Lecture I: Collective Excitations: From Particles to Fields Free Scalar Field Theory: Phonons

The aim of this course is to develop the machinery to explore the properties of quantum systems with very large or infinite numbers of degrees of freedom. To represent such systems it is convenient to abandon the language of individual elementary particles and speak about quantum fields. In this lecture, we will consider the simplest physical example of a free or non-interacting many-particle theory which will exemplify the language of classical and quantum fields. Our starting point is a toy model of a mechanical system describing a classical chain of atoms coupled by springs.
\triangleright DISCRETE ELASTIC CHAIN

Equilibrium position $\bar{x}_{n} \equiv n a$; natural length a; spring constant k_{s}
Goal: to construct and quantise a classical field theory
for the collective (longitundinal) vibrational modes of the chain
\triangleright Discrete Classical Lagrangian:

$$
L=T-V=\sum_{n=1}^{N}(\overbrace{\frac{m}{2} \dot{x}_{n}^{2}}^{\text {k.e. }}-\overbrace{\frac{k_{s}}{2}\left(x_{n+1}-x_{n}-a\right)^{2}}^{\text {p.e. in spring }})
$$

assume periodic boundary conditions (p.b.c.) $x_{N+1}=N a+x_{1}\left(\right.$ and set $\left.\dot{x}_{n} \equiv \partial_{t} x_{n}\right)$
Using displacement from equilibrium $\phi_{n}=x_{n}-\bar{x}_{n}$

$$
L=\sum_{n=1}^{N}\left(\frac{m}{2} \dot{\phi}_{n}^{2}-\frac{k_{s}}{2}\left(\phi_{n+1}-\phi_{n}\right)^{2}\right), \quad \text { p.b.c }: \quad \phi_{N+1} \equiv \phi_{1}
$$

In principle, one can obtain exact solution of discrete equation of motion - see PS I
However, typically, one is not concerned with behaviour on 'atomic' scales:

1. for such purposes, modelling is too primitive! viz. anharmonic contributions
2. such properties are in any case 'non-universal'

Aim here is to describe low-energy collective behaviour - generic, i.e. universal

In this case, it is often permissible to neglect the discreteness of the microscopic entities of the system and to describe it in terms of effective continuum degrees of freedom.

\triangleright Continuum Lagrangian

Describe ϕ_{n} as a smooth function $\phi(x)$ of a continuous variable x; makes sense if $\phi_{n+1}-\phi_{n} \ll a$ (i.e. gradients small)

$$
\left.\phi_{n} \rightarrow a^{1 / 2} \phi(x)\right|_{x=n a}, \quad \phi_{n+1}-\left.\phi_{n} \rightarrow a^{3 / 2} \partial_{x} \phi(x)\right|_{x=n a}, \quad \sum_{n} \longrightarrow \frac{1}{a} \int_{0}^{L=N a} d x
$$

N.B. $[\phi(x)]=L^{1 / 2}$

$$
\overbrace{L[\phi]=\int_{0}^{L} d x \mathcal{L}\left(\phi, \partial_{x} \phi, \dot{\phi}\right)}^{\text {Lagrangian functional }}, \quad \overbrace{\mathcal{L}\left(\phi, \partial_{x} \phi, \dot{\phi}\right)=\frac{m}{2} \dot{\phi}^{2}-\frac{k_{s} a^{2}}{2}\left(\partial_{x} \phi\right)^{2}}^{\text {Lagrangian density }}
$$

\triangleright Classical action

$$
S[\phi]=\int d t L[\phi]=\int d t \int_{0}^{L} d x \mathcal{L}\left(\phi, \partial_{x} \phi, \dot{\phi}\right)
$$

- N-point particle degrees of freedom $\mapsto \underline{\text { continuous classical field } \phi(x)}$
- Dynamics of $\phi(x)$ specified by functionals $L[\phi]$ and $S[\phi]$

What are the corresponding equations of motion...?
\triangleright Hamilton's Extremal Principle: (Revision)
Suppose classical point particle $x(t)$ described by action $S[x]=\int d t L(x, \dot{x})$
Configurations $x(t)$ that are realised are those that extremise the action
i.e. for any smooth function $\eta(t)$, the "variation",

$$
\delta S[x] \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(S[x+\epsilon \eta]-S[x])=0 \text { is stationary }
$$

\leadsto Euler-Lagrange equations of motion

$$
\begin{aligned}
& S[x+\epsilon \eta]=\int_{0}^{t} d t L(x+\epsilon \eta, \dot{x}+\epsilon \dot{\eta})=\int_{0}^{t} d t\left(L(x, \dot{x})+\epsilon \eta \partial_{x} L+\epsilon \dot{\eta} \partial_{\dot{x}} L\right)+O\left(\epsilon^{2}\right) \\
& \delta S[x]=\int d t\left(\eta \partial_{x} L+\dot{\eta} \partial_{\dot{x}} L\right) \text { by parts } \int d t \overbrace{\left(\partial_{x} L-\frac{d}{d t}\left(\partial_{\dot{x}} L\right)\right)}^{=0} \eta=0
\end{aligned}
$$

Note: boundary term, $\left.\eta \partial_{\dot{x}} L\right|_{0} ^{t}$ vanishes by construction

\triangleright Generalisation to continuum field $x \mapsto \phi(x)$?
Apply same extremal principle: $\phi(x, t) \mapsto \phi(x, t)+\epsilon \eta(x, t)$
with both ϕ and η periodic in x, i.e. $\phi(x+L)=\phi(x)$

$$
S[\phi+\epsilon \eta]=S[\phi]+\epsilon \int_{0}^{t} d t \int_{0}^{L} d x\left(m \dot{\phi} \dot{\eta}-k_{s} a^{2} \partial_{x} \phi \partial_{x} \eta\right)+O\left(\epsilon^{2}\right) .
$$

Integrating by parts
boundary terms vanish by construction: $\left.\eta \dot{\phi}\right|_{0} ^{t}=0=\left.\eta \partial_{x} \phi\right|_{0} ^{L}$

$$
\delta S=-\int_{0}^{t} d t \int_{0}^{L} d x\left(m \ddot{\phi}-k_{s} a^{2} \partial_{x}^{2} \phi\right) \eta=0
$$

Since $\eta(x, t)$ is an arbitrary smooth function, $\left(m \partial_{t}^{2}-k_{s} a^{2} \partial_{x}^{2}\right) \phi=0$,
i.e. $\phi(x, t)$ obeys classical wave equation

General solutions of the form: $\phi_{+}(x+v t)+\phi_{-}(x-v t)$
where $v=a \sqrt{k_{s} / m}$ is sound wave velocity and $\phi_{ \pm}$are arbitrary smooth functions

$>$ Comments

- Low-energy collective excitations - phonons - are lattice vibrations propagating as sound waves at constant velocity v
- Trivial behaviour of model is consequence of simplistic definition:

Lagrangian is quadratic in fields \mapsto linear equation of motion
Higher order gradients in expansion (i.e. $\left.\left(\partial^{2} \phi\right)^{2}\right) \mapsto$ dispersion
Higher order terms in potential (i.e. interactions) \mapsto dissipation

- L is said to be a 'free (i.e. non-interacting) scalar (i.e. one-component) field theory'
- In higher dimensions, field has vector components \mapsto transverse and longintudinal modes

Variational principle is example of FUNCTIONAL ANALYSIS

- useful (but not essential method for this course) - see lecture notes

Lecture II: Collective Excitations: From Particles to Fields

Quantising the Classical Field

Having established that the low energy properties of the atomic chain are represented by a free scalar classical field theory, we now turn to the formulation of the quantum system.
\triangleright Canonical Quantisation procedure

Recall point particle mechanics:

1. Define canonical momentum, $p=\partial_{\dot{x}} L$
2. Construct Hamiltonian, $H=p \dot{x}-L(p, x)$
3. Promote position and momentum to operators with canonical commutation relations

$$
x \mapsto \hat{x}, \quad p \mapsto \hat{p}, \quad[\hat{p}, \hat{x}]=-i \hbar, \quad H \mapsto \hat{H}
$$

Natural generalisation to continuous field:

1. Canonical momentum, $\pi(x) \equiv \frac{\partial \mathcal{L}}{\partial \dot{\phi}(x)}$, i.e. applied to chain, $\pi=\partial_{\dot{\phi}}\left(m \dot{\phi}^{2} / 2\right)=m \dot{\phi}$
2. Classical Hamiltonian

Hamiltonian density $\mathcal{H}(\phi, \pi)$
$H[\phi, \pi] \equiv \int d x \overbrace{\left[\pi \dot{\phi}-\mathcal{L}\left(\partial_{x} \phi, \dot{\phi}\right)\right]} \quad, \quad$ i.e. $\quad \mathcal{H}(\phi, \pi)=\frac{1}{2 m} \pi^{2}+\frac{k_{s} a^{2}}{2}\left(\partial_{x} \phi\right)^{2}$
3. Canonical Quantisation
(a) promote $\phi(x)$ and $\pi(x)$ to operators: $\phi \mapsto \hat{\phi}, \pi \mapsto \hat{\pi}$
(b) generalise commutation relations, $\left[\hat{\pi}(x), \hat{\phi}\left(x^{\prime}\right)\right]=-i \hbar \delta\left(x-x^{\prime}\right)$

$$
\text { N.B. }\left[\delta\left(x-x^{\prime}\right)\right]=[\text { Length }]^{-1} \text { (Ex.) }
$$

