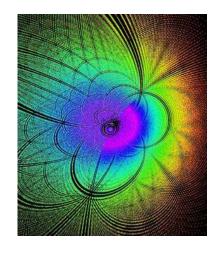
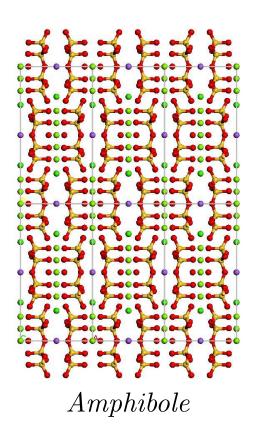
CRYSTAL STRUCTURE AND SCATTERING EXPERIMENTS

Chris J. Pickard



How can we tell where the atoms are?



 We have see the rich variety of bonding and structures that collections of atoms can adopt

• But how can we ever know where the atoms actually are?

• We must experimentally probe the structural information

Possible Experimental Probes

Hit something and see what it, or the probe, does

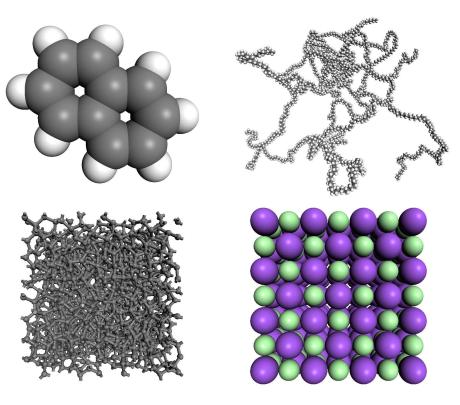
SCATTERING

A scattering experiment: The European Synchrotron Radiation Facility

• Probe atomic structure by "bouncing" particles off it, and measuring changes in momentum etc.

- May be X-ray, neutron or electron scattering and elastic or inelastic
- X-ray and neutron facilities are massive pieces of scientific infrastructure

CRYSTAL LATTICES

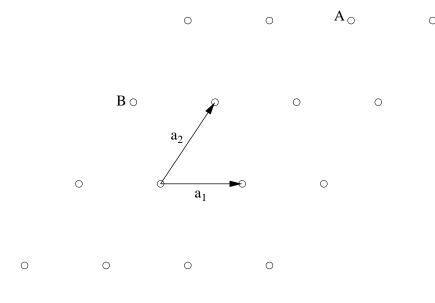


• In order to interpret the scattering experiments we need a model of where the atoms might be

 There are simply too many atoms in a solid for each's coordinates to be determined

• For crystalline solids we introduce the concept of a $Bravais\ lattice$

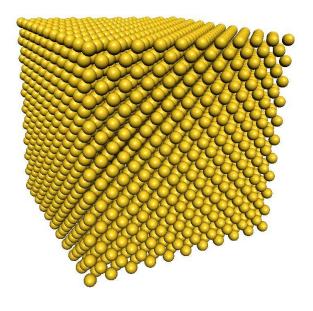
THE BRAVAIS LATTICE



A 2D Bravais Lattice $\mathbf{A} = \mathbf{a}_1 + 2\mathbf{a}_2$ and $\mathbf{B} = -\mathbf{a}_1 + \mathbf{a}_2$

- The Bravais lattice describes the underlying periodic structure: *not* the crystal structure itself
- An infinite array which looks identical if viewed from any point
- $\mathbf{R} = \sum_{i} n_{i} \mathbf{a}_{i}$, n_{i} are all integers, and \mathbf{a}_{i} are not in the same plane
- The primitive vectors \mathbf{a}_i generate or span the lattice

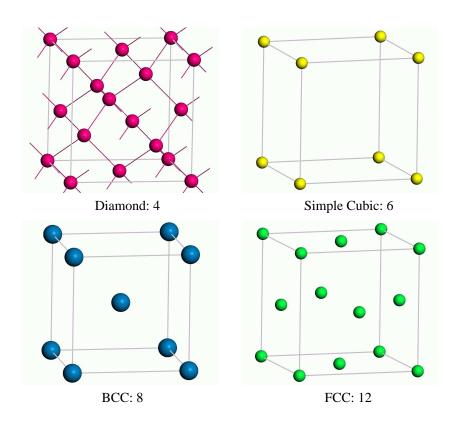
FINITE CRYSTALS



Gold crystallite

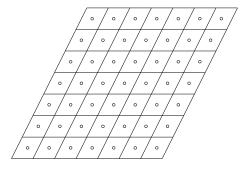
- All point are equivalent in a Bravais lattice: it must be infinite, but real crystals are finite
- Finite size effects, or surface effects, may not be important: the Bravais lattice is a useful approximation
- It can be useful to consider a finite portion: $\mathbf{R} = \sum_i n_i \mathbf{a}_i, 0 \le n_i < N_i$

