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THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains 4 sides and is accompanied
by a book giving values of constants and containing mathematical
formulae which you may quote without proof.

1 Uniform rod of length 2a and mass m is suspended at one end and swings
freely in the vertical plane. Show that the kinetic energy of the rod is

T =
2

3
ma2θ̇2

where θ is the angle the rod makes with the vertical. [5]
A second identical rod is suspended from the end of the first one and makes

an angle φ with the vertical. For such a coupled system swinging in the vertical
plane, write down the Lagrangian and obtain the corresponding equations of
motion. [15]

Show that the approximate equations of motion for small oscillations
(|θ|, |φ| � 1) are

4φ̈+ 6θ̈ = −3(g/a)φ

6φ̈+ 16θ̈ = −9(g/a)θ

[7]
Thus show that there are two normal modes of oscillations with frequencies

ω2 = 3
g

a

{
1

2
± 1√

7

}
.

[6]

2 The relativistic Lagrangian for a particle of rest mass m0 moving in 1
dimension with the spatial coordinate q(t) is

L(q, q̇) = −m0c
2

γ
− V, where γ =

1√
1− q̇2/c2
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and V = V (q) is the potential energy.
Find the associated canonical momentum p. Show explicitly that Lagrange’s [5]

equations imply that the total energy E = p q̇ − L is a constant of the motion. [7]
Consider the case V = 1

2
k q2 and assume the motion is oscillatory between

the limits −b ≤ q ≤ b. Show that the period of the oscillations is

τ =
4

c

∫ b

0

dq√
1− m2

0c4

(E− 1
2
k q2)2

.

[7]

Show that the conserved total energy can be written in the form

E − 1
2
k q2

m0c2
= 1 + α(b2 − q2) with α =

k

2m0c2
.

[7]
Hence show that the period

τ ∼ 2π

c

1√
α

[
1− 3

8
αb2

]
+O(αb2)3.

How does this result compare with the non-relativistic simple harmonic oscillator? [7]

3 A dynamical system is described by generalised coordinates {q1, ...qn} and
canonical momenta {p1, ...pn}. Write down the Hamilton equations for the motion
of the system. What is the physical significance of the Hamiltonian H? [5]

State and prove the Liouville’s Theorem for the evolution of an ensemble of
such systems. [10]

Show that a beam of light travelling in the x− z plane forms a system to
which the Liouville’s Theorem applies, when for each ray:

q = displacement from z axis and p = n sin θ,

where n is the corresponding refractive index and θ is the angle of the ray with
respect to the z axis. [You may assume Fermat’s principle of least time for the
propagation of the rays and then treat the z coordinate as if it were the time in
the Lagrangian formalism.] [10]

Consider a light beam which has its phase space bounded by the ellipse

q2

a2
+
p2

b2
= 1 at z = 0.

Find an equation for the phase space boundary after the beam has travelled a
distance ` along the z axis and verify that the phase area is converved. (You may
assume n = 1 and that θ is small). [8]

[For an ellipse described by a general quadratic form αx2 + 2βxy + γy2 = ε
with a constraint αγ − β2 = 1, the area is equal to πε]
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4 The Noether’s Theorem states that if the Lagrangian density L(ψ, ψ̇) (and
not just its action S =

∫
L drdt) is invariant under a phase transformation

ψ → ψ0 e
iα, where α is any real constant, as well as S being stationary, then

∂

∂t

(
ψ
∂L
∂[ψ̇]

− ψ∗ ∂L
∂[ψ̇∗]

)
+∇ ·

(
ψ

∂L
∂[∇ψ]

− ψ∗ ∂L
∂[∇ψ∗]

)
= 0.

Prove the theorem by starting with the invariance condition dL/dα = 0 and [10]

expanding it in terms of the partial derivatives ∂L/∂ψ, ∂L/∂[ψ̇], ∂L/∂[∇ψ], etc.
Then use the corresponding Euler-Lagrange equations for ψ and ψ∗ and the
expression for ∂ψ(α)/∂α. [10]

If the Noether’s condition is regarded as an equation of conservation of
canonical momentum density for π(r , t) = ψ ∂L/∂ψ̇ − ψ∗ ∂L/∂ψ̇∗, then the
corresponding current is j(r , t) = ψ ∂L/∂[∇ψ]− ψ∗ ∂L/∂[∇ψ∗]. Find the
momentum density and the current for the Lagrangian density of a free quantum
particle [13]

L = ihψ∗∂ψ

∂t
− h2

2m
∇ψ · ∇ψ∗.

5 In the Lorentz gauge of electromagnetism, where the potentials are chosen to
obey the condition ∂µAµ = 0. Show that this corresponds, in a 3-dimensional
frame, to

1

c

∂ϕ

∂t
+∇ ·A = 0.

[5]
In the general case of moving charges, the scalar potential ϕ is given in terms

of charge density ρ by the equation

1

c2
∂2ϕ

∂t2
−∇2ϕ =

1

ε0

ρ(r , t).

Show how the problem of finding ϕ(r , t) can be reduced to the Green’s function
formalism and derive the partial differential equation for the linear response [7]
function G(r − r ′, t− t′). Discuss the necessary 3-d spherical symmetry of G(r , t). [3]

Find G(r , t) through the formal Fourier transform solution and integration
on the complex plane. It is easiest to regard the wave-vector k as strictly real and [8]
focus on the ω integration. Illustrate the pole-moving technique in terms of
introducing a small “dissipation” ε ∂ϕ/∂t and thus obtain the causal
G(k , t) = − c

|k| sin(|k|ct).
Show that in the causal domain, t > t′, the Green’s function is [10]

G(r , t > 0) =
c

4π|r |
δ(|r | − ct)
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and the corresponding “retarded” potential

ϕ(r , t) =
1

4πε0

∫ ρ(r ′, t− |r−r ′|
c

)

|r − r ′|
dr ′.

6 For a 1-dimensional Brownian motion, outline the derivation of the
generalised transition probability G(xb, tb; xa, ta) in terms of a path integral [15]

G =
∫
(ab)

D[x(t)] exp
[
− 1

2D

∫ tb

ta
ẋ2dt

]
and illustrate the role of thermal fluctuations by using the Fluctuation-dissipation
relationship for the diffusion constant. [7]

Discuss the relation between the Lagrangian dynamics and the Statistical
mechanics, in terms of a most probable path for the system evolution and
deviations from it driven by thermal noise. [11]
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