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How can we tell where the atoms are?

Amphibole

• We have see the rich variety
of bonding and structures that
collections of atoms can adopt

• But how can we ever know where the
atoms actually are?

• We must experimentally probe the
structural information



Possible Experimental Probes

Hit something

and see what it, or the probe, does



Scattering

A scattering experiment: The

European Synchrotron Radiation

Facility

• Probe atomic structure by “bouncing”
particles off it, and measuring changes
in momentum etc.

• May be X-ray, neutron or electron
scattering and elastic or inelastic

• X-ray and neutron facilities
are massive pieces of scientific
infrastructure



Crystal Lattices

• In order to interpret the scattering
experiments we need a model of where
the atoms might be

• There are simply too many atoms in
a solid for each’s coordinates to be
determined

• For crystalline solids we introduce the
concept of a Bravais lattice



The Bravais Lattice
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A

A 2D Bravais Lattice

A = a1 + 2a2 and B = −a1 + a2

• The Bravais lattice describes the
underlying periodic structure: not the
crystal structure itself

• An infinite array which looks identical
if viewed from any point

• R =
∑

i niai, ni are all integers, and
ai are not in the same plane

• The primitive vectors ai generate or
span the lattice



Finite Crystals

Gold crystallite

• All point are equivalent in a Bravais
lattice: it must be infinite, but real
crystals are finite

• Finite size effects, or surface effects,
may not be important: the Bravais
lattice is a useful approximation

• It can be useful to consider a finite
portion: R =

∑

i niai, 0 ≤ ni < Ni



Coordination Number

Diamond: 4 Simple Cubic: 6

FCC: 12BCC: 8

• The Bravais lattice points closest to a
given point are the nearest neighbours

• Because the Bravais lattice is periodic,
all points have the same number of
nearest neighbours or coordination

number. It is a property of the lattice

• Can be extended to arrays of points
that are not Bravais lattices (the
diamond lattice is not a Bravais
lattice)



Primitive Unit Cell

Two choices

• Volume which when translated by all
vectors in Bravais lattice just fills
space

• Not uniquely defined

• The set of points r = x1a1 + x2a2 +
x3a3, 0 ≤ xi < 1 is an obvious choice

• Does not display the full symmetry of
the lattice



The Conventional Unit Cell

FCC Bravais lattice

• A unit cell just fills space when
translated through a subset of Bravais
lattice vectors

• The conventional unit cell is chosen
to be larger than the primitive cell, but
with the full symmetry of the Bravais
lattice

• The size of the conventional cell is
given by the lattice constants – a
single a in this case



The Wigner-Seitz Primitive Cell

Wigner-Seitz cell for a 2D lattice

• The Wigner-Seitz cell is a primitive
cell with the full symmetry of the
Bravais lattice

• Constructed by selecting a lattice
point and taking the volume closer
to that point than any others

• Algorithm: draw lines from the lattice
point to all others, bisect each line
with a plane and take the smallest
polyhedron containing the point



The Wigner-Seitz Primitive Cell

BCC

FCC

Wigner-Seitz cells for BCC and FCC 3D lattices



Crystal structure

2D Bravais lattice with

two point basis

• A crystal structure is a basis, or
physical unit, translated by each
vector of the Bravais lattice

• Also known as a “lattice with a basis”

• A monatomic Bravais lattice has a
basis consisting of a single atom

• A Bravais lattice is a lattice with
a basis when a non-primitive cell is
chosen



The Diamond Structure
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Conventional cubic cell

• Two interpenetrating FCC Bravais
lattices, displaced by 1/4 length of
body diagonal

• FCC cubic lattice with two-point
basis: 0 and a/4(x+y+z)

• The diamond lattice is not a Bravais
lattice

• Zincblende structure with two species



Hexagonal Close Packing

a1

a3

a2a1 a2 a3+1/3 1/3 +1/2

Hexagonal close packed crystal

structure

• The hexagonal close packed (HCP)
structure is not a Bravais lattice

• Many pure elements (about 30)
crystallise in this way

• The HCP structure consists of
two interpenetrating simple hexagonal
Bravais lattices

• Other stackings are possible:
...ABCABC... is FCC



The Reciprocal Lattice

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

bi · aj = 2πδij

• The reciprocal lattice arises from
the relationship between the Bravais
lattice and plane waves, eik·r

• For certain k the plane waves will have
the periodicity of the lattice. These
are the points of the reciprocal lattice
K and eiK·R = 1

• The reciprocal lattice is a Bravais
lattice, and the reciprocal lattice of
the reciprocal lattice is the original
direct lattice



Some Examples

a1 = ax̂,a2 = aŷ,a3 = aẑ

b1 =
2π

a
x̂,b2 =

2π

a
ŷ

b3 =
2π

a
ẑ

The Simple Cubic Bravais Lattice
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The FCC Bravais Lattice



The First Brillouin Zone

FCC

BCC
The first Brillouin zone

• The first Brillouin zone is the Wigner-
Seitz primitive cell of the reciprocal
lattice

• Higher Brillouin zones exist, and are
important in the theory of electronic
levels in a periodic potential