Operator-valued functions $\hat{\phi}$ and $\hat{\pi}$ referred to as quantum fields
\hat{H} represents a quantum field theoretical formulation of elastic chain, but not yet a solution.
As with any function, $\hat{\phi}(x)$ and $\hat{\pi}(x)$ can be expressed as Fourier expansion:

$$
\left\{\begin{array}{l}
\hat{\phi}(x) \\
\hat{\pi}(x)
\end{array}=\frac{1}{L^{1 / 2}} \sum_{k} e^{ \pm i k x}\left\{\begin{array}{l}
\hat{\phi}_{k} \\
\hat{\pi}_{k}
\end{array}, \quad\left\{\begin{array} { l }
{ \hat { \phi } _ { k } } \\
{ \hat { \pi } _ { k } }
\end{array} \equiv \frac { 1 } { L ^ { 1 / 2 } } \int _ { 0 } ^ { L = N a } d x e ^ { \mp i k x } \left\{\begin{array}{l}
\hat{\phi}(x) \\
\hat{\pi}(x)
\end{array}\right.\right.\right.\right.
$$

\sum_{k} runs over all discrete wavevectors $k=2 \pi m / L, m \in \mathcal{Z}$, Ex: confirm $\left[\hat{\pi}_{k}, \hat{\phi}_{k^{\prime}}\right]=-i \hbar \delta_{k k^{\prime}}$ AdVICE: Maintain strict conventions(!) - we will pass freely between real and Fourier space.

Hermiticity: $\hat{\phi}^{\dagger}(x)=\hat{\phi}(x)$, implies $\hat{\phi}_{k}^{\dagger}=\hat{\phi}_{-k}$ (similarly $\left.\hat{\pi}\right)$. Using

$$
\begin{gathered}
\int_{0}^{L} d x(\partial \hat{\phi})^{2}=\sum_{k, k^{\prime}}\left(i k \hat{\phi}_{k}\right)\left(i k^{\prime} \hat{\phi}_{k^{\prime}}\right) \overbrace{\frac{1}{L} \int_{0}^{L} d x e^{i\left(k+k^{\prime}\right) x}}^{\delta_{k+,}^{k^{\prime}, 0}}=\sum_{k} k^{2} \hat{\phi}_{k} \hat{\phi}_{-k} \\
\hat{H}=\sum_{k}[\frac{1}{2 m} \hat{\pi}_{k} \hat{\pi}_{-k}+\overbrace{\frac{k_{s} a^{2}}{2} k^{2}}^{m \omega_{k}^{2} / 2} \hat{\phi}_{k} \hat{\phi}_{-k}], \quad \omega_{k}=v|k|, \quad v=a\left(k_{s} / m\right)^{1 / 2}
\end{gathered}
$$

i.e. 'modes k ' decoupled

Comments:

- \hat{H} describes low-energy excitations of system (waves) in terms of microscopic constituents (atoms)
- However, it would be more desirable to develop picture where relevant excitations appear as fundamental units:

\triangleright Quantum Harmonic Oscillator (Revisited)

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{q}^{2}
$$

Defining ladder operators

$$
\hat{a} \equiv \sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right), \quad \hat{a}^{\dagger} \equiv \sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \quad \leadsto \quad \hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

If we find state $|0\rangle$ s.t. $\hat{a}|0\rangle=0 \leadsto \hat{H}|0\rangle=\frac{\hbar \omega}{2}|0\rangle$, i.e. $|0\rangle$ is g.s.
Using commutation relations $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$, one may then show $|n\rangle \equiv \hat{a}^{\dagger n}|0\rangle$
is eigenstate with eigenvalue $\hbar \omega\left(n+\frac{1}{2}\right)$

Comments: Although single-particle, a-representation suggests many-particle interpretation

- $|0\rangle$ represents 'vacuum', i.e. state with no particles
- $\hat{a}^{\dagger}|0\rangle$ represents state with single particle of energy $\hbar \omega$
- $\hat{a}^{\dagger n}|0\rangle$ is n-body state, i.e. operator \hat{a}^{\dagger} creates particles
- In 'diagonal' form $\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)$ simply counts particles (viz. $\left.\hat{a}^{\dagger} \hat{a}|n\rangle=n|n\rangle\right)$ and assigns an energy $\hbar \omega$ to each
\triangleright Returning to harmonic chain, consider

$$
a_{k} \equiv \sqrt{\frac{m \omega_{k}}{2 \hbar}}\left(\hat{\phi}_{k}+\frac{i}{m \omega_{k}} \hat{\pi}_{-k}\right), \quad a_{k}^{\dagger} \equiv \sqrt{\frac{m \omega_{k}}{2 \hbar}}\left(\hat{\phi}_{-k}-\frac{i}{m \omega_{k}} \hat{\pi}_{k}\right)
$$

N.B. By convention, drop hat from operators a
with $\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\frac{i}{2 \hbar}(\overbrace{\left[\hat{\pi}_{-k}, \hat{\phi}_{-k^{\prime}}\right]}^{-i \hbar \delta_{k k^{\prime}}}-\left[\hat{\phi}_{k}, \hat{\pi}_{k^{\prime}}\right])=\delta_{k k^{\prime}}$
\triangleright And obtain (Ex. - PS I)

$$
\hat{H}=\sum_{k} \hbar \omega_{k}\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right)
$$

Elementary collective excitations of quantum chain (phonons)
created/annihilated by operators a_{k}^{\dagger} and a_{k}
Spectrum of excitations is linear $\omega_{k}=v|k|$ (cf. relativistic)

Comments:

- Low-energy excitations of discrete model involve slowly varying collective modes;
i.e. each mode involves many atoms;
- Low-energy $(k \rightarrow 0) \mapsto$ long-wavelength excitations,
i.e. universal, insensitive to microscopic detail;
- Allows many different systems to be mapped onto a few classical field theories;
- Canonical quantisation procedure for point mechanics generalises to quantum field theory;
- Simplest model actions (such as the one considered here) are quadratic in fields
- known as free field theory;
- More generally, interactions \leadsto non-linear equations of motion viz. interacting QFTs.
\triangleright Other examples? ${ }^{\dagger}$ Quantum Electrodynamics
EM field - specified by 4-vector potential $A(x)=(\phi(x), \mathbf{A}(x))$

$$
(c=1)
$$

$$
\text { Classical action : } \begin{array}{r}
S[A]=\int d^{4} x \mathcal{L}(A), \quad \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-\text { EM field tensor }
\end{array}
$$

Classical equation of motion:

$$
\overbrace{\partial_{A^{\alpha}} \mathcal{L}-\partial^{\beta} \frac{\partial \mathcal{L}}{\partial\left(\partial^{\beta} A^{\alpha}\right)}=0}^{\text {Euler - Lagrange eqns. }} \mapsto \overbrace{\partial_{\alpha} F^{\alpha \beta}=0}^{\text {Maxwell's eqns. }}
$$

Quantisation of classical field theory identifies elementary excitations: photons for more details, see handout, or go to QFT!

Lecture III: Second Quantisation

We have seen how the elementary excitations of the quantum chain can be presented in terms of new elementary quasi-particles by the ladder operator formalism. Can this approach be generalised to accommodate other many-body systems? The answer is provided by the method of second quantisation - an essential tool for the development of interacting many-body field theories. The first part of this section is devoted largely to formalism - the second part to applications aimed at developing fluency. Reference: see, e.g., Feynman's book on "Statistical Mechanics"

\triangleright Notations and Definitions

Starting with single-particle Schrodinger equation,

$$
\hat{H}\left|\psi_{\lambda}\right\rangle=\epsilon_{\lambda}\left|\psi_{\lambda}\right\rangle
$$

how can one construct many-body wavefunction?