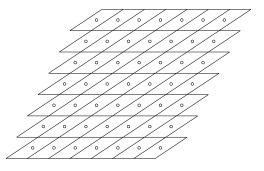
COORDINATION NUMBER



- The Bravais lattice points closest to a given point are the nearest neighbours
- Because the Bravais lattice is periodic, all points have the same number of nearest neighbours or coordination number. It is a property of the lattice
- Can be extended to arrays of points that are not Bravais lattices (the diamond lattice is not a Bravais lattice)

PRIMITIVE UNIT CELL

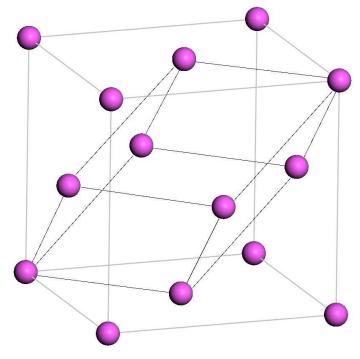




Two choices

- Volume which when translated by all vectors in Bravais lattice just fills space
- Not uniquely defined
- The set of points $\mathbf{r} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3$, $0 \le x_i < 1$ is an obvious choice
- Does not display the full symmetry of the lattice

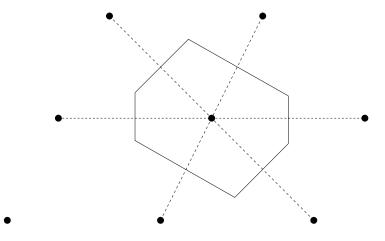
THE CONVENTIONAL UNIT CELL



FCC Bravais lattice

- A *unit cell* just fills space when translated through a subset of Bravais lattice vectors
- The *conventional* unit cell is chosen to be larger than the primitive cell, but with the full symmetry of the Bravais lattice
- The size of the conventional cell is given by the lattice constants a single a in this case

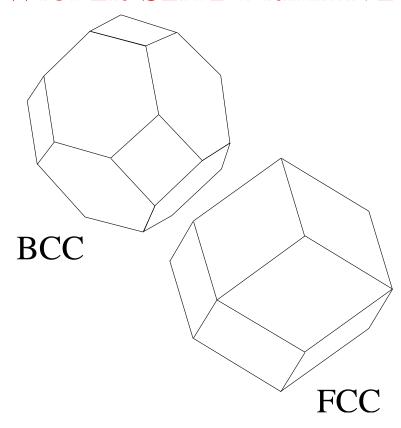
THE WIGNER-SEITZ PRIMITIVE CELL



Wigner-Seitz cell for a 2D lattice

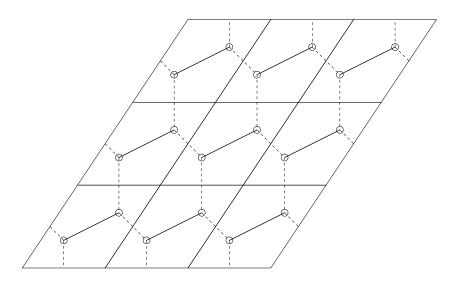
- The Wigner-Seitz cell is a primitive cell with the full symmetry of the Bravais lattice
- Constructed by selecting a lattice point and taking the volume closer to that point than any others
- Algorithm: draw lines from the lattice point to all others, bisect each line with a plane and take the smallest polyhedron containing the point

THE WIGNER-SEITZ PRIMITIVE CELL



Wigner-Seitz cells for BCC and FCC 3D lattices

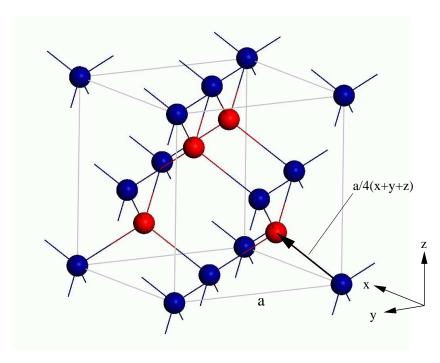
CRYSTAL STRUCTURE



2D Bravais lattice with two point basis

- A crystal structure is a basis, or physical unit, translated by each vector of the Bravais lattice
- Also known as a "lattice with a basis"
- A *monatomic* Bravais lattice has a basis consisting of a single atom
- A Bravais lattice is a lattice with a basis when a non-primitive cell is chosen

