Theoretical Physics 1
Answers to Examination 2002

Warning — these answers have been completely retyped. .. Please report any
typos/errors.
steve@mrao.cam.ac.uk

Q1. Bookwork: the conjugate momenta are p; = 0L/0q;. The Hamiltonian is
H= sz‘qz' -L,

which is a function of (g;, p;) but not ¢;. Hamilton’s equations are

oH . 0H

i.e. a set of 2N first-order equations for the coordinates and momenta.

The Poisson bracket {f, g} of functions f(¢;p;) and g(g¢;p;) is defined as

_—(90f 09 Of dg
{f.9} = Z (aqz. Op:  Op; 8q:~>

It is useful because the evolution equation of any quantity f(q,p,t) can be
expressed (using Hamilon’s equations) as

dr _of

dt _E—i_{faH}

To see this write

df _of dg; Of dp; Of
dt ot T2 dt dg; 2 dt dp;

and use Hamilton’s equations.

% 7

For a vector field A(x) function of position @, we have ¢; = x;. Then, for the kth

component of A and jth component of p

‘ . apj GAk _ (9pj aAk
{pj Ak} - z; <8$i Ip; Op; Ox;

The first term is zero and the second evaluates to —0A;/0z;.

The Langrangian is L = ima? — e(¢ — -A). The canonical momentum is
p = mv + eA. The classical Hamiltonian is (p — eA)?/2m + e¢. The
corresponding quantum operator is

H = L (pP—cAp—epA+ eQAQ) + e
o (P? = 20 Ap — clp), Aj] + 2 A%) + e
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The commutator term evaluates to [;15]2, A]] = —ihV-A, which vanishes in the
given gauge. After that it’s plain sailing using p = —ifiV to get
- n’ h 2A?
H:_7V2+2A.V+e
m 2m

2m

+ed (8)
and the Schrodinger equation is just ihdiy /9t = Hap.

Q2. Bookwork: Hamilton’s principle is § [ dt L(g;, G;,t) = 0 and leads (via the calculus

of variations) to
d oL 0L

T 9
dtdq: g ©)
i.e. N 2nd-order equations for the coordinates g;.

Using generalised coordinates 6, x, the kinetic energy is
1ma?6 + L1607 + tm(i + af)? (10)
where I = ma? for the disc of mass 2m. The potential energy is

—mga cos f — %mg(a: + af) + %k‘:pz, so the Lagrangian is

5) : 1 . 1
L= Zma292 + ima&if + ij:Q + mgacosf + im(zx + af) — ska®  (11)

and Lagrange’s equations are

gmaQé + tmai = —mgasind+ imga (12)
%maﬁ + %mi‘ = %mg — kx
The conditions for equilibrium are, for zero LHS,
zo=mg/2k ; sinfy=1=0,=7/6 (13)

Expanding about this position 060 = 6 — 6, we need the result
sin @ = sin fy + 66 cos by, where cos fy = v/3/2 For oscillations like exp(—iwt), we

tidy up to get
@ _ 5mw? _ mw? 50 0
2a 2 2 -
(TR ) (5)-(0) w0

For non-trivial solutions, the determinant must vanish leading to

k k
m?wt — (5 + \/4§9> mw? + \/§5 =

. ; 0 (15)

as required.

For the limit k£ > g/a the upper root is about the same as the sum of roots, so
w? ~ 5k/2m. The product of the roots is \/§gk/ 2am, so the low frequency mode
has w? &~ v/3g/5a, as is appropriate for an effective spring constant of v/3g/2a and
an effective mass of 5m/2.

The other limit k < g/a has a high mode of w? ~ v/3g/4a the m /2 mass has
become uncoupled and a low mode of w? &~ 2k/m (same reason).
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Q3. The forces are viscosity (with v = 67r7‘})’ av), gravity and the stochastic force A(t).
This last one needs comment, being on average zero (A(t)) = 0 and uncorrelated
at different times. The strength of the stochastic force is I', where

(A(DA(t)) = D5(t —t').

Setting g = 0 for the moment, we have

—eirrzt/ d¢ em (16)

Averaging, we get

() = [Lae [ an 5 (a©)Am) a7)

The é-function sets & = n and we have

< = / d¢ em = 67727? (e% — 1) (18)

m2

which tends to I'/2m~y = I'/12rnam as t — oo. In equilibrium (v?) = kT /m, so
I’ = 2vkT as required.