Particle indistinguishability demands symmetrisation:
e.g. two-particle wavefunction for fermions i.e. particle 1 in state 1, particle 2...

$$
\psi_{F}\left(x_{1}, x_{2}\right) \equiv \frac{1}{\sqrt{2}}(\overbrace{\psi_{1}\left(x_{1}\right)}^{\text {state 1, particle } 1} \psi_{2}\left(x_{2}\right)-\psi_{2}\left(x_{1}\right) \psi_{1}\left(x_{2}\right))
$$

In Dirac notation: $|1,2\rangle_{F} \equiv \frac{1}{\sqrt{2}}\left(\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle-\left|\psi_{2}\right\rangle \otimes\left|\psi_{1}\right\rangle\right)$
N.B. \otimes denotes outer product of state vectors
\triangleright General normalised, symmetrised, N -particle wavefunction
of bosons $(\zeta=+1)$ or fermions $(\zeta=-1)$

$$
\left|\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}\right\rangle \equiv \frac{1}{\sqrt{N!\prod_{\lambda=0}^{\infty} n_{\lambda}!}} \sum_{\mathcal{P}} \zeta^{\mathcal{P}}\left|\psi_{\lambda_{\mathcal{P} 1}}\right\rangle \otimes\left|\psi_{\lambda_{\mathcal{P}_{2}}}\right\rangle \ldots \otimes\left|\psi_{\lambda_{\mathcal{P} N}}\right\rangle
$$

- n_{λ} - no. of particles in state λ; (for fermions, Pauli exclusion: $n_{\lambda}=0,1$)
- $\sum_{\mathcal{P}}$: Summation over N ! permutations of $\left\{\lambda_{1}, \ldots \lambda_{N}\right\}$ required by particle indistinguishability
- Parity \mathcal{P} - no. of transpositions of two elements which brings permutation

$$
\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \cdots \mathcal{P}_{N}\right) \text { back to ordered sequence }(1,2, \cdots N)
$$

In particular, for fermions, $\left\langle x_{1}, \ldots x_{N} \mid \lambda_{1}, \ldots \lambda_{N}\right\rangle$ is Slater determinant, $\operatorname{det} \psi_{i}\left(x_{j}\right)$
Evidently, "first quantised" representation looks clumsy!
motivates alternative representation...

$\triangleright \underline{\text { SECOND QUANTISATION }}$

Define vacuum state: $|\Omega\rangle$, and set of field operators a_{λ} and adjoints $a_{\lambda}^{\dagger}-$ no hats!

$$
a_{\lambda}|\Omega\rangle=0, \quad \frac{1}{\sqrt{\prod_{\lambda=0}^{\infty} n_{\lambda}!}} \prod_{i=1}^{N} a_{\lambda_{i}}^{\dagger}|\Omega\rangle=\left|\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}\right\rangle
$$

cf. ladder operators for phonons N.B. ambiguity of ordering?
Field operators fulfil commutation relations for bosons (fermions)

$$
\begin{aligned}
& {\left[a_{\lambda}, a_{\mu}^{\dagger}\right]_{-\zeta}=\delta_{\lambda \mu}, \quad\left[a_{\lambda}, a_{\mu}\right]_{-\zeta}=\left[a_{\lambda}^{\dagger}, a_{\mu}^{\dagger}\right]_{-\zeta}=0} \\
& \text { where }[\hat{A}, \hat{B}]_{-\zeta} \equiv \hat{A} \hat{B}-\zeta \hat{B} \hat{A} \text { is the commutator (anti-commutator) }
\end{aligned}
$$

- Operator a_{λ}^{\dagger} creates particle in state λ, and a_{λ} annihilates it
- Commutation relations imply Pauli exclusion for fermions: $a_{\lambda}^{\dagger} a_{\lambda}^{\dagger}=0$
- Any N-particle wavefunction can be generated by application of set of
N operators to a unique vacuum state

$$
\text { e.g. } \quad|1,2\rangle=a_{2}^{\dagger} a_{1}^{\dagger}|\Omega\rangle
$$

- Symmetry of wavefunction under particle interchange maintained by commutation relations of field operators

$$
\text { e.g. } \quad|1,2\rangle=a_{2}^{\dagger} a_{1}^{\dagger}|\Omega\rangle=\zeta a_{1}^{\dagger} a_{2}^{\dagger}|\Omega\rangle=\zeta|2,1\rangle
$$

(Providing one maintains a consistent ordering convention,
the nature of that convention doesn't matter)

\triangleright Fock space: Defining \mathcal{F}_{N} to be linear span of all N-particle states $\left|\lambda_{1}, \ldots \lambda_{N}\right\rangle$, Fock space \mathcal{F} is defined as 'direct sum' $\oplus_{N=0}^{\infty} \mathcal{F}_{N}$ operators a and a^{\dagger} connect different subspaces \mathcal{F}_{N}

- General state $|\phi\rangle$ of the Fock space is linear combination of states
with any no. of particles
- Note that vacuum $|\Omega\rangle$ (sometimes written as $|0\rangle$) is distinct from zero!
$\triangleright \underline{\text { Change of basis: }}$
Using resolution of identity $\mathbf{1} \equiv \sum_{\lambda}|\lambda\rangle\langle\lambda|$, we have $\overbrace{|\tilde{\lambda}\rangle}^{a_{\tilde{\lambda}}^{\dagger}|\Omega\rangle}=\sum_{\lambda} \overbrace{|\lambda\rangle}^{a_{\lambda}^{\dagger}|\Omega\rangle}\langle\lambda \mid \tilde{\lambda}\rangle$

$$
\text { i.e. } \quad a_{\tilde{\lambda}}^{\dagger}=\sum_{\lambda}\langle\lambda \mid \tilde{\lambda}\rangle a_{\lambda}^{\dagger}, \quad \text { and } \quad a_{\tilde{\lambda}}=\sum_{\lambda}\langle\tilde{\lambda} \mid \lambda\rangle a_{\lambda}
$$

e.g. Fourier representation: $a_{\lambda} \equiv a_{k}, a_{\tilde{\lambda}} \equiv a(x)$

$$
a(x)=\sum_{k} \overbrace{\langle x \mid k\rangle}^{e^{i k x} / \sqrt{L}} a_{k}, \quad a_{k}=\frac{1}{\sqrt{L}} \int_{0}^{L} d x e^{-i k x} a(x)
$$

$\triangleright \underline{\text { Occupation number operator: }} \hat{n}_{\lambda}=a_{\lambda}^{\dagger} a_{\lambda}$ measures no. of particles in state λ
e.g. (bosons)
$a_{\lambda}^{\dagger} a_{\lambda}\left(a_{\lambda}^{\dagger}\right)^{n}|\Omega\rangle=a_{\lambda}^{\dagger} \overbrace{a_{\lambda} a_{\lambda}^{\dagger}}^{1+a_{\lambda}^{\dagger} a_{\lambda}}\left(a_{\lambda}^{\dagger}\right)^{n-1}|\Omega\rangle=\left(a_{\lambda}^{\dagger}\right)^{n}|\Omega\rangle+\left(a_{\lambda}^{\dagger}\right)^{2} a_{\lambda}\left(a_{\lambda}^{\dagger}\right)^{n-1}|\Omega\rangle=\cdots=n\left(a_{\lambda}^{\dagger}\right)^{n}|\Omega\rangle$
Ex: check for fermions
So far we have developed an operator-based formulation of many-body states. However, for this representation to be useful, we have to understand how the action of first quantised operators on many-particle states can be formulated within the framework of the second quantisation. To do so, it is natural to look for a formulation in the diagonal basis and recall the action of the particle number operator. To begin, let us consider...

Second Quantised Representation of Operators

\triangleright One-body operators: i.e. operators which address only one particle at a time

$$
\hat{\mathcal{O}}_{1}=\sum_{n=1}^{N} \hat{o}_{n}, \quad \text { e.g. k.e. } \hat{T}=\sum_{n=1}^{N} \frac{\hat{p}_{n}^{2}}{2 m}
$$

Suppose \hat{o} diagonal in orthonormal basis $|\lambda\rangle$, i.e. $\hat{o}=\sum_{\lambda=0}^{\infty}|\lambda\rangle o_{\lambda}\langle\lambda|, \quad o_{\lambda}=\langle\lambda| \hat{o}|\lambda\rangle$

$$
\text { e.g. k.e., }|\lambda\rangle \equiv|p\rangle \text { and } o_{p}=p^{2} / 2 m
$$

$$
\begin{aligned}
\left\langle\lambda_{1}^{\prime}, \cdots \lambda_{N}^{\prime}\right| \hat{\mathcal{O}}_{1}\left|\lambda_{1}, \cdots \lambda_{N}\right\rangle & =\left(\sum_{i=1}^{N} o_{\lambda_{i}}\right)\left\langle\lambda_{1}^{\prime}, \cdots \lambda_{N}^{\prime} \mid \lambda_{1}, \cdots \lambda_{N}\right\rangle \\
& =\left\langle\lambda_{1}^{\prime}, \cdots \lambda_{N}^{\prime}\right| \sum_{\lambda=0}^{\infty} o_{\lambda} \hat{n}_{\lambda}\left|\lambda_{1}, \cdots \lambda_{N}\right\rangle,
\end{aligned}
$$

Since this holds for any basis state, $\hat{\mathcal{O}}_{1}=\sum_{\lambda=0}^{\infty} o_{\lambda} \hat{n}_{\lambda}=\sum_{\lambda=0}^{\infty} o_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}$
i.e. in diagonal representation, simply count number of particles in state λ and multipy by corresponding eigenvalue of one-body operator

Transforming to general basis (recall $a_{\lambda}=\sum_{\nu}\langle\lambda \mid \nu\rangle a_{\nu}$)

$$
\hat{\mathcal{O}}_{1}=\sum_{\lambda \mu \nu}\langle\mu \mid \lambda\rangle o_{\lambda}\langle\lambda \mid \nu\rangle a_{\mu}^{\dagger} a_{\nu}=\sum_{\mu \nu}\langle\mu| \hat{o}|\nu\rangle a_{\mu}^{\dagger} a_{\nu}
$$

i.e. $\hat{\mathcal{O}}_{1}$ scatters particle from state ν to μ with probability amplitude $\langle\mu| \hat{o}|\nu\rangle$
\triangleright Examples of one-body operators:

