THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains 4 sides and is accompanied by a book giving values of constants and containing mathematical formulae which you may quote without proof.

1 Uniform rod of length $2 a$ and mass m is suspended at one end and swings freely in the vertical plane. Show that the kinetic energy of the rod is

$$
T=\frac{2}{3} m a^{2} \dot{\theta}^{2}
$$

where θ is the angle the rod makes with the vertical.
A second identical rod is suspended from the end of the first one and makes an angle ϕ with the vertical. For such a coupled system swinging in the vertical plane, write down the Lagrangian and obtain the corresponding equations of motion.

Show that the approximate equations of motion for small oscillations $(|\theta|,|\phi| \ll 1)$ are

$$
\begin{aligned}
4 \ddot{\phi}+6 \ddot{\theta} & =-3(g / a) \phi \\
6 \ddot{\phi}+16 \ddot{\theta} & =-9(g / a) \theta
\end{aligned}
$$

Thus show that there are two normal modes of oscillations with frequencies

$$
\omega^{2}=3 \frac{g}{a}\left\{\frac{1}{2} \pm \frac{1}{\sqrt{7}}\right\} .
$$

2 The relativistic Lagrangian for a particle of rest mass m_{0} moving in 1 dimension with the spatial coordinate $q(t)$ is

$$
L(q, \dot{q})=-\frac{m_{0} c^{2}}{\gamma}-V, \quad \text { where } \gamma=\frac{1}{\sqrt{1-\dot{q}^{2} / c^{2}}}
$$

(TURN OVER for continuation of question 2
and $V=V(q)$ is the potential energy.
Find the associated canonical momentum p. Show explicitly that Lagrange's equations imply that the total energy $E=p \dot{q}-L$ is a constant of the motion.

Consider the case $V=\frac{1}{2} k q^{2}$ and assume the motion is oscillatory between the limits $-b \leq q \leq b$. Show that the period of the oscillations is

$$
\begin{equation*}
\tau=\frac{4}{c} \int_{0}^{b} \frac{d q}{\sqrt{1-\frac{m_{0}^{2} c^{4}}{\left(E-\frac{1}{2} k q^{2}\right)^{2}}}} \tag{7}
\end{equation*}
$$

Show that the conserved total energy can be written in the form

$$
\frac{E-\frac{1}{2} k q^{2}}{m_{0} c^{2}}=1+\alpha\left(b^{2}-q^{2}\right) \quad \text { with } \quad \alpha=\frac{k}{2 m_{0} c^{2}}
$$

Hence show that the period

$$
\tau \sim \frac{2 \pi}{c} \frac{1}{\sqrt{\alpha}}\left[1-\frac{3}{8} \alpha b^{2}\right]+\mathcal{O}\left(\alpha b^{2}\right)^{3}
$$

How does this result compare with the non-relativistic simple harmonic oscillator?

3 A dynamical system is described by generalised coordinates $\left\{q_{1}, \ldots q_{n}\right\}$ and canonical momenta $\left\{p_{1}, \ldots p_{n}\right\}$. Write down the Hamilton equations for the motion of the system. What is the physical significance of the Hamiltonian \mathcal{H} ?

State and prove the Liouville's Theorem for the evolution of an ensemble of such systems.

Show that a beam of light travelling in the $x-z$ plane forms a system to which the Liouville's Theorem applies, when for each ray:

$$
q=\operatorname{displacement} \text { from } z \text { axis and } p=n \sin \theta
$$

where n is the corresponding refractive index and θ is the angle of the ray with respect to the z axis. [You may assume Fermat's principle of least time for the propagation of the rays and then treat the z coordinate as if it were the time in the Lagrangian formalism.]

Consider a light beam which has its phase space bounded by the ellipse

$$
\frac{q^{2}}{a^{2}}+\frac{p^{2}}{b^{2}}=1 \quad \text { at } \quad z=0
$$

Find an equation for the phase space boundary after the beam has travelled a distance ℓ along the z axis and verify that the phase area is converved. (You may assume $n=1$ and that θ is small).
[For an ellipse described by a general quadratic form $\alpha x^{2}+2 \beta x y+\gamma y^{2}=\epsilon$ with a constraint $\alpha \gamma-\beta^{2}=1$, the area is equal to $\pi \epsilon$]