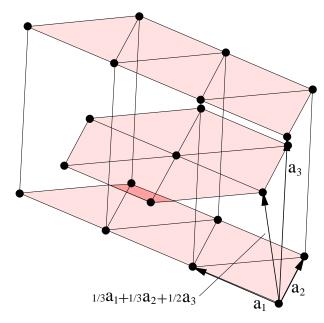
THE DIAMOND STRUCTURE



Conventional cubic cell

- Two interpenetrating FCC Bravais lattices, displaced by 1/4 length of body diagonal
- FCC cubic lattice with two-point basis: $\mathbf{0}$ and $a/4(\mathbf{x}+\mathbf{y}+\mathbf{z})$
- The diamond lattice is not a Bravais lattice
- Zincblende structure with two species

HEXAGONAL CLOSE PACKING



Hexagonal close packed crystal structure

- The hexagonal close packed (HCP) structure is not a Bravais lattice
- Many pure elements (about 30) crystallise in this way
- The HCP structure consists of two interpenetrating simple hexagonal Bravais lattices
- Other stackings are possible:
 ...ABCABC... is FCC

THE RECIPROCAL LATTICE

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

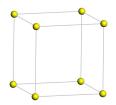
$$\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

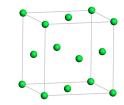
$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij}$$

- The $reciprocal\ lattice$ arises from the relationship between the Bravais lattice and plane waves, $e^{i\mathbf{k}\cdot\mathbf{r}}$
- For certain ${\bf k}$ the plane waves will have the periodicity of the lattice. These are the points of the reciprocal lattice ${\bf K}$ and $e^{i{\bf K}\cdot{\bf R}}=1$
- The reciprocal lattice is a Bravais lattice, and the reciprocal lattice of the reciprocal lattice is the original direct lattice

Some Examples





$$\mathbf{a}_1 = a\hat{\mathbf{x}}, \mathbf{a}_2 = a\hat{\mathbf{y}}, \mathbf{a}_3 = a\hat{\mathbf{z}}$$

$$\mathbf{b}_1 = \frac{2\pi}{a}\hat{\mathbf{x}}, \mathbf{b}_2 = \frac{2\pi}{a}\hat{\mathbf{y}}$$
$$\mathbf{b}_3 = \frac{2\pi}{a}\hat{\mathbf{z}}$$

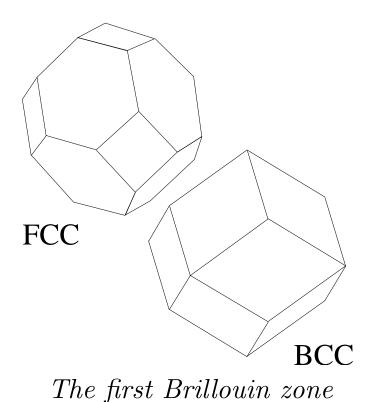
The Simple Cubic Bravais Lattice

$$\mathbf{a}_1 = \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}}), \mathbf{a}_1 = \frac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}}), \mathbf{a}_1 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}})$$

$$\mathbf{b}_1 = \frac{4\pi}{a} \frac{1}{2} (\hat{\mathbf{y}} + \hat{\mathbf{z}} - \hat{\mathbf{x}}), \mathbf{b}_2 = \frac{4\pi}{a} \frac{1}{2} (\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}})$$
$$\mathbf{b}_3 = \frac{4\pi}{a} \frac{1}{2} (\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}})$$

The FCC Bravais Lattice

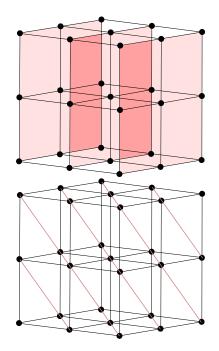
THE FIRST BRILLOUIN ZONE



 The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal lattice

- Higher Brillouin zones exist, and are important in the theory of electronic levels in a periodic potential
- Take care: the first BZ of a FCC lattice is the Wigner-Seitz primitive cell of the BCC lattice (and vice versa)

