Tale 6
The Kramers’ Phase and Laplace’s Method

The Balmer’s formula paradox

We will start with a paradox. Consider a hydrogen atom. The
enery of its s-wave bound states is given by the Balmer’s for-
mula, which in the atomic units, has the form
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where n is the principal quantum number. The states with high
values of this number (n > 1) obey condition of the WKB-
approximation. Conventional for semi-classics the Bohr-Sommerfeld
(BS) quantization rule (h = 1)

[ e, Bydr = xn 4 1/2) (2)

contains the standard n + 1/2 in its right hand side. One can
see that the energies E,, given by Eq (2) are functions of n+1/2
in an evident contradiction to the Balmer’s formula (1).

The solution of this paradox must come from the analysis the
conditions under which the WKB approximation is valid. It is
valid,as we know if the electron wave vector p(r, E) = /E — U(r)
changes only slightly over the wave length A ~ 1/p in compari-
son with the wave vector itself, i.e if
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This condition becomes invalid at the points of the electron
trajectory, where p vanishes (the regular turning points). In
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the case of the Coulomb potential there is a turning point at
r = r(£). Validity of the WKB approximation near the lower
limit in the integral in BS-condition Eq(2) r = 0 requires an
extra analysis. At r — 0 the wave vector p ~ r~%/2 and
d 1
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Therefore, as » — 0 the WKB approximation also becomes in-
valid.

It is known that the regular turning points r(F) add an extra
phase 7/4. Two turnin points lead to the BS condition in the
form of Eq (2). In a general case, the extra phases must be
reexamined in order to obtain a correct BS quantization condi-
tion. Therefore, the correct strategy is to solve the Schroedinger
equation exactly near r — 0 and r = r(F) and match the WKB
wave function to these exact solutions. This way allows to derive
the extra phase in the BS condition without any uncertainties.
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The regular turning point

Consider a regular turning point of the classical motion. It cor-
responds to the equation

—y" + 2y =0 (5)

which we are going to solve exactly to find the asymptotes at
xr — +o0o. Using the Laplace method, we are looking for the
solution of Eq (5) in the integral form.

y(x) = [ dto(t)e” (6)

The contour C' in the complex plane ¢ must be chosen so, that
the integrated terms after the partial integration vanishes. The
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integral representation implies the following relations between
the operations of the multiplication of the function by its argu-
ment and calculation of the derivatives.

dy(r)
dx

—to(t), wzy(x) — —%Ef). (7)

Using these relations, we can rewrite Eq (5) in the form
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Its solution is
o(t) = et
so that
t?;
y(x) = [ dtexplat - ) (9)

The integrand must vanish at both ends of this contour C.
These ends must, therefore go to infinity in those sectors of
complex t-plane, where Ret? > 0 (the shaded sectors in Fig 1).
Three different passes with the ends going to infinity in shad-
owed sectors of Fig 1 generate three sulutions of Eq (5), which
correspond to linear combinations of two independent solutions.
Solution which we need decays at ©+ — 4o00. We will see hat
this condition is obeyed if the path of integration C' is parallel
to imaginary axis. If it is taking just along the imaginary axis,
Eq (9) gives the Airy function:

B(z) = Ai(x) = % [ duweos (uwr + ). (10)

The asymptoti expression for ®(z) for large values of x is ob-
tained by calculating the integral (5) by the steepest descent
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method. In the course of this method the integrand must be
written in the form exp[—h(t)] and the minimum of A(t) must
be found. For x > 0 the minimum condition

0="h(z2) = —x+t] (11)

gives us two solutions ¢y = £+/x. The values of the function
exp[—h(ty)] at these points are equal respectively to exp[F223/2/3].
Therefore, the branch, which decays exponentially at x — 400,
corresponds to ty = —y/x. Shifting the path of integration to
pass through this point and calculation the integral by the steep-
est descent method, we obtain

1

d(z) exp [—22%/%3] . (12)
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Figure 1: Plane of complex variable t and contours of integration. Saddle
points are marked by circles on contour I (at x ; 0 and on contour II at x |
0.