1. Total number operator: $\hat{N}=\int d x a^{\dagger}(x) a(x)=\sum_{k} a_{k}^{\dagger} a_{k}$
2. Electron spin operator: $\hat{\mathbf{S}}=\sum_{\alpha \beta} \mathbf{S}_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}, \quad \mathbf{S}_{\alpha \beta}=\langle\alpha| \hat{\mathbf{S}}|\beta\rangle=\frac{1}{2} \sigma_{\alpha \beta}$ where $\alpha=\uparrow, \downarrow$, and σ are Pauli spin matrices

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mapsto \hat{S}^{z}=\frac{1}{2}\left(\hat{n}_{\uparrow}-\hat{n}_{\downarrow}\right), \quad \sigma_{+}=\sigma_{x}+i \sigma_{y}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \mapsto \hat{S}^{+}=a_{\uparrow}^{\dagger} a_{\downarrow}
$$

3. Free particle Hamiltonian

$$
\sum_{p} \frac{p^{2}}{2 m} a_{p}^{\dagger} a_{p} \stackrel{\text { Ex. }}{=} \int_{0}^{L} d x a^{\dagger}(x) \frac{\left(-\hbar^{2} \partial_{x}^{2}\right)}{2 m} a(x)
$$

i.e.

$$
\hat{H}=\hat{T}+\hat{V}=\int_{0}^{L} d x a^{\dagger}(x)\left[\frac{\hat{p}^{2}}{2 m}+V(x)\right] a(x)
$$

where $\hat{p}=-i \hbar \partial_{x}$
$>$ Two-body operators: i.e. operators which address two-particles
E.g. symmetric pairwise interaction: $V\left(x, x^{\prime}\right) \equiv V\left(x^{\prime}, x\right)$ (such as Coulomb)
acting between two-particle states N.B. $1 / 2$ for double counting

$$
\hat{V}=\frac{1}{2} \int d x \int d x^{\prime}\left|x, x^{\prime}\right\rangle V\left(x, x^{\prime}\right)\left\langle x, x^{\prime}\right|
$$

When acting on N-body states,

$$
\hat{V}\left|x_{1}, x_{2}, \cdots x_{N}\right\rangle=\frac{1}{2} \sum_{n \neq m}^{N} V\left(x_{n}, x_{m}\right)\left|x_{1}, x_{2}, \cdots x_{N}\right\rangle
$$

In second quantised form, it is straightforward to show that (Ex.)

$$
\hat{V}=\frac{1}{2} \int d x \int d x^{\prime} a^{\dagger}(x) a^{\dagger}\left(x^{\prime}\right) V\left(x, x^{\prime}\right) a\left(x^{\prime}\right) a(x)
$$

i.e. annihilation operators check for presence of particles at x and x - if they exist, asign the potential energy and then recreate particles in correct order (viz. statistics)
N.B. $\frac{1}{2} \int d x \int d x^{\prime} V\left(x, x^{\prime}\right) \hat{n}(x) \hat{n}\left(x^{\prime}\right)$ does not reproduce the two-body operator \triangleright In non-diagonal basis

$$
\hat{\mathcal{O}}_{2}=\sum_{\lambda \lambda^{\prime} \mu \mu^{\prime}} \mathcal{O}_{\mu, \mu^{\prime}, \lambda, \lambda^{\prime}} a_{\mu^{\prime}}^{\dagger} a_{\mu}^{\dagger} a_{\lambda} a_{\lambda^{\prime}}, \quad \mathcal{O}_{\mu, \mu^{\prime}, \lambda, \lambda^{\prime}} \equiv\left\langle\mu, \mu^{\prime}\right| \hat{\mathcal{O}}_{2}\left|\lambda, \lambda^{\prime}\right\rangle
$$

e.g. in Fourier basis: $a^{\dagger}(x)=\frac{1}{L^{1 / 2}} \sum_{k} e^{i k x} a_{k}^{\dagger}$ can show that (Ex.)

$$
\frac{1}{2} \int d x d x^{\prime} a^{\dagger}(x) a^{\dagger}\left(x^{\prime}\right) V\left(x-x^{\prime}\right) a\left(x^{\prime}\right) a(x)=\sum_{k_{1}, k_{2}, q} V(q) a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} a_{k_{2}+q} a_{k_{1}-q}
$$

Feynman diagram:

Lecture IV: Applications of Second Quantisation

1. Phonons: oscillator states $|k\rangle$ form a Fock space:
for each mode k, arbitrary state of excitation can be created from vacuum

$$
|k\rangle=a_{k}^{\dagger}|\Omega\rangle, \quad a_{k}|\Omega\rangle=0, \quad\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}
$$

Hamiltonian, $\hat{H}=\sum_{k} \hbar \omega_{k}\left(a_{k}^{\dagger} a_{k}+1 / 2\right)$ is diagonal:

$$
\left|k_{1}, k_{2}, \ldots\right\rangle=a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} \cdots|\Omega\rangle \text { is eigenstate of } \hat{H} \text { with energy } \hbar \omega_{k_{1}}+\hbar \omega_{k_{2}}+\cdots
$$

2. Interacting Electron Gas
(i) Free-electron Hamiltonian

$$
\hat{H}^{(0)}=\sum_{\sigma=\uparrow, \downarrow} \int d x c_{\sigma}^{\dagger}(x)\left[\frac{\hat{p}^{2}}{2 m}+V(x)\right] c_{\sigma}(x), \quad\left[c_{\sigma}(x), c_{\sigma^{\prime}}^{\dagger}\left(x^{\prime}\right)\right]=\delta\left(x-x^{\prime}\right) \delta_{\sigma, \sigma^{\prime}}
$$

(ii) Interacting electron gas:

$$
\hat{H}=\hat{H}^{(0)}+\frac{1}{2} \int d x \int d x^{\prime} \sum_{\sigma \sigma^{\prime}} c_{\sigma}^{\dagger}(x) c_{\sigma^{\prime}}^{\dagger}\left(x^{\prime}\right) \frac{e^{2}}{\left|x-x^{\prime}\right|} c_{\sigma^{\prime}}\left(x^{\prime}\right) c_{\sigma}(x)
$$

\triangleright Comments:

\triangleright Phonon Hamiltonian is example of 'free field theory': involves field operators at only quadratic order...
\triangleright (whereas) electron Hamiltonian is typical of an interacting field theory and is infinitely harder to analyze...

To familiarise ourselves with second quantisation, in the remainder of this and the next lecture, we will explore several case studies: 'Atomic limit' of strongly interacting electron gas: electron crystallisation and Mott transition; Quantum magnetism; and weakly interacting Bose gas

Tight-binding and the Mott transition

According to band picture of non-interacting electrons, a 1/2-filled band of states is metallic. But strong Coulomb interaction of electrons can effect a transition to a crystalline phase in which electrons condense into an insulating magnetic state - Mott transition. We will employ the second quantisation to explore the basis of this phenomenon.

- 'Atomic Limit' of crystal

How do atomic orbitals broaden into band states? Show transparencies

Weak overlap of tightly bound orbital states \mapsto narrow band of Bloch states $\left|\psi_{k s}\right\rangle$,
specified by band index $s, k \in[-\pi / a, \pi / a]$ in first Brillouin zone.
Bloch states can be used to define 'Wannier basis', cf. discrete Fourier decomposition

$$
\left|\psi_{n s}\right\rangle \equiv \frac{1}{\sqrt{N}} \sum_{k \in[-\pi / a, \pi / a]}^{\text {B.Z. }} e^{-i k n a}\left|\psi_{k s}\right\rangle, \quad\left|\psi_{k s}\right\rangle \equiv \frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{i k n a}\left|\psi_{n s}\right\rangle, \quad k=\frac{2 \pi}{N a} m
$$

