
Tale 10 on theory of ativated proesses, Kramers'problem and the Wiener-Hopf methodI deided to tell this tale to show how the Wiener-Hopf methodworks on example of a physial problem.Kramers' problem of esape from a potential wellConsider a partile moving in a potential well and interatingwith a thermal bath. The equation of motion for suh a partilehas the form: m�x+m _x� U 0(x) = �(t) (1)where  is a damping rate, m is the partile's mass, and therandom fore is assumed to be distributed by the Gaussian law
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− U oFigure 1: Potential well, from whih the Brownian partle esapes over thebarrier, loated at origin.
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with the white-noise orrelation funtion:h�(t)i = 0; h�(t)�(t0)i = 2mTÆ(t� t0) (2)The distribution funtion F (p; x; t) in the phase spae p; x sat-is�es the Fokker-Plank equation:�F�t + pm�F�x � ��p (F dUdx +  "pF +mT �F�p #) = 0 (3)If the temperature of the bath T is low enough (T � U1), thenthe rate of esape is low as well. So, the distribution funtionwill ome to approximate equilibrium:F / N(t) exp 24� p22mT � U(x)T 35 ; �� = �0� p22m + U1A� T (4)in a relatively short time, while the total number N(t) hangesslowly.The normalization of the distribution funtion (4) is determinedmainly by the shape of the potential near its minimumU(x) = �U1 + m
212 (x� xmin)2;whih givesF (x; p; T ) = N(t)
12�T exp8<:� 1T 24U1 + U(x) + p22m359=; ; (5)where only the total number N(t) depends on t. The totalux from the trap J may be expressed through the distributionfuntion: J = 1m Z dp p F (p):2



Sine J is proportional to N ,_N = �J = �N� ;where 1=� = J=N is the esape rate.Thus, our purpose is to �nd � . To do this we must solve thestationary FP-equationpm �F�x � ��p fF dUdx + [pF +mT �F�p ℄g = 0 (6)with the boundary onditionsF (x; p; T )j� = N(t)
12�T exp8<:� 1T 24U1 + U(x) + p22m359=; ; (7)�� = �0� p22m + U1A� T; x! xmin; F (x! +1)! 0: (8)Two regimes of esapeA partile, trapped in our potential well, esapes from it, whatleads to depletion of the distribution funtion in the energy rangeof width T near the barrier top, where the potential may berepresented asU(x) = �m!2x22 ; ! � 
; m!2x2 � U1:The distribution funtion at smaller energies is largely unper-turbed.The damping rate  has the same dimension as that of frequeny.So, if  � !, then our partile moves aperiodially. In the op-posite limit  � ! the partile moves almost periodially, losing3



in every period of osillation a relative part of its energy of theorder of =!. Thus, the energy loss per period Æ1 is given byÆ1 � U1!There are, therefore, two regimes of under-damped motion:i). Æ1 � T andii). Æ1 � T .In the ase i). our partile omes to the esape energy rangeonly one; in the ase ii). it omes repeatedly.Integral equationWe assume that under onditions of under-damping ( � !, butÆ1 � T or Æ1 � T ) the esape rate is determined by energieslose to zero. It is onvenient to introdue new variablesp�(�; x) = �q2m[�� U(x)℄; (9)whih allow to express the derivatives in the form: ��p!x = p�m  ���!x (10) ��x!p =  ��x!� + dUdx  ���!x (11)It is natural now to de�ne distribution funtions for left(right)moving partiles fR;L(�; x) = 1N F [p�; x; �℄ (12)We'll see that it is possible to set � = 0 into p�(�; x). Under thisassumption, the FP equations take the form�fR;L�x = �q�2mU(x) ��� 24fR;L + T �fR;L�� 35 (13)4



subjet to the boundary onditionsfR(�; x1(�)) = fL(�; x1(�)); �� U [x2(�)℄ = 0; (14)fR(�; x2(�)) = fL(�; x2(�)); � < 0; �� U [x2(�)℄ = 0; (15)fL(�; 0) = 0; � > 0: (16)Here x1(2)(�) denote stoping points at left(right) side of potentialwell and Eq (16) shows that there is no ux from the right at� > 0. The FP equations ould be simpli�ed if we introdue theation S(x; �) instead of x, using the relations:dSdx = �q2m[�� U(x)℄; dSdx = �q�2mU(x); � = 0: (17)Therefore, the FP equation has the form�fR;L�S =  ��� [fR;L + T �fR;L�� ℄ (18)This di�erential equation is already so similar to the di�usionequation, that we an rewrite it in the integral form withoutfurther explanationf(�; S) = Z +1�1 g(�� �`; S � S 0)f(�`; S 0)d�0; (19)where g(�; 0) = Æ(�). The expliit form for g(�; S) isg(�; S) = vuut 14�ST exp 24�(�+ S)24ST 35 (20)The evolution of the distribution funtion, as a result of oneosillation, isg(�) = g(�; S1) = vuut 14�Æ1T exp 24�(�+ Æ1)24Æ1T 35 : (21)5



Thus, the funtion, whih was equal to f0(�) at the barrier's topwill be transformed in one period of osillation intoZ 0�1 d�0f0(�0)g(�� �`);where it is taken into aount that only f(�) at � < 0 ontributeto the evolution sine f(�) at � > 0 orresponds to esapingpartiles. Thus,f(�) = vuut 14�Æ1T Z 0�1 d�0f0(�0) exp 24�(�� �` + Æ1)24Æ1T 35 : (22)After one osillation the distribution is shifted by Æ1 and broad-ened with dispersion � = hÆ2i1=2 = (2Æ1T )1=2. Thus, if Æ1 � T ,then Æ1 � �� T . As ��� T ,f(�) = 
12�T exp ��+ UT ! (23)The ux J an also be expressed through solution of the integralequation ��1 = J = Z +10 f(�)d�where the identity d� = pdp=m is used. If Æ1 � T , then Æ1 �� � T , and the kernel of the integral equation (22) may beexpaned in energy di�erene. Upon the integration over energy�0 it yields a di�erential equation instead of an integral one:dd�  T dfd� + f! = 0: (24)We an redue its order to get the equationT dfd� + f = J�: (25)6