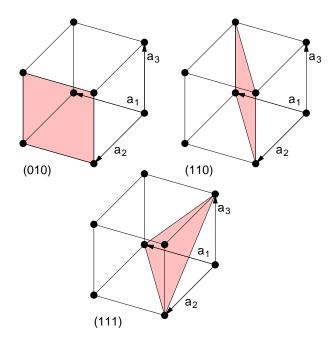
LATTICE PLANES



Two families of lattice planes in a simple cubic Bravais lattice

- Families of lattice planes can be classified in terms of the reciprocal lattice
- ullet For any reciprocal lattice vector ${f K}$ there is a family of planes normal to ${f K}$ and separated by a distance d
- The length of the shortest reciprocal lattice vector parallel to ${\bf K}$ is $\frac{2\pi}{d}$

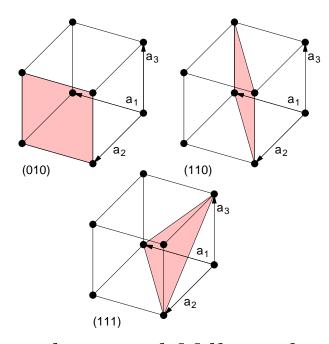
MILLER INDICES



Lattice planes and Miller indices in a simple cubic Bravais lattice

- The reciprocal lattice provides a convienient way to label lattice planes
- The *Miller indices* are the coordinates of the shortest reciprocal lattice vector normal to the plane
- A plane with Miller indices h,k,l is normal to $\mathbf{K} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$
- \bullet h,k,l are integers with no common factor

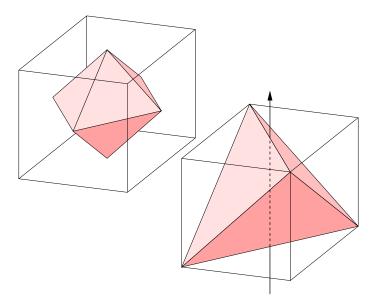
Specifying Directions: some conventions



Lattice planes and Miller indices in a simple cubic Bravais lattice

- Lattice planes: $(h,k,l) \to (hkl)$ with $-n \to \bar{n}$ e.g. $(2,-1,4) \to (2\bar{1}4)$
- Directions in the direct lattice: use square brackets e.g. [111]
- Planes equivalent by symmetry: (100), (010), and (001) are equivalent in a cubic crystal, and we write $\{100\}$
- \bullet For directions: [100], [010], [001], [\overline{1}00], [0\overline{1}0], [00\overline{1}] $\rightarrow \langle 100 \rangle$

BEYOND TRANSLATIONAL SYMMETRY IN CRYSTALS

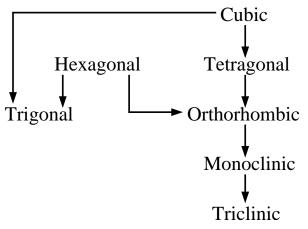


- There can be other symmetries in addition to translational symmetry
- subject of crystallography The systematises the classification of these different symmetries
- to an octahedron, but not a tetrahedron
- The $symmetries\ of\ a\ cube\ are\ identical$ ullet The number of possibilities can be shown to be finite for crystals, and have been ennumerated

SEVEN CRYSTAL SYSTEMS AND FOURTEEN BRAVAIS LATTICES



The Seven Crystal Systems



Hierarchy of Symmetries

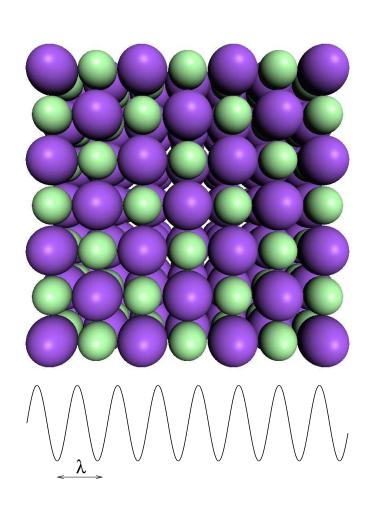
 e.g. the cubic crystal system includes the simple cubic, BCC and FCC Bravais lattices

Point and Space Groups of Bravais Lattices and Crystal Structures

	Bravais Lattice	Crystal Structure
	(basis of spherical symmetry)	(basis of arbitary symmetry)
Number of	7	32
point groups	$(crystal\ systems)$	$(crystallographic\ point\ groups)$
Number of	14	230
space groups	$(Bravais\ lattices)$	$(space\ groups)$