In 'atomic limit', Wannier states $\left|\psi_{n s}\right\rangle$ mirror atomic orbital $|s\rangle$ on site n
Field operators associated with Wannier basis: $\overbrace{\left|\psi_{n s}\right\rangle}^{c_{n s}^{\dagger}|\Omega\rangle}=\int d x \overbrace{\overbrace{|x\rangle}}^{c^{\dagger}(x)|\Omega\rangle} \overbrace{\left\langle x \mid \psi_{n s}\right\rangle}^{\psi_{n s}(x)}$

$$
c_{n s}^{\dagger} \equiv \int d x \psi_{n s}(x) c^{\dagger}(x)
$$

and using completeness $\sum_{n s} \psi_{n s}^{*}\left(x^{\prime}\right) \psi_{n s}(x)=\delta\left(x-x^{\prime}\right)$

$$
c^{\dagger}(x)=\sum_{n s} \psi_{n s}^{*}(x) c_{n s}^{\dagger}, \quad\left[c_{n s}, c_{n^{\prime} s^{\prime}}^{\dagger}\right]_{+}=\delta_{n n^{\prime}} \delta_{s s^{\prime}}
$$

i.e. (if we include spin index σ) operators $c_{n s \sigma}^{\dagger} / c_{n s \sigma}$ create/annihilate electrons at site n in band s with spin σ
\triangleright In atomic limit, bands are well-separated in energy.
If electron densities are low, we may focus on lowest band $s=0$.
Transforming to Wannier basis,

$$
\begin{aligned}
\hat{H}= & \sum_{\sigma=\uparrow, \downarrow} \int d x c_{\sigma}^{\dagger}(x)\left[\frac{\hat{p}^{2}}{2 m}+V(x)\right] c_{\sigma}(x) \\
& +\frac{1}{2} \int d x \int d x^{\prime} \sum_{\sigma \sigma^{\prime}} c_{\sigma}^{\dagger}(x) c_{\sigma^{\prime}}^{\dagger}\left(x^{\prime}\right) V\left(x-x^{\prime}\right) c_{\sigma^{\prime}}\left(x^{\prime}\right) c_{\sigma}(x) \\
= & \sum_{m n, \sigma} t_{m n} c_{m \sigma}^{\dagger} c_{n \sigma}+\sum_{m n r s, \sigma \sigma^{\prime}} U_{m n r s} c_{m \sigma}^{\dagger} c_{n \sigma^{\prime}}^{\dagger} c_{r \sigma^{\prime}} c_{s \sigma^{\prime}}
\end{aligned}
$$

where "hopping" matrix elements $t_{m n}=\left\langle\psi_{m}\right|\left[\frac{\hat{p}^{2}}{2 m}+V(x)\right]\left|\psi_{n}\right\rangle=t_{n m}^{*}$ and"interaction parameters"

$$
U_{m n r s}=\frac{1}{2} \int d x \int d x^{\prime} \psi_{m}^{*}(x) \psi_{n}^{*}\left(x^{\prime}\right) \frac{e^{2}}{\left|x-x^{\prime}\right|} \psi_{r}\left(x^{\prime}\right) \psi_{s}(x)
$$

(For lowest band) representation is exact:
but, in atomic limit, matrix elements decay exponentially with lattice separation
(i) "Tight-binding" approximation:

$$
t_{m n}=\left\{\begin{array}{ll}
\epsilon & m=n \\
-t & m n \text { neighbours }, \\
0 & \text { otherwise }
\end{array} \quad \hat{H}^{(0)} \simeq \sum_{n \sigma} \epsilon c_{n \sigma}^{\dagger} c_{n \sigma}-t \sum_{n \sigma}\left(c_{n+1 \sigma}^{\dagger} c_{n \sigma}+\text { h.c. }\right)\right.
$$

In discrete Fourier basis: $c_{n \sigma}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{k \in[-\pi / a, \pi / a]}^{\text {B.Z. }} e^{-i k n a} c_{k \sigma}^{\dagger}$
$-t \sum_{n \sigma}^{N}\left(c_{n+1 \sigma}^{\dagger} c_{n \sigma}+\right.$ h.c. $)=-t \sum_{k k^{\prime} \sigma} \overbrace{\frac{1}{N} \sum_{n} e^{-i\left(k-k^{\prime}\right) n a}}^{\delta_{k k^{\prime}}} e^{-i k a} c_{k \sigma}^{\dagger} c_{k^{\prime} \sigma}+$ h.c. $=-2 t \sum_{k \sigma} \cos (k a) c_{k \sigma}^{\dagger} c_{k \sigma}$

$$
\hat{H}^{(0)}=\sum_{k \sigma}(\epsilon-2 t \cos k a) c_{k \sigma}^{\dagger} c_{k \sigma}
$$

As expected, as $k \rightarrow 0$, spectrum becomes free electron-like:

$$
\epsilon_{k} \rightarrow \epsilon-2 t+t(k a)^{2}+\cdots\left(\text { with } m^{*}=\hbar^{2} / 2 a^{2} t\right)
$$

(ii) Interaction

- Focusing on lattice sites $m \neq n$:

1. Direct terms $U_{m n n m} \equiv V_{m n}$ - couple to density fluctuations: $\sum_{m \neq n} V_{m n} \hat{n}_{m} \hat{n}_{n}$
\leadsto potential for charge density wave instabilities
2. Exchange coupling $J_{m n}^{F} \equiv U_{m n m n}$ (Ex. - see handout)

$$
\sum_{m \neq n, \sigma \sigma^{\prime}} U_{m n m n} c_{m \sigma}^{\dagger} c_{n \sigma^{\prime}}^{\dagger} c_{m \sigma^{\prime}} c_{n \sigma}=-2 \sum_{m \neq n} J_{m n}^{F}\left(\hat{\mathbf{S}}_{m} \cdot \hat{\mathbf{S}}_{n}+\frac{1}{4} \hat{n}_{m} \hat{n}_{n}\right), \quad \hat{\mathbf{S}}_{m}=\frac{1}{2} c_{m \alpha}^{\dagger} \sigma_{\alpha \beta} c_{m \beta}
$$

i.e. weak ferromagnetic coupling $\left(J_{F}>0\right) \mathrm{cf}$. Hund's rule in atoms spin alignment \mapsto symmetric spin state and asymmetric spatial state lowers p.e.

But, in atomic limit, both $V_{m n}$ and $J_{m n}^{F}$ exponentially small in separation $|m-n| a$

- 'On-site' Coulomb or 'Hubbard' interaction

$$
\sum_{n \sigma \sigma^{\prime}} U_{n n n n} c_{n \sigma}^{\dagger} c_{n \sigma^{\prime}}^{\dagger} c_{n \sigma^{\prime}} c_{n \sigma}=U \sum_{n} \hat{n}_{n \uparrow} \hat{n}_{n \downarrow}, \quad U \equiv 2 U_{n n n n}
$$

\triangleright Minimal model for strong interaction: Mott-Hubbard Hamiltonian

$$
\hat{H}=-t \sum_{n \sigma}\left(c_{n+1 \sigma}^{\dagger} c_{n \sigma}+\text { h.c. }\right)+U \sum_{n} \hat{n}_{n \uparrow} \hat{n}_{n \downarrow}
$$

...could have been guessed on phenomenological grounds

Transparencies on Mott-Insulators and the Magnetic State

Lecture V: Quantum Magnetism and the Ferromagnetic Chain

\triangleright Spin S Quantum Heisenberg Magnet
$\hat{H}=-J \sum_{m=1}^{N} \hat{\mathbf{S}}_{m} \cdot \hat{\mathbf{S}}_{m+1}$
spin analogue of discrete harmonic chain

$$
\text { p.b.c. } \hat{\mathbf{S}}_{n+N}=\hat{\mathbf{S}}_{n}
$$

Sign of exchange constant J depends on material parameters c.f. previous lecture.
Our aim is to uncover ground states and nature of low-energy (collective) excitations. $\triangleright \underline{\text { Classical ground states }}$

- Ferromagnet: all spins aligned along a given (arbitrary) direction

$$
\Rightarrow \text { manifold of continuous degeneracy (cf. crystal) }
$$

- Antiferromagnet: Néel state - (where possible) all neighbouring spins antiparallel
\triangleright Quantum ground states:

$$
\begin{aligned}
& \hat{H}=-J \sum_{m}[\hat{S}_{m}^{z} \hat{S}_{m+1}^{z}+\overbrace{\hat{S}_{m}^{x} \hat{S}_{m+1}^{x}+\hat{S}_{m}^{y} \hat{S}_{m+1}^{y}}^{\frac{1}{2}\left(\hat{S}_{m}^{+} \hat{S}_{m+1}^{-}+\hat{S}_{m}^{-} \hat{S}_{m+1}^{+}\right)}] \\
& \text {where } \hat{S}^{ \pm}=\hat{S}^{x} \pm i \hat{S}^{y} \text { denotes spin raising/lowering operator }
\end{aligned}
$$

- Ferromagnet: as classical, e.g. \mid g.s. $\rangle=\otimes_{m=1}^{N}\left|S_{m}^{z}=S\right\rangle$

No spin dynamics in |g.s.), i.e. no zero-point energy! (cf. phonons)
Manifold of degeneracy explored by action of total spin lowering operator $\sum_{m} \hat{S}_{m}^{-}$

- Antiferromagnet: spin exchange interaction (viz. $\hat{S}_{m}^{+} \hat{S}_{m+1}^{-}$) \leadsto zero point fluctuations which, depending on dimensionality, may or may not destroy ordered ground state

\triangleright Elementary excitations

Development of ordered state breaks continuous spin rotation symmetry \leadsto low-energy collective excitations (spin waves or magnons) - cf. phonons in a crystal

Example of general principle known as Goldstone's theorem: Breaking of a continuous symmetry accompanied by appearance of gapless excitations

However, as with lattice vibrations, 'general theory' is nonlinear.
Fortunately, low-energy excitations described by free theory
To see this, for large spin S, it is helpful to switch to representation in which spin deviations are parameterised as bosons:

