
14 CHAPTER 1. FROM PARTICLES TO FIELDS

1.3 Problem Set

1.3.1 Questions on Collective Modes and Field Theories

1. In obtaining the spectrum of collective phonon excitations for the lattice Lagrangian (1.1),
a continuum approximation was employed. However, since the degrees of freedom are
coupled linearly, the equations of motion can be solved explicitly, even for the discrete
model. By constructing the equations of motion, obtain the normal modes of the system
and obtain the exact eigenspectrum of phonon excitations. [Hint: Look for a wave-like
solution of the discrete equations of motion.] Identify the limit in which the spectrum of
the discrete lattice model coincides with that obtained for the continuum approximation
of the model. In what limit does the continuum approximation fail and why?

——————————————–
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Figure 1.6: Lattice with two atoms of mass mA and mB per unit cell.

2. In lattices with two atoms (of di↵erent mass mA and mB) per unit cell (see Fig. 1.6) the
spectrum of elementary phonon excitations splits into an acoustic and optic branch. For
this model, show that the discrete lattice Lagrangian for a periodic system with 2 ⇥ N
masses can be written as
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Applying the Euler-Lagrange equation for the discrete model, obtain the classical equa-

tions of motion. Switching to the discrete Fourier representation (cf. Problem 1), �(A/B)
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n where k = 2⇡m/a (m integer), show that the exact eigenspectrum,
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By finding an expression for the spectrum, obtain the asymptotic dependence as k ! 0.
In this limit, describe qualitatively the symmetry of the normal modes.

——————————————–

3. Applying the Euler-Lagrange equation, obtain the equation of motion associated with the
Lagrangian densities:
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[Note that in 5. the field � is complex.] Suggest a physical significance of the last term
in 1. What is the e↵ect of this term on the excitation spectrum of the corresponding
quantum Hamiltonian? Starting with the Lagrangian 2., obtain the Hamiltonian density.

——————————————–

4. Following the discussion in the lectures, a periodic one-dimensional quantum elastic chain
of length L is expressed by the Hamiltonian

Ĥ =

Z
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where
P

k represents the sum over all quantised quasi-momenta k = 2⇡m/L, m 2 Z, show

that the field operators obey the commutation relations [⇡̂k, �̂k0 ] = �i~�kk0 .
(b) In the Fourier representation, show that the Hamiltonian takes the form
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where !k = a(ks/m)1/2|k| = v|k| show that the field operators obey the canonical com-

mutation relations [ak, a
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(d) Finally, with this definition, show that the Hamiltonian can be expressed in the form
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