the low frequency mode has $\omega^{2} \approx \sqrt{3} g / 5 a$, as is appropriate for an effective spring constant of $\sqrt{3} g / 2 a$ and an effective mass of $5 \mathrm{~m} / 2$.
The other limit $k \ll g / a$ has a high mode of $\omega^{2} \approx \sqrt{3} g / 4 a$ the $m / 2$ mass has become uncoupled and a low mode of $\omega^{2} \approx 2 k / m$ (same reason).

Q3. The forces are viscosity (with $\gamma=6 \pi \eta^{3} a v$), gravity and the stochastic force $A(t)$. This last one needs comment, being on average zero $\langle A(t)\rangle=0$ and uncorrelated at different times. The strength of the stochastic force is Γ, where $\left\langle A(t) A\left(t^{\prime}\right)\right\rangle=\Gamma \delta\left(t-t^{\prime}\right)$.
Setting $g=0$ for the moment, we have

$$
\begin{equation*}
v(t)=e^{\frac{-\gamma t}{m}} \int_{0}^{t} \mathrm{~d} \xi e^{\frac{\gamma \xi}{m}} A(\xi) / m \tag{16}
\end{equation*}
$$

Averaging, we get

$$
\begin{equation*}
\left\langle v^{2}(t)\right\rangle=e^{\frac{-2 \gamma t}{m}} \frac{1}{m^{2}} \int_{0}^{t} \mathrm{~d} \xi \int_{0}^{t} \mathrm{~d} \eta e^{\frac{\gamma(\xi+\eta)}{m}}\langle A(\xi) A(\eta)\rangle \tag{17}
\end{equation*}
$$

The δ-function sets $\xi=\eta$ and we have

$$
\begin{equation*}
\left\langle v^{2}(t)\right\rangle=\frac{e^{\frac{-2 \gamma t}{m}}}{m^{2}} \int_{0}^{t} \mathrm{~d} \xi e^{\frac{2 \gamma \eta}{m}} \Gamma=\frac{\Gamma}{2 m \gamma} e^{\frac{-2 \gamma t}{m}}\left(e^{\frac{2 \gamma t}{m}}-1\right) \tag{18}
\end{equation*}
$$

which tends to $\Gamma / 2 m \gamma=\Gamma / 12 \pi \eta a m$ as $t \rightarrow \infty$. In equilibrium $\left\langle v^{2}\right\rangle=k T / m$, so $\Gamma=2 \gamma k T$ as required.
Diffusion equation for overdamped case drops the \dot{v} term so

$$
\begin{equation*}
\gamma \dot{z}=-m g+A \tag{19}
\end{equation*}
$$

which Eugene assures me implies that the kinetic equation for the probability distribution is

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\frac{\partial}{\partial z}\left(\frac{m g}{\gamma}+\frac{\Gamma}{2 \gamma^{2}} \frac{\partial}{\partial z}\right) P \tag{20}
\end{equation*}
$$

in equilibrium the LHS is zero so $\frac{\partial P}{\partial z}=-(2 \gamma m g / \Gamma) P$ and $P \propto \exp (-2 \gamma m g z / \Gamma)=\exp (-m g z / k T)$, the Boltzmann distribution, as expected. The centre of mass $\langle z\rangle=k T / m g$.
Q4. (a) It's easiest, but not crucial, to write $\sin x \sin (x-\alpha)$ as $-\frac{1}{2} \Re\left(e^{i(2 x-\alpha)}-e^{i \alpha}\right)$. Then closing over the top, we have

$$
\begin{equation*}
-\oint \mathrm{d} z \frac{e^{i(2 x-\alpha)}-e^{i \alpha}}{2 x(x-\alpha)}=-\oint \mathrm{d} z \frac{1}{2 \alpha}\left(e^{i(2 x-\alpha)}-e^{i \alpha}\right)\left(\frac{1}{x-\alpha}-\frac{1}{x}\right) \tag{21}
\end{equation*}
$$

This is equal to πi times the residues, rather than $2 \pi i$, because the contour goes through the poles (lenient treatment of offenders...) The residues are $e^{ \pm i \alpha}$ (twice each), hence result using $2 i \sin \alpha=e^{i \alpha}-e^{-i \alpha}$.
Alternative: use Fourier transform of sinc function is 1 in $[-\pi, \pi], 0$ elsewhere. Integral given is correlation of two sinc functions - hence is FT (product) (FT real here, but it's really $\tilde{f} \tilde{g}^{*}$ in the correlation theorem, rather than the convolution theorem). So FT(answer) is just the same \Rightarrow answer is $\sin (\alpha) / \alpha$.
(b) Nice key-hole integral: I is integral to be found $-\int_{\Gamma_{1}}=I, \int_{\Gamma_{3}}=-e^{-2 i p \pi} I$, $\int_{\Gamma_{2}}=0$ if $p>-1$ and $\int_{\Gamma_{4}}=0$ if $p<1$. (Bonus for proving conditions...)
Locate poles: $1+2 z \cos \theta+z^{2}=\left(z+e^{i \theta}\right)\left(z+e^{-i \theta}\right)$, so poles at $z=-e^{ \pm i \theta}$ (note sign). Converting to partial fractions

$$
\begin{equation*}
\left(1-e^{-2 i p \pi}\right) I=\oint_{\Gamma} \mathrm{d} z\left(\frac{1}{z+e^{-i \theta}}-\frac{1}{z+e^{i \theta}}\right) \frac{z^{-p}}{e^{i \theta}-e^{-i \theta}} \tag{22}
\end{equation*}
$$