• Take care: the first BZ of a FCC
lattice is the Wigner-Seitz primitive
cell of the BCC lattice (and vice versa)



Lattice Planes

Two families of lattice planes in a

simple cubic Bravais lattice

• Families of lattice planes can be
classified in terms of the reciprocal
lattice

• For any reciprocal lattice vector K

there is a family of planes normal to
K and separated by a distance d

• The length of the shortest reciprocal
lattice vector parallel to K is 2π

d



Miller Indices
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(010) (110)

(111)

Lattice planes and Miller indices in a

simple cubic Bravais lattice

• The reciprocal lattice provides a
convienient way to label lattice planes

• The Miller indices are the
coordinates of the shortest reciprocal
lattice vector normal to the plane

• A plane with Miller indices h,k,l is
normal to K = hb1 + kb2 + lb3

• h,k,l are integers with no common
factor



Specifying Directions: some conventions
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(010) (110)

(111)

Lattice planes and Miller indices in a

simple cubic Bravais lattice

• Lattice planes: (h, k, l) → (hkl) with
−n→ n̄ e.g. (2,−1, 4)→ (21̄4)

• Directions in the direct lattice: use
square brackets e.g. [111]

• Planes equivalent by symmetry:
(100), (010), and (001) are equivalent
in a cubic crystal, and we write {100}

• For directions: [100], [010], [001],
[1̄00], [01̄0], [001̄]→ 〈100〉



Beyond Translational Symmetry in Crystals

The symmetries of a cube are identical

to an octahedron, but not a

tetrahedron

• There can be other symmetries in
addition to translational symmetry

• The subject of crystallography
systematises the classification of these
different symmetries

• The number of possibilities can be
shown to be finite for crystals, and
have been ennumerated



Seven Crystal Systems and Fourteen Bravais Lattices

a

c

b

a

a

a

a a

c

a b

c

a a

a

a b

c

a a

c

a

Tetragonal

Cubic

Monoclinic

Triclinic

Hexagonal

Trigonal

Orthorhombic

The Seven Crystal Systems

Orthorhombic

Hexagonal

Trigonal

Monoclinic

Triclinic

Tetragonal

Cubic

Hierarchy of Symmetries

• e.g. the cubic crystal system includes
the simple cubic, BCC and FCC
Bravais lattices



Point and Space Groups of Bravais Lattices and

Crystal Structures

Bravais Lattice Crystal Structure
(basis of spherical symmetry) (basis of arbitary symmetry)

Number of 7 32
point groups (crystal systems) (crystallographic point groups)
Number of 14 230
space groups (Bravais lattices) (space groups)

• Adding a basis considerably complicates the situation

• Nonsymmorphic groups account for many of the 230: these contain screw

axes and glide planes

• Schönflies (e.g. D6h) and International (e.g. 6/mmm) notations exist



Structure Determination by X-ray Diffraction

λ

• Atoms are separated by distances of
the order of Angstroms (10−8cm): the
wavelength must be comparable

• We need X-rays: h̄ω = hc
10−8cm

12.3 ×
103eV

• We now consider how the scattering
of X-rays from rigid periodic arrays of
ions reveals their structure



The Bragg Formulation

d
d sin 

θ θ

θ θ

θθd sin 

Bragg reflection

• W.L. Bragg considered crystals to be
made up of parallel planes of atoms

• The diffraction peak occurs if 1)
X-rays reflect specularly from the
atoms in a plane and 2) the X-rays
from successive planes constructively
interfere

• The diffraction condition is nλ =
2dsinθ, and n is the order of the
reflection



The von Laue Formulation

O

K
k

k’

1/2 K

1/2 K

The Laue Condition

• No assumption that crystal contains
lattice planes is made or that the
reflection is specular

• The crystal is considered to be made
up of identical microscopic objects at
R, which reradiate in all directions

• The Laue condition: constructive
interference occurs if K = k− k′ is a
reciprocal lattice vector

• The von Laue picture is equivalent to
the Bragg picture



The Ewald Sphere

O
K

k k’

The Ewald Construction

• Given an incident wave vector k, draw
a sphere centered on the origin O

• If a reciprocal lattice vector K lies on
the surface, a diffraction peak will be
observed, and k′ is the Bragg reflected
ray

• In general, this is not the case (hence
“peak”)



Experimental Methods

• Laue

– Use a non-monochromatic beam
(from λ0 to λ1)

– All K between the two Ewald
spheres will be seen

• Rotating Crystal

– A monochromatic beam is used

– The direction of k is varied by
rotating the crystal

• Powder or Debye-Scherrer

– The randomly oriented crystallites
effectively rotate the crystal, and
vary the axis of rotation



Structure and Atomic Form Factors

SK =

n
∑

j=1

eiK·dj

The Structure Factor

• There can be forbidden reflections for
lattices with a basis

SK =

n
∑

j=1

fj(K)eiK·dj

fj(K) = −
1

e

∫

dreiK·rρ(r)

The Atomic Form Factor

• Modulates the intensities of the
diffraction peaks

• Can be used analytically

• Some species are more visible than
others


