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NATURAL SCIENCES TRIPOS Part I1

Wednesday 19 January 2000 10.30am to 12.30pm

THEORETICAL PHYSICS 1

Answer three questions only. The approximate number of marks

allotted to each part of a question is indicated in the right margin

where appropriate. The paper contains 4 sides and is accompanied
by a book giving values of constants and containing mathematical

formulae which you may quote without proof.

1 Uniform rod of length 2a and mass m is suspended at one end and swings
freely in the vertical plane. Show that the kinetic energy of the rod is
T = gma292
3
where 6 is the angle the rod makes with the vertical.

A second identical rod is suspended from the end of the first one and makes
an angle ¢ with the vertical. For such a coupled system swinging in the vertical
plane, write down the Lagrangian and obtain the corresponding equations of
motion.

Show that the approximate equations of motion for small oscillations
(10],[¢] < 1) are L

40+ 60 = —3(g/a)e
66+ 160 = —9(g/a)b

Thus show that there are two normal modes of oscillations with frequencies
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2 The relativistic Lagrangian for a particle of rest mass my moving in 1
dimension with the spatial coordinate ¢(t) is

moc? 1

-V, where v = ————
V1 —q%/c?
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and V' = V(q) is the potential energy.
Find the associated canonical momentum p. Show explicitly that Lagrange’s
equations imply that the total energy F = p¢ — L is a constant of the motion.
Consider the case V = %k ¢* and assume the motion is oscillatory between
the limits —b < ¢ < b. Show that the period of the oscillations is

4/b dq
T=-
Cc Jo 1_ mgc4

(E—3kq?)?

Show that the conserved total energy can be written in the form
17. 2

moc?

— 2 2 ; —
=14 a(b®—q°) with a—2m002.

Hence show that the period

2m 1 3 19 213

How does this result compare with the non-relativistic simple harmonic oscillator?

3 A dynamical system is described by generalised coordinates {qi, ...¢,} and
canonical momenta {pi,...p,}. Write down the Hamilton equations for the motion
of the system. What is the physical significance of the Hamiltonian H?

State and prove the Liouville’s Theorem for the evolution of an ensemble of
such systems.

Show that a beam of light travelling in the x — z plane forms a system to
which the Liouville’s Theorem applies, when for each ray:

q = displacement from z axis and p = n sinf,

where n is the corresponding refractive index and @ is the angle of the ray with
respect to the z axis. [You may assume Fermat’s principle of least time for the
propagation of the rays and then treat the z coordinate as if it were the time in
the Lagrangian formalism.]

Consider a light beam which has its phase space bounded by the ellipse

2 2
q P
Find an equation for the phase space boundary after the beam has travelled a
distance ¢ along the z axis and verify that the phase area is converved. (You may
assume n = 1 and that 6 is small).
[For an ellipse described by a general quadratic form az? + 28zy + vy = €

with a constraint ay — 3% = 1, the area is equal to me]

(TURN OVER

5

.

[10]



F1

3

4 The Noether’s Theorem states that if the Lagrangian density £(1, ) (and
not just its action S = [ Ldrdt) is invariant under a phase transformation
1 — g e, where « is any real constant, as well as S being stationary, then

;(w%—w*a?é])w- (wa[%— *a[gfm) -

Prove the theorem by starting with the invariance condition d£/da =0 and
expanding it in terms of the partial derivatives AL/, dL /D[], LIV, etc.
Then use the corresponding Euler-Lagrange equations for ¢ and ¢* and the
expression for 0y (a)/Ocv.

If the Noether’s condition is regarded as an equation of conservation of
canonical momentum density for (7, t) = AL/ — * DL/I)*, then the
corresponding current is j(r,t) = ¥ 0L/O[VY] — ¢* OL/O[V*]. Find the

momentum density and the current for the Lagrangian density of a free quantum

particle
oy h
L= — — —Vi . Vo™
iy at  2m Y-V
5 In the Lorentz gauge of electromagnetism, where the potentials are chosen to

obey the condition 0" A,, = 0. Show that this corresponds, in a 3-dimensional

frame, to
10p
-— -A=0.
c Ot v

In the general case of moving charges, the scalar potential ¢ is given in terms
of charge density p by the equation

1 9%p 1
— 2P V2% = —p(r, ).
ET @ 5Op(’r‘, )

Show how the problem of finding ¢(r,t) can be reduced to the Green’s function
formalism and derive the partial differential equation for the linear response
function G(r — r’,t —t’). Discuss the necessary 3-d spherical symmetry of G(r,t).
Find G(r,t) through the formal Fourier transform solution and integration
on the complex plane. It is easiest to regard the wave-vector k as strictly real and
focus on the w integration. Illustrate the pole-moving technique in terms of
introducing a small “dissipation” € d¢/0t and thus obtain the causal
G(k,t) = T sin(|k|ct).
Show that in the causal domain, ¢t > t’, the Green’s function is

C
G(T’,t > O) = W5(|'I°| — Ct)

(TURN OVER for continuation of question 5

[10]

[10]

[13]



F1

4

and the corresponding “retarded” potential

. \r—r’\)

1 p(r' t
1) = / c ~dr'.
(7. 1) 4meg e "

6 For a 1-dimensional Brownian motion, outline the derivation of the
generalised transition probability G(xy, tp; 4, t,) in terms of a path integral

1 t
" i2dt

G=[ D) exp [_20 A

(ab)

and illustrate the role of thermal fluctuations by using the Fluctuation-dissipation
relationship for the diffusion constant.

Discuss the relation between the Lagrangian dynamics and the Statistical
mechanics, in terms of a most probable path for the system evolution and
deviations from it driven by thermal noise.
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