$\left\|S^{z}=S\right\rangle$	$\|n=0\rangle$
$\left\|S^{z}=S-1\right\rangle$	$\|n=1\rangle$
\vdots	\vdots
$\left\|S^{z}=-S\right\rangle$	$\|n=2 S\rangle$

i.e. a maximum of n bosons per lattice site ("softcore" constraint)

For ferromagnet with spins oriented along z-axis,
the g.s. coincides with vacuum \mid g.s. $\rangle \equiv|\Omega\rangle$, i.e. $a_{m}|\Omega\rangle=0$
Mapping useful when spin wave excitation involves $n \ll 2 S$
\triangleright Mapping of operators:
(Setting $\hbar=1$) operators obey quantum spin algebra

$$
\left[\hat{S}^{\alpha}, \hat{S}^{\beta}\right]=i \epsilon^{\alpha \beta \gamma} \hat{S}^{\gamma} \quad \leadsto \quad\left[\hat{S}^{+}, \hat{S}^{-}\right]=2 \hat{S}^{z}, \quad\left[\hat{S}^{z}, \hat{S}^{ \pm}\right]= \pm \hat{S}^{ \pm}
$$

cf. bosons: $\left[a, a^{\dagger}\right]=1$
According to mapping, $\hat{S}^{z}=S-a^{\dagger} a$;
therefore, to leading order in $S \gg 1$ (spin-wave approximation),

$$
\hat{S}^{-} \simeq(2 S)^{1 / 2} a^{\dagger}, \quad \hat{S}^{+} \simeq(2 S)^{1 / 2} a
$$

In fact, exact mapping provided by Holstein-Primakoff transformation (Ex.)

$$
\hat{S}^{-}=a^{\dagger}\left(2 S-a^{\dagger} a\right)^{1 / 2}, \quad \hat{S}^{+}=\left(\hat{S}^{-}\right)^{\dagger}, \quad \hat{S}^{z}=S-a^{\dagger} a
$$

\triangleright Applied to ferromagnetic Heisenberg spin S chain, 'spin-wave' approximation:

$$
\begin{aligned}
\hat{H}= & -J \sum_{m=1}^{N}\left\{\hat{S}_{m}^{z} \hat{S}_{m+1}^{z}+\frac{1}{2}\left(\hat{S}_{m}^{+} \hat{S}_{m+1}^{-}+\hat{S}_{m}^{-} \hat{S}_{m+1}^{+}\right)\right\} \\
& =-J \sum_{m}\left\{S^{2}-S\left(a_{m}^{\dagger} a_{m}-a_{m+1}^{\dagger} a_{m+1}\right)+S\left(a_{m} a_{m+1}^{\dagger}+a_{m}^{\dagger} a_{m+1}\right)+O\left(S^{0}\right)\right\} \\
& =-J \sum_{m}\left\{S^{2}-2 S a_{m}^{\dagger} a_{m}+S\left(a_{m}^{\dagger} a_{m+1}+\text { h.c. }\right)+O\left(S^{0}\right)\right\} \\
& \quad \text { with p.b.c. } \hat{S}_{m+N}=\hat{S}_{m} \text { and } a_{m+N}=a_{m}
\end{aligned}
$$

To leading order in S, Hamiltionian is bilinear in Bose operators;
diagonalised by discrete Fourier transform (Ex.)

$$
a_{k}^{\dagger}=\sum_{n} \overbrace{\langle n \mid k\rangle}^{e^{i k n} / \sqrt{N}} a_{n}^{\dagger}, \quad a_{n}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{k}^{\text {B.Z. }} e^{-i k n} a_{k}^{\dagger}, \quad\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}
$$

Noting

$$
\begin{gathered}
\sum_{m}\left(a_{m}^{\dagger} a_{m+1}+\text { h.c. }\right)=\sum_{k k^{\prime}} \overbrace{\frac{1}{N} \sum_{m} e^{-i\left(k-k^{\prime}\right) m}}^{\delta_{k k^{\prime}}} e^{-i k a} a_{k}^{\dagger} a_{k^{\prime}}+\text { h.c. }=\sum_{k} \cos k a_{k}^{\dagger} a_{k} \\
\hat{H}=-J N S^{2}+\sum_{k}^{\text {B.Z. }} \omega_{k} a_{k}^{\dagger} a_{k}+O\left(S^{0}\right), \quad \text { where } \omega_{k}=2 J S(1-\cos k)=4 J S \sin ^{2}(k / 2)
\end{gathered}
$$

At low energy $(k \rightarrow 0)$, spin waves have free particle-like spectrum
Terms of higher order in $S \leadsto$ spin-wave interactions

$\triangleright \underline{\text { Spin } S \text { Quantum Heisenberg Antiferromagnet }}$

$$
\hat{H}=J \sum_{m=1}^{N} \hat{\mathbf{S}}_{m} \cdot \hat{\mathbf{S}}_{m+1}, \quad J>0, \quad \text { p.b.c. } \hat{\mathbf{S}}_{m+N}=\hat{\mathbf{S}}_{m}
$$

Classical (Néel) ground state no longer an eigenstate;
nevertheless, it serves as useful reference for spin-wave expansion
In this case, useful to rotate spins on one sublattice, say B, through 180° about x,

$$
\text { i.e. } \quad \hat{S}_{B}^{x} \longmapsto \hat{S}_{B}^{x}, \quad \hat{S}_{B}^{y} \longmapsto-\hat{S}_{B}^{y}, \quad \hat{S}_{B}^{z} \longmapsto-\hat{S}_{B}^{z}
$$

Transformation is said to be canonical in that it respects spin commutation relations Under mapping $\hat{S}_{\mathrm{B}}^{ \pm} \longmapsto \hat{S}_{\mathrm{B}}^{\mp}$

$$
\hat{H}=-J \sum_{m}\left[\hat{S}_{m}^{z} \hat{S}_{m+1}^{z}-\frac{1}{2}\left(\hat{S}_{m}^{+} \hat{S}_{m+1}^{+}+\hat{S}_{m}^{-} \hat{S}_{m+1}^{-}\right)\right]
$$

In rotated frame, classical ground state is ferromagnetic

$$
\text { but } \hat{S}_{m}^{-} \hat{S}_{m+1}^{-} \leadsto \text { zero-point fluctuations (ZPF) }
$$

Applying spin wave approximation: $\hat{S}_{m}^{z}=S-a_{m}^{\dagger} a_{m}, \hat{S}_{m}^{-} \simeq(2 S)^{1 / 2} a_{m}^{\dagger}$, etc.

$$
\hat{H}=-N J S^{2}+J S \sum_{m}\left[a_{m}^{\dagger} a_{m}+a_{m+1}^{\dagger} a_{m+1}+a_{m} a_{m+1}+a_{m}^{\dagger} a_{m+1}^{\dagger}\right]+O\left(S^{0}\right)
$$

\leadsto processes that do not conserve particle number! (ZPF)
Turning to Fourier representation: $a_{m}=\frac{1}{N^{1 / 2}} \sum_{k} e^{i k m} a_{k}$, etc., and using

$$
\begin{aligned}
\sum_{m=1}^{N} a_{m} a_{m+1} & =\sum_{k k^{\prime}} \overbrace{\frac{1}{N} \sum_{m=1}^{N} e^{i\left(k+k^{\prime}\right) m}}^{\delta_{k+k^{\prime}, 0}} e^{i k} a_{k^{\prime}} a_{k}=\sum_{k} a_{-k} a_{k} e^{i k} \equiv \sum_{k} a_{-k} a_{k} \overbrace{\frac{1}{2}\left(e^{i k}+e^{-i k}\right)}^{\gamma_{k}=\cos k} \\
\hat{H} & =-N J S^{2}+J S \sum_{k}[a_{k}^{\dagger} a_{k}+\overbrace{a_{k}^{\dagger} a_{k}}^{a_{k} a_{k}^{\dagger}-1}+\gamma_{k}\left(a_{-k} a_{k}+a_{k}^{\dagger} a_{-k}^{\dagger}\right)] \\
& =-N J S(S+1)+J S \sum_{k}\left(\begin{array}{ll}
a_{k}^{\dagger} & a_{-k}
\end{array}\right)\left(\begin{array}{cc}
1 & \gamma_{k} \\
\gamma_{k} & 1
\end{array}\right)\binom{a_{k}}{a_{-k}^{\dagger}}+O\left(S^{0}\right)
\end{aligned}
$$

To diagonalise \hat{H}, we must implement only operator transformations that preserve canonical commutation relations:
i.e. setting $\mathbf{A}=\binom{a_{k}}{a_{-k}^{\dagger}}$ (k index suppressed), we must implement transformations

$$
\mathbf{A} \mapsto \widetilde{\mathbf{A}}=\mathbf{L} \mathbf{A} \text { such that }\left[\widetilde{A}_{i}, \widetilde{A}_{j}^{\dagger}\right]=\left[A_{i}, A_{j}^{\dagger}\right]=g_{i j}, \text { with } \mathbf{g}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Consider operator transformation $\mathbf{A} \mapsto \widetilde{\mathbf{A}}=\mathbf{L A}$; we require

$$
\left[\widetilde{A}_{i}, \widetilde{A}_{j}^{\dagger}\right] \stackrel{!}{=} g_{i j}=L_{i m} L_{n j}^{*}\left[A_{m}, A_{n}^{\dagger}\right]=\left(\mathbf{L} \mathbf{g} \mathbf{L}^{\dagger}\right)_{i j}
$$

i.e. \mathbf{L} belongs to the group of Lorentz transformations. For real elements,

$$
\mathbf{L}=\left(\begin{array}{cc}
\cosh \theta_{k} & \sinh \theta_{k} \\
\sinh \theta_{k} & \cosh \theta_{k}
\end{array}\right) \quad \text { Bogoliubov transformations }
$$