Diffusion equation for overdamped case drops the © term so
vi=—mg+ A (19)

which Eugene assures me implies that the kinetic equation for the probability
distribution is

orP 0 (mg I 0

g (mg, L 9 p 20

at 0z ( * 22 82) (20)
in equilibrium the LHS is zero so £ = —(2ymg/I") P and

P o exp(—2ymgz/I") = exp(—mgz/kT'), the Boltzmann distribution, as expected.
The centre of mass (z) = kT /mg.

Q4. (a) It’s easiest, but not crucial, to write sinz sin(z — a) as —i%R (e"@x’a) — em).
Then closing over the top, we have

H2w—a) _ Z(Qxfa) i 1 1
—fdz fdz— —e )( —) (21)
2z(r — ) r—a

This is equal to 7 times the residues, rather than 27i, because the contour goes
through the poles (lenient treatment of offenders...) The residues are e (twice
each), hence result using 2isin a = '@ — e~@,

Alternative: use Fourier transform of sinc function is 1 in [—m, 7], 0 elsewhere.
Integral given is correlation of two sinc functions — hence is FT(product) (FT real
here, but it’s really f g* in the correlation theorem, rather than the convolution
theorem). So FT(answer) is just the same = answer is sin(«) /.
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(b) Nice key-hole integral: I is integreﬁ to be found — [, =1, [, = —e 271,
Jn, =0if p>—1and [, =0if p<1. (Bonus for proving conditions...)

Locate poles: 1+ 2zcosf + 22 = (z + €?)(z + e7), so poles at z = —e** (note
sign). Converting to partial fractions
. 1 1 z_p
] — ¢=2m I:y!dz( _ ) - 22
( ) r z+ e—10 z+ el | eit _ o—ib ( )
The residue at z = —e is found by writing it as z = e e, we get

27P = e~P7e  Then, using the residue theorem

—2ipm s ﬂeipH — eiipa
(1—6 2p)I:27T’l€ pm (23)
which proves the result.
Q5. Preferred version of (¢,w) Fourier transform and its inverse is
~ 0o ) 1 o0 ~ )
floy= [ atgwe=s sy = o [ dw flwpe (24)
—00 T J—00

For the (x, k) pair I prefer the opposite sign — the reason being the it is the
convention in QM that ei(kxf“’t) represents a positive energy wave travelling in the
+z-direction (remember ifity = E1)). No arguments, please, just do it my way. . .

Lagrangian fields: the action is

s = [ dids (;T (guf 1, <3“>2) (25)
x ot
the equations of motion are
2 (ng> -0 @;) 0 (26)
With damping present add a term ~u:
Pu Pu  Ou

— =p=— +t7= 27
o o T (27)
Fourier transforming this equation we have
2 2\ ~ _
(pw —iyw — Tk ) t(w, k) =0 (28)
The Green’s function (for ¢’ = 2’ = 0 for simplicity ) is (sign not important)
dwdk 6i(k:c—wt)
Gz, t) = / 29
(z,4) (27m2) pw? — iyw — Tk? (29)
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The w integral has poles at wy o = % 3 \/Tk2/,o + ~2/4p?%, i.e. in the upper
half-plane. For ¢t < 0 we must close the contour in the lower half-plane to ensure
that the integral over the arc is zero. The result is then zero, generating a 6(t)

Heaviside function. The Green’s function is therefore causal.

For t > 0 some tidying up leaves the final integral as

G(z,t) =

0(t)e /2% / e* sin \/Tk‘?/p + 72/4p%t (30)

2 Tk?/p+~2/4p?

(not sufficiently checked...) You are not expected to know that off-hand, but this
is a standard Bessel function. ..

Q6. e Need to describe, for a discrete ID process the idea that
Pyxy1(m) = w(m,m")Py(m — 1) (31)

e Principle of detailed balance is w(m, m')P(m') = w(m', m)P(m) for each
pair m,m’.

e For a 1-dimensional free random walk (w = 1/2), derive the diffusion
equation and discuss the evaluation of (for example) G o exp(—z?/2Dt).

e Build the path integral for G(a,b) (= w(a,b)) as the product
N-1
H e~ 207 @i1=z)® / Dz ¢ 0 Jo @ (32)
j=1
e Mention the general case
b .
G(a,b) /Dx ¢~ D Jo 4 L) (33)

Don’t forget: D = £L

ym’
e Identify the classical trajectory (extremum of S) with the most probable
path as v/kT — oc.
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