The solution of Eq (25) ompatible with the boundary ondi-tions may be found in the formf(�) = A 
12�T e�U1=T (e�=T � 1) (26)whih gives us the esape rate��1 = �Æ1T dfd� j�=0 = 
1Æ12�T e�U1=T (27)We are looking for the expression for the esape rate in the form��1 = A
12� e�U1=T (28)and see that A is linear in Æ1=T at Æ1 � T . We will shortly seethat A = 1 at Æ1 � T . Thus, our purpose is to math these twoasymptotes.The Wiener-Hopf methodThe right hand side of our equation has the form of onvolutionof two funtions f and g on the negative half-axis:f(�) = Z 0�1 d�0g(�� �0)f(�0)Wiener and Hopf invented their method speially for solving theequations of exatly this kind. Following their presription weintrodue the two half-axis Fourier transformations��(�) = 2�
1 exp  U1T ! Z +1�1 d�f(�) �(��) exp 24(2i�+ 1)�2T 35 (29)Comparison with the normalization ondition givesA = �+  i2! (30)7



The boundary onditionf(�) = 
12�T exp  ��+ U1T !as �! �1means that ��(�) has a pole at � = i=2 and ��(�) =�1(� + i=2)�1 at j� + i=2j � 1. The Fourier transform of theintegral equation has the form�+(�) + ��(�) = g(�)��(�); (31)g(�) = exp "�  �2 + 14! Æ1T # (32)Thus, �+(�) = �G(�)��(�);where G(�) = 1� exp "�  �2 + 14! Æ1T # (33)It is important to note that �+(�) is a holomorphi funtion atIm� > ��+ (�+ > 0), and ��(�) is a holomorphous funtionat Im� < �� < 0 with the only exeption for its pole at � =�i=2. Thus there is a stripe where both these funtions areholomorphous. The next step of theWiener-Hopf proedure is torepresentG(�) in a fatorised formG(�) = G+(�)�G�(�), whereG+ and G� are entire funtions whih have no zeros the upperand lower half-planes respetively. If we manage to fatorize G,then �+(�)G+(�) = �G�(�)��(�): (34)It is a good idea to eliminate the pole of ��(�) at � = �i=2�+(�)G+(�) (�+ i2) = �G�(�)��(�) (�+ i2) (35)8



Both sides of Eq (34) are holomorphous funtions in ertainareas and they oinide in the stripe where these areas overlap.Therefore, they are both holomorphous, equal in the whole planeinluding the in�nity and, aording to the Liouville theorem,they both are equal to a onstant. Therefore,��(�) = � i�+ i=2 G�(�i=2)G�(�) (36)�+(�) = i G�(�i=2)G+(�)�+ i=2 (37)As for the pre-exponential fator A, it is determined by Eq (30)A = �+(i=2) = jG+(i=2)j2Thus, in order to �nd the esape rate, we don't need even to in-vert Furrier transform for ��(�) . It is enough to split the kernelG into retarded and advaned parts. This problem of fatoriza-tion may be redued to the problem of an additive splitting bytaking the logarithmslogG(�) = logG+(�) + logG�(�)Now we an express logG� through logGlogG�(�) = � 12�i Z +1�1 logG(�0)�0 � � � d�0 (38)and, �nally,G�(�) = exp0�� 12�i Z +1�1 logG(�0)�0 � � d�01A (39)Thus, as a result,A = exp8<: 12� Z +1�1 d��2 + 14 ln0�1� exp0��Æ1(�2 + 14)T 1A1A9=; (40)9



Now we are able to study the limiting ases. If Æ1 � T , we anexpand the exponent under the sign of the logarithm, andA = exp8<: 12� Z +1�1 d��2 + 14 ln0�Æ1(�2 + 14)T 1A9=; == Æ1T exp8<: 12� Z +1�1 d��2 + 149=; = Æ1T (41)As Æ1 � T ,A = exp8<:� 12� Z +1�1 d��2 + 14 exp �Æ1T  �2 + 14!!9=; (42)Intermediate behavior is represented in the �gure.One more question whih may intrigue the reader relates to themean energy of an esaping partile. Sine the distribution fun-tion near the barrier top has the formf(�) = 
14�2T Z +1�1 �+(�) exp(� �T  �i�+ 12!) d� (43)the mean energy may also be expressed through the Wiener-Hopf solution< � > = R+10 f(�)�d�R+10 f(�)d� = T 0�d log�+(�)d� 1A�=i=2 == T (1 + 2� Z �=20 (1� 2 os2 x) ln  Æ14T os2 x!) (44)For Æ1 � T the integral in the brakets is negligible and < � >=T . For Æ1 � T we again an expand the exponent under thesign of logarithm and< � >T = 1 + 2� Z �=20 (1� os2 x) ln( Æ14T os2 x) dx == �(1=2)vuut Æ1�T = :82vuutÆ1T (45)10



whih is understandable sine under onditions of very low vis-osity the Langevine utuating fore is weak as well and it doesnot aelerate a partile even to energy T over the top of thebarrier.Finally, we must emphasize that suh a long and stressful workwas absolutely neessary and led to omplete suess.
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