Lecture VI: Bogoliubov Theory

Inverse transformation

$$
\mathbf{A}=\mathbf{L}^{-1} \widetilde{\mathbf{A}}, \quad\binom{a_{k}}{a_{-k}^{\dagger}}=\left(\begin{array}{cc}
\cosh \theta_{k} & -\sinh \theta_{k} \\
-\sinh \theta_{k} & \cosh \theta_{k}
\end{array}\right)\binom{\alpha_{k}}{\alpha_{-k}^{\dagger}}
$$

Applied to Hamiltonian,

$$
\begin{aligned}
& \mathbf{A}^{\dagger}\left(\begin{array}{cc}
1 & \gamma_{k} \\
\gamma_{k} & 1
\end{array}\right) \mathbf{A}=\widetilde{\mathbf{A}}^{\dagger} \mathbf{L}^{-1}\left(\begin{array}{cc}
1 & \gamma_{k} \\
\gamma_{k} & 1
\end{array}\right) \mathbf{L}^{-1} \widetilde{\mathbf{A}} \\
& =\widetilde{\mathbf{A}}^{\dagger}\left(\begin{array}{cc}
\cosh \left(2 \theta_{k}\right)-\gamma_{k} \sinh \left(2 \theta_{k}\right) & \gamma_{k} \cosh \left(2 \theta_{k}\right)-\sinh \left(2 \theta_{k}\right) \\
\text { as " } 12 \text { " } & \text { as " } 11 \text { " }
\end{array}\right) \widetilde{\mathbf{A}}
\end{aligned}
$$

if $\tanh \left(2 \theta_{k}\right)=\gamma_{k}$, off-diagonal elements vanish.
With $\cosh \left(2 \theta_{k}\right)=\frac{1}{\left(1-\tanh ^{2}\left(2 \theta_{k}\right)\right)^{1 / 2}}=\frac{1}{\left(1-\gamma_{k}^{2}\right)^{1 / 2}}$
diagonal elements given by $\left(1-\gamma_{k}^{2}\right)^{1 / 2}=|\sin k|$, i.e.

$$
\begin{aligned}
\hat{H}= & -N J S(S+1)+J S \sum_{k}|\sin k|\left(\alpha_{k}^{\dagger} \alpha_{k}+\alpha_{-k} \alpha_{-k}^{\dagger}\right)+O\left(S^{0}\right) \\
& =-N J S(S+1)+2 J S \sum_{k}|\sin k|\left[\alpha_{k}^{\dagger} \alpha_{k}+\frac{1}{2}\right]+O\left(S^{0}\right)
\end{aligned}
$$

Ground state defined by $\alpha_{k}|\mathrm{~g} . \mathrm{s}\rangle$
and spectrum of excitations are linear (i.e. relativistic), (cf. phonons, photons, etc.)
Experiment?

\triangleright Do ZPF destroy long-range order?
Referring to sublattice magnetisation

$$
\begin{aligned}
&\langle\text { g.s. }|\left.\left.\left.\frac{1}{N} \sum_{n}(-1)^{n} \hat{S}_{n}^{z} \right\rvert\, \text { g.s. }\right\rangle \left.=S-\langle\text { g.s. }| \frac{1}{N} \sum_{k} a_{k}^{\dagger} a_{k} \right\rvert\, \text { g.s. }\right\rangle \\
&\left.\left.\quad=S-\frac{1}{N} \sum_{k}\langle\text { g.s. }|\left(-\sinh \theta_{k} \alpha_{-k}+\cosh \theta_{k} \alpha_{k}^{\dagger}\right)\left(\cosh \theta_{k} \alpha_{k}-\sinh \theta_{k} \alpha_{-k}^{\dagger}\right) \right\rvert\, \text { g.s. }\right\rangle \\
& \quad=S-\frac{1}{N} \sum_{k} \sinh ^{2} \theta_{k}=S-\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{2}\left[\left(1-\gamma_{k}^{2}\right)^{-1 / 2}-1\right] \sim \int_{0}^{1 / a} k^{d-1} d k \frac{1}{k}
\end{aligned}
$$

i.e. quantum fluctuations destroy long range AFM order in 1 d - $\underline{\text { spin liquid }}$

\triangleright Frustration

On "bipartite" lattice, AF LRO survives ZPF in $d>1$
For non-bipartite lattice (e.g. triangular), system is said to be frustrated \leadsto spin liquid phase in higher dimension

Bogoliubov Theory of weakly interacting Bose gas

Although strong interactions can lead to the formation of unusual ground states of electron system, the properties of the weakly interacting system mirror closely the trivial behaviour of the non-interacting Fermi gas. By contrast, even in the weakly interacting system, the Bose gas has the capacity to form a correlated phase known as a Bose-Einstein condensate. The aim of this lecture is to explore the nature of the ground state and the character of the elementary excitation spectrum in the condensed phase.

Consider N bosons confined to volume L^{d}. If non-interacting, at $T=0$ all bosons
condensed in lowest energy state of single-particle system, viz. \mid g.s. $\rangle_{0}=\frac{1}{\sqrt{N!}}\left(a_{0}^{\dagger}\right)^{N}|\Omega\rangle$
How is g.s. and excitation spectrum influenced by weak (repulsive) interaction?

$$
\begin{aligned}
& \hat{H}=\sum_{\mathbf{k}} \overbrace{\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}}^{\epsilon_{k}^{(0)}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\overbrace{\frac{1}{2} \int d^{d} x d^{d} x^{\prime} a^{\dagger}(\mathbf{x}) a^{\dagger}\left(\mathbf{x}^{\prime}\right) V\left(\mathbf{x}-\mathbf{x}^{\prime}\right) a\left(\mathbf{x}^{\prime}\right) a(\mathbf{x})}^{\hat{H}_{I}} \\
& \hat{H}_{I}=\frac{1}{2 L^{d}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}} V(\mathbf{q}) a_{\mathbf{k}^{\prime}}^{\dagger} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}-\mathbf{q}} a_{\mathbf{k}^{\prime}+\mathbf{q}}
\end{aligned}
$$

If interaction is sufficiently weak, g.s. still condensed
with lowest single-particle state macroscopically occupied, i.e. $\frac{N_{k=0}}{N}=\mathcal{O}(1)$
Therefore, since $\hat{N}_{0}=a_{k=0}^{\dagger} a_{k=0}=O(N) \gg 1$ and $a_{0} a_{0}^{\dagger}-a_{0}^{\dagger} a_{0}=1$,
a_{0} and a_{0}^{\dagger} can be approximated by C-number $\sqrt{N_{0}}$
Taking (for simplicity) $V(\mathbf{q})=V$ const., i.e. a contact interaction $V\left(\mathrm{x}-\mathrm{x}^{\prime}\right)=V \delta^{d}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)$, expansion in N_{0} obtains

$$
\hat{H}_{I}=\frac{V}{2 L^{d}} N_{0}^{2}+\frac{V}{L^{d}} N_{0} \sum_{\mathbf{k} \neq 0}\left[2 a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\frac{1}{2}\left(a_{-\mathbf{k}} a_{\mathbf{k}}+a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}\right)\right]+O\left(N_{0}^{1 / 2}\right)
$$

cf. quantum AF in spin-wave approximation
N.B. Momentum conservation eliminates terms at $O\left(N_{0}^{3 / 2}\right)$
\triangleright Physical interpretation of components:

- $V a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$ represents the 'Hartree-Fock energy' of excited particles interacting with condensate N.B. Contact interaction disguises presence of direct and exchange contributions
- $V\left(a_{-\mathbf{k}} a_{\mathbf{k}}+a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}\right)$ represents creation or annihilation of particle pairs from condensate Note that, in this approximation, total no. of particles is not conserved

Finally, using $N=N_{0}+\sum_{\mathbf{k} \neq 0} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$ to trade N_{0} for N, and defining density, $n=\frac{N}{L^{d}}$

$$
\hat{H}=\frac{V n N}{2}+\sum_{\mathbf{k} \neq 0}\left[\left(\epsilon_{\mathbf{k}}^{(0)}+V n\right) a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+\frac{V n}{2}\left(a_{-\mathbf{k}} a_{\mathbf{k}}+a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}\right)\right]
$$