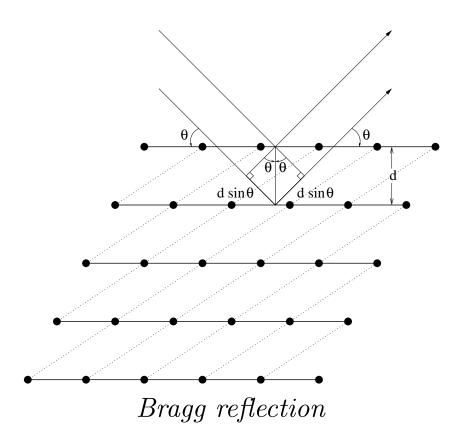
- Adding a basis considerably complicates the situation
- ullet Nonsymmorphic groups account for many of the 230: these contain screw axes and glide planes
- Schönflies (e.g. D_{6h}) and International (e.g. 6/mmm) notations exist

STRUCTURE DETERMINATION BY X-RAY DIFFRACTION



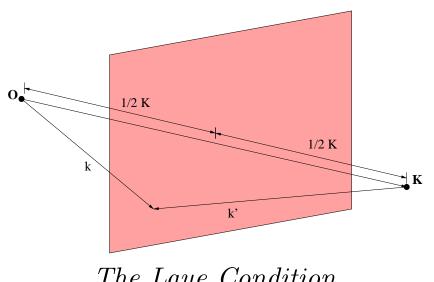
- Atoms are separated by distances of the order of Angstroms (10^{-8} cm): the wavelength must be comparable
- We need X-rays: $\hbar\omega=\frac{hc}{10^{-8}{\rm cm}}12.3\times 10^3 eV$
- We now consider how the scattering of X-rays from rigid periodic arrays of ions reveals their structure

THE BRAGG FORMULATION



- W.L. Bragg considered crystals to be made up of parallel planes of atoms
- The diffraction peak occurs if 1) X-rays reflect specularly from the atoms in a plane and 2) the X-rays from successive planes constructively interfere
- \bullet The diffraction condition is $n\lambda=2dsin\theta,$ and n is the order of the reflection

THE VON LAUE FORMULATION

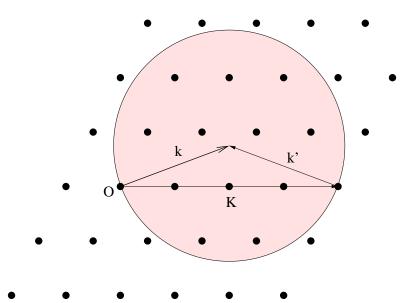


The Laue Condition

 The crystal is considered to be made up of identical microscopic objects at R, which reradiate in all directions

- The Laue condition: constructive interference occurs if $\mathbf{K} = \mathbf{k} - \mathbf{k}'$ is a reciprocal lattice vector
- No assumption that crystal contains lattice planes is made or that the • reflection is specular
 - The von Laue picture is equivalent to the Bragg picture

THE EWALD SPHERE



The Ewald Construction

- Given an incident wave vector k, draw a sphere centered on the origin O
- ullet If a reciprocal lattice vector ${f K}$ lies on the surface, a diffraction peak will be observed, and ${f k}'$ is the Bragg reflected ray
- In general, this is not the case (hence "peak")

Experimental Methods

- Laue
 - Use a non-monochromatic beam (from λ_0 to λ_1)
 - All **K** between the two Ewald Powder or Debye-Scherrer spheres will be seen
- Rotating Crystal
 - A monochromatic beam is used

- The direction of k is varied by rotating the crystal
- The randomly oriented crystallites effectively rotate the crystal, and vary the axis of rotation

STRUCTURE AND ATOMIC FORM FACTORS

$$S_{\mathbf{K}} = \sum_{j=1}^{n} e^{i\mathbf{K} \cdot \mathbf{d}_{j}}$$

The Structure Factor

• There can be forbidden reflections for lattices with a basis

$$S_{\mathbf{K}} = \sum_{j=1}^{n} f_j(\mathbf{K}) e^{i\mathbf{K} \cdot \mathbf{d}_j}$$

$$f_j(\mathbf{K}) = -\frac{1}{e} \int d\mathbf{r} e^{i\mathbf{K}\cdot\mathbf{r}} \rho(\mathbf{r})$$
The Atomic Form Factor

- Modulates the intensities of the diffraction peaks
- Can be used analytically
- Some species are more visible than others