4 The Noether's Theorem states that if the Lagrangian density $\mathcal{L}(\psi, \dot{\psi})$ (and not just its action $S=\int \mathcal{L} d \boldsymbol{r} d t$) is invariant under a phase transformation $\psi \rightarrow \psi_{0} e^{i \alpha}$, where α is any real constant, as well as S being stationary, then

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\psi \frac{\partial \mathcal{L}}{\partial[\dot{\psi}]}-\psi^{*} \frac{\partial \mathcal{L}}{\partial\left[\dot{\psi}^{*}\right]}\right)+\nabla \cdot\left(\psi \frac{\partial \mathcal{L}}{\partial[\nabla \psi]}-\psi^{*} \frac{\partial \mathcal{L}}{\partial\left[\nabla \psi^{*}\right]}\right)=0 \tag{10}
\end{equation*}
$$

Prove the theorem by starting with the invariance condition $d \mathcal{L} / d \alpha=0$ and expanding it in terms of the partial derivatives $\partial \mathcal{L} / \partial \psi, \partial \mathcal{L} / \partial[\dot{\psi}], \partial \mathcal{L} / \partial[\nabla \psi]$, etc. Then use the corresponding Euler-Lagrange equations for ψ and ψ^{*} and the expression for $\partial \psi(\alpha) / \partial \alpha$.

If the Noether's condition is regarded as an equation of conservation of canonical momentum density for $\pi(\boldsymbol{r}, t)=\psi \partial \mathcal{L} / \partial \dot{\psi}-\psi^{*} \partial \mathcal{L} / \partial \dot{\psi}^{*}$, then the corresponding current is $j(\boldsymbol{r}, t)=\psi \partial \mathcal{L} / \partial[\nabla \psi]-\psi^{*} \partial \mathcal{L} / \partial\left[\nabla \psi^{*}\right]$. Find the momentum density and the current for the Lagrangian density of a free quantum particle

$$
\mathcal{L}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \nabla \psi \cdot \nabla \psi^{*}
$$

5 In the Lorentz gauge of electromagnetism, where the potentials are chosen to obey the condition $\partial^{\mu} A_{\mu}=0$. Show that this corresponds, in a 3 -dimensional frame, to

$$
\frac{1}{c} \frac{\partial \varphi}{\partial t}+\nabla \cdot \boldsymbol{A}=0
$$

In the general case of moving charges, the scalar potential φ is given in terms of charge density ρ by the equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}-\nabla^{2} \varphi=\frac{1}{\varepsilon_{0}} \rho(\boldsymbol{r}, t)
$$

Show how the problem of finding $\varphi(\boldsymbol{r}, t)$ can be reduced to the Green's function formalism and derive the partial differential equation for the linear response function $G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t-t^{\prime}\right)$. Discuss the necessary 3 -d spherical symmetry of $G(\boldsymbol{r}, t)$.

Find $G(\boldsymbol{r}, t)$ through the formal Fourier transform solution and integration on the complex plane. It is easiest to regard the wave-vector \boldsymbol{k} as strictly real and focus on the ω integration. Illustrate the pole-moving technique in terms of introducing a small "dissipation" $\epsilon \partial \varphi / \partial t$ and thus obtain the causal $G(\boldsymbol{k}, t)=-\frac{c}{|k|} \sin (|k| c t)$.

Show that in the causal domain, $t>t^{\prime}$, the Green's function is

$$
G(\boldsymbol{r}, t>0)=\frac{c}{4 \pi|\boldsymbol{r}|} \delta(|\boldsymbol{r}|-c t)
$$

(TURN OVER for continuation of question 5
and the corresponding "retarded" potential

$$
\varphi(\boldsymbol{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\boldsymbol{r}^{\prime}, t-\frac{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}{c}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \boldsymbol{r}^{\prime} .
$$

6 For a 1-dimensional Brownian motion, outline the derivation of the

 generalised transition probability $G\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)$ in terms of a path integral$$
G=\int_{(a b)} \mathcal{D}[x(t)] \exp \left[-\frac{1}{2 D} \int_{t_{a}}^{t_{b}} \dot{x}^{2} d t\right]
$$

and illustrate the role of thermal fluctuations by using the Fluctuation-dissipation relationship for the diffusion constant.

Discuss the relation between the Lagrangian dynamics and the Statistical mechanics, in terms of a most probable path for the system evolution and deviations from it driven by thermal noise.