As with quantum AF, \hat{H} diagonalised by Bogoluibov transformation:

$$
\begin{aligned}
& \binom{a_{\mathbf{k}}}{a_{-\mathbf{k}}^{\dagger}}=\left(\begin{array}{cc}
\cosh \theta_{\mathbf{k}} & -\sinh \theta_{k} \\
-\sinh \theta_{\mathbf{k}} & \cosh \theta_{\mathbf{k}}
\end{array}\right)\binom{\alpha_{\mathbf{k}}}{\alpha_{-\mathbf{k}}^{\dagger}}, \quad \text { with } \tanh \left(2 \theta_{k}\right)=\frac{V n}{\epsilon_{\mathbf{k}}^{(0)}+V n} \\
& \hat{H}=\frac{V n N}{2}-\frac{1}{2} \sum_{\mathbf{k} \neq 0}\left(\epsilon_{\mathbf{k}}^{(0)}+n V\right)+\sum_{\mathbf{k} \neq 0} \overbrace{\left[\left(\epsilon_{\mathbf{k}}^{(0)}+V n\right)^{2}-(V n)^{2}\right]^{1 / 2}}^{\epsilon_{\mathbf{k}}}\left(\alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}}+\frac{1}{2}\right)
\end{aligned}
$$

In particular, for $|\mathbf{k}| \rightarrow 0$, low-energy excitations have linear (relativistic)

$$
\text { dispersion, } \epsilon_{\mathbf{k}}=\left[\epsilon_{\mathbf{k}}^{(0)}\left(2 V n+\epsilon_{\mathbf{k}}^{(0)}\right)\right]^{1 / 2} \simeq \hbar c|\mathbf{k}| \text { with 'sound' speed } c=\left(\frac{V n}{m}\right)^{1 / 2}
$$

At high energies $\left(|\mathbf{k}|>k_{0}=m c / \hbar\right)$, spectrum becomes free particle-like.
$\triangleright{ }^{\dagger}$ Ground state wavefunction: defined by condition $\alpha_{\mathbf{k}}|\mathrm{g} . \mathrm{s}\rangle=$.
Since Bogoluibov transformation can be written as $\alpha_{\mathbf{k}}=\hat{U} a_{\mathbf{k}} \hat{U}^{-1}$ where (exercise)

$$
\hat{U}=\exp \left[\sum_{\mathbf{k} \neq 0} \frac{\theta_{\mathbf{k}}}{2}\left(a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}-a_{\mathbf{k}} a_{-\mathbf{k}}\right)\right]
$$

may infer true g.s. from non-interacting g.s. as \mid g.s. $\rangle=\hat{U} \mid$ g.s. \rangle_{0}
\triangleright Experiment? transparencies
When cooled to $T \sim 2 K$, liquid ${ }^{4}$ He undergoes transition to Bose-Einstein condensed state
Neutron scattering can be used to infer spectrum of collective excitations
In Helium, steric interactions are strong and at higher energy scales
an important second branch of excitations known as rotons appear
A second example of BEC is presented by ultracold atomic gases:
By confining atoms to a magnetic trap, time of flight measurements can be used to monitor momentum distribution of condensate

Moreover, the perturbation imposed by a laser due to the optical
dipole interaction provides a means to measure the sound wave velocity

Lecture VII: Feynman Path Integral

\triangleright Motivation:

- Alternative formulation of QM (cf. canonical quantisation)
- Close to classical construction - i.e. semi-classics easily accessed
- Effective formulation of non-perturbative approaches
- Prototype of higher-dimensional field theories

\triangleright Time-dependent Schrödinger equation

$$
i \hbar \partial_{t}|\Psi\rangle=\hat{H}|\Psi\rangle
$$

$$
\text { Formal solution: }|\psi(t)\rangle=e^{-i \hat{H} t / \hbar}|\psi(0)\rangle=\sum_{n} e^{-i E_{n} t / \hbar}|n\rangle\langle n \mid \psi(0)\rangle
$$

\triangleright Time-evolution operator

$$
\left|\Psi\left(t^{\prime}\right)\right\rangle=\hat{U}\left(t^{\prime}, t\right)|\Psi(t)\rangle, \quad \hat{U}\left(t^{\prime}, t\right)=e^{-\frac{i}{\hbar} \hat{H}\left(t^{\prime}-t\right)} \theta\left(t^{\prime}-t\right) \quad \text { N.B. Causal }
$$

- Real-space representation:

$$
\Psi\left(q^{\prime}, t^{\prime}\right) \equiv\left\langle q^{\prime} \mid \Psi\left(t^{\prime}\right)\right\rangle=\left\langle q^{\prime}\right| \hat{U}\left(t^{\prime}, t\right) \stackrel{\int d q|q\rangle\langle q|}{\wedge}|\Psi(t)\rangle=\int d q U\left(q^{\prime}, t^{\prime} ; q, t\right) \Psi(q, t) \text {, }
$$

where $U\left(q^{\prime}, t^{\prime} ; q, t\right)=\left\langle q^{\prime}\right| e^{-\frac{i}{\hbar} \hat{H}\left(t^{\prime}-t\right)}|q\rangle \theta\left(t^{\prime}-t\right)$ - propagator or Green function:

$$
\left(i \hbar \partial_{t^{\prime}}-\hat{H}\right) \hat{U}\left(t^{\prime}-t\right)=i \hbar \delta\left(t^{\prime}-t\right) \quad \text { N.B. } \partial_{t^{\prime}} \theta\left(t^{\prime}-t\right)=\delta\left(t^{\prime}-t\right)
$$

Physically: $U\left(q^{\prime}, t^{\prime} ; q, t\right)$ describes probability amplitude for particle to propagate from q at time t to q^{\prime} at time t^{\prime}

\triangleright Construction of Path Integral

Feynman's idea: divide time evolution into $N \rightarrow \infty$ discrete time steps $\Delta t=t / N$

$$
e^{-i \hat{H} t / \hbar}=\left[e^{-i \hat{H} \Delta t / \hbar}\right]^{N}
$$

Then separate the operator content so that momentum operators stand to the left and position operators to the right:

$$
\begin{gathered}
e^{-i \hat{H} \Delta t / \hbar}=e^{-i \hat{T} \Delta t / \hbar} e^{-i \hat{V} \Delta t / \hbar}+O\left(\Delta t^{2}\right) \\
\left\langle q_{F}\right|\left[e^{-i \hat{H} \Delta t / \hbar}\right]^{N}\left|q_{I}\right\rangle \simeq\left\langle q_{F}\right| \wedge^{-i \hat{T} \Delta t / \hbar} e^{-i \hat{V} \Delta t / \hbar} \wedge \cdots \wedge e^{-i \hat{T} \Delta t / \hbar} e^{-i \hat{V} \Delta t / \hbar}\left|q_{I}\right\rangle
\end{gathered}
$$

Inserting at \wedge resol. of id. $=\int d q_{n} \int d p_{n}\left|q_{n}\right\rangle\left\langle q_{n} \mid p_{n}\right\rangle\left\langle p_{n}\right|$, and using $\langle q \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i q p / \hbar}$,

$$
\begin{gathered}
e^{-i \hat{V} \Delta t / \hbar}\left|q_{n}\right\rangle\left\langle q_{n} \mid p_{n}\right\rangle\left\langle p_{n}\right| e^{-i \hat{T} \Delta t / \hbar}=\left|q_{n}\right\rangle e^{-i V\left(q_{n}\right) \Delta t / \hbar}\left\langle q_{n} \mid p_{n}\right\rangle e^{-i T\left(p_{n}\right) \Delta t / \hbar}\left\langle p_{n}\right|, \\
\text { and }\left\langle p_{n+1} \mid q_{n}\right\rangle\left\langle q_{n} \mid p_{n}\right\rangle=\frac{1}{2 \pi \hbar} e^{i q_{n}\left(p_{n}-p_{n+1}\right)} \\
\left\langle q_{F}\right| e^{-i \hat{H} t / \hbar}\left|q_{I}\right\rangle=\int \prod_{\substack{n=1 \\
q_{N}=q_{F}, q_{0}=q_{I}}}^{N-1} d q_{n} \prod_{n=1}^{N} \frac{d p_{n}}{2 \pi \hbar} \exp \left[-\frac{i}{\hbar} \Delta t \sum_{n=0}^{N-1}\left(V\left(q_{n}\right)+T\left(p_{n+1}\right)-p_{n+1} \frac{q_{n+1}-q_{n}}{\Delta t}\right)\right]
\end{gathered}
$$

i.e. at each time step, integration over the classical phase space coords. $x_{n} \equiv\left(q_{n}, p_{n}\right)$

Contributions from trajectories where $\left(q_{n+1}-q_{n}\right) p_{n+1}>\hbar$ are negligible

- motivates continuum limit

$$
\left\langle q_{F}\right| e^{-i \hat{H} t / \hbar}\left|q_{I}\right\rangle=\overbrace{\int_{\substack{n=1 \\ q_{N}=q_{F}, q_{0}=q_{I}}}^{N} \prod_{n=1}^{N-1} d q_{n} \prod_{n=1}^{N} \frac{d p_{n}}{2 \pi \hbar}}^{\int_{q(t)=q_{F}, q(0)=q_{I}}} \exp [-\frac{i}{\hbar}(\overbrace{