The residue at $z=-e^{i \theta}$ is found by writing it as $z=e^{i \pi} e^{i \theta}$, we get $z^{-p}=e^{-i p \pi} e^{i p \theta}$. Then, using the residue theorem

$$
\begin{equation*}
\left(1-e^{-2 i p \pi}\right) I=2 \pi i e^{-i p \pi} \frac{e^{i p \theta}-e^{-i p \theta}}{e^{i \theta}-e^{-i \theta}} \tag{23}
\end{equation*}
$$

which proves the result.
Q5. Preferred version of (t, ω) Fourier transform and its inverse is

$$
\begin{equation*}
\tilde{f}(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t f(t) e^{i \omega t} ; \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \tilde{f}(\omega) e^{-i \omega t} \tag{24}
\end{equation*}
$$

For the (x, k) pair I prefer the opposite sign - the reason being the it is the convention in QM that $e^{i(k x-\omega t)}$ represents a positive energy wave travelling in the $+x$-direction (remember $i \hbar \dot{\psi}=E \psi$). No arguments, please, just do it my way...
Lagrangian fields: the action is

$$
\begin{equation*}
S=\int \mathrm{d} t \mathrm{~d} x\left(\frac{1}{2} T\left(\frac{\partial u}{\partial x}\right)^{2}-\frac{1}{2} \rho\left(\frac{\partial u}{\partial t}\right)^{2}\right) \tag{25}
\end{equation*}
$$

the equations of motion are

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(T \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial t}\left(\rho \frac{\partial u}{\partial t}\right)=0 \tag{26}
\end{equation*}
$$

With damping present add a term $\gamma \dot{u}$:

$$
\begin{equation*}
T \frac{\partial^{2} u}{\partial x^{2}}=\rho \frac{\partial^{2} u}{\partial t^{2}}+\gamma \frac{\partial u}{\partial t} \tag{27}
\end{equation*}
$$

Fourier transforming this equation we have

$$
\begin{equation*}
\left(\rho \omega^{2}-i \gamma \omega-T k^{2}\right) \tilde{u}(\omega, k)=0 \tag{28}
\end{equation*}
$$

The Green's function (for $t^{\prime}=x^{\prime}=0$ for simplicity) is (sign not important)

$$
\begin{equation*}
G(x, t)=\int \frac{\mathrm{d} \omega \mathrm{~d} k}{\left(2 \pi^{2}\right)} \frac{e^{i(k x-\omega t)}}{\rho \omega^{2}-i \gamma \omega-T k^{2}} \tag{29}
\end{equation*}
$$

The ω integral has poles at $\omega_{1,2}=\frac{i \gamma}{2 \rho} 5 \sqrt{T k^{2} / \rho+\gamma^{2} / 4 \rho^{2}}$, i.e. in the upper half-plane. For $t<0$ we must close the contour in the lower half-plane to ensure that the integral over the arc is zero. The result is then zero, generating a $\theta(t)$ Heaviside function. The Green's function is therefore causal.
For $t>0$ some tidying up leaves the final integral as

$$
\begin{equation*}
G(x, t)=\frac{\theta(t) e^{-\gamma t / 2 \rho}}{2 \pi} \int \mathrm{~d} k \frac{e^{i k x} \sin \sqrt{T k^{2} / \rho+\gamma^{2} / 4 \rho^{2}} t}{T k^{2} / \rho+\gamma^{2} / 4 \rho^{2}} \tag{30}
\end{equation*}
$$

(not sufficiently checked...) You are not expected to know that off-hand, but this is a standard Bessel function...

Q6. - Need to describe, for a discrete ID process the idea that

$$
\begin{equation*}
P_{N+1}(m)=w\left(m, m^{\prime}\right) P_{N}(m-1) \tag{31}
\end{equation*}
$$

- Principle of detailed balance is $w\left(m, m^{\prime}\right) P\left(m^{\prime}\right)=w\left(m^{\prime}, m\right) P(m)$ for each pair m, m^{\prime}.
- For a 1-dimensional free random walk ($w=1 / 2$), derive the diffusion equation and discuss the evaluation of (for example) $G \propto \exp \left(-x^{2} / 2 D t\right)$.
- Build the path integral for $G(a, b)(\equiv w(a, b))$ as the product

$$
\begin{equation*}
\prod_{j=1}^{N-1} e^{-\frac{1}{2 D \tau}\left(x_{j+1}-x_{j}\right)^{2}} \rightarrow \int \mathcal{D} x e^{-\frac{1}{2 D} \int_{a}^{b} \mathrm{~d} t \dot{x}^{2}} \tag{32}
\end{equation*}
$$

- Mention the general case

$$
\begin{equation*}
G(a, b) \propto \int \mathcal{D} x e^{-\frac{1}{D m} \int_{a}^{b} \mathrm{~d} t(x, \dot{x})} \tag{33}
\end{equation*}
$$

Don't forget: $D=\frac{k T}{\gamma m}$.

- Identify the classical trajectory (extremum of S) with the most probable path as $\gamma / k T \rightarrow \infty$.