This shows that the chosen path of integration, indeed, gives
solution, which decays exponentially at + — +o0. For z < 0,
solutions of Eq (11) gives for the saddle-points

to = £iy/|z| (13)

The values of the function at these two point are exp[4i22%/2/3],
while second derivation of the phase is A" (iz\/ﬂ) = ii\/m :
Therefore the steepest descent path of integration must go as it
is shown by line I7 in Fig 1 , having the angles of +37/4 with
the real axis. Integration gives:
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The phase 7/4 (the Kramers phase) appears in asymptotic ex-
pression (14).

Origin

Near the origin the potential is so large, that it possible to put

the energy E in Schroedinger’s equation at zero. Then the qua-
tion for the radial part x(r) of the wave function becomes:

I°x X
XX oo =0, v =22 ()
Using again Laplace’s method, we seek the solution in the form
X(r) = [LdzX ()¢’ (16)

Solving the differential equation for X (z)

—dii(z?X) +X =0 (17)



we have g

xr) = [ e (18)
Since x(0) = 0, we must chose the path C' in the form of a closed
loop around the origin in the complex z-plane. Then the result
of integration vanishes at » = 0. Therefore, the solution near
the origin has the form

()= Z e (19)
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One could recognize the Bessel function J;(4/r) in this integral
representation

X(r) o< V/r Ji(Vr), (20)

but we, really, do not need this. For large positive r (r > 1),
the exponent has an extremum for
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and, after standard evaluation we obtain
x(r) ~ Y sin(vr = 7) (22)

Thus, the point » = 0 gives rise to the extra phase —7/4 in
the WKB expression for the wave functions in the Coulomb
potential. This extra phase cancels one, genrated by the regular
point r = r(FE). As the result the quantization rule takes the
form

/OT(E> p(r, E)dr = 2whn (23)

which does not contradict Balmer’s formula.



Appendix 1. Laplace Method

In order to demonstrate the power of the Laplace method, we solve two well
known problem from Quantum mechanics in a quadratic potential.
Consider first the Schroedinger equation for the linear oscillator

—y" + 2y = Ay (24)

The asymptote of its solution at |z| — oo is

y ~ exp (—%) (25)

The substitution )

y(z) = Hx(z) exp <—%> (26)

into Eq (24) leads to the following equation for Hy(x) :

d? d
—@‘FQ:E%—)\*I»l HA(I‘):O (27)

Using the Laplace method, we can find an integral representation for Hy(z).

1 22 dz
Hy(z) = Dy sz|=1 exp (:pz — 5) o2 (28)
This function is a polynomial of power n if and only if
A+1
%:njtl; A=2n+1; n=0,12, .. (29)

Under these conditions, these polynomia (Hermite Polynomia) are the coef-
ficients in the power expansion:

exp (a:z - ?) - io H,(z)2", (30)

which give a general formula

Hy(z) = (—1)"exp <2_22> 4 <_2_2> . (31)



Another example comes from the problem about the particle passing through
the barrier, which has a shape of inverted parabola. So, let us consider
equation

—y" — 2’y = ey, (32)
with the boundary conditions

(')
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1 exp|—i [y p(2')dz'] + rexpli [§ p(a’)dx
y@) = == { PP texp%i §Omp(x’)d:c’] T — 400 (33)
p(z) PltJo P , .
Here
p(z) = \/e+x2§x+— / da'p(x % logx
and, therefore,
ie/2 o me/2 —iz?/2 —2ie/2 i(2%—2me) /2 _
y(x):mie e + 7|z e’ 2 2,$—> o0 (34)
p(a:) tez(x _m)/ , T — +00

The problem is to find the transmission and reflection amplitudes ¢ and r
and transmission and reflection coefficients T = |t|* and R = |r|?.

Our strategy will the following:

1. using the Laplace method we will construct an integral representation for
solution of Eq (32);

2. the contour in of integration we will chose to satisfy the condition at in-
finity (34);

3. we will find asymptotes of that integral at x — 400 and find from these
asymptotes the walues of ¢ and r.

Appendix 2. Maslov Index

Question about extra phase in the semi-classical quantization condition has
an interesting generalization, valid also for multidimensional systems.

General calssical Hamilton system is characterized by the Hamilton function
H(x;,p;), where coordinates and momentums obey the canonical equation.

If, in particular,
2
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we have a particle in a potential in a space of an arbitrary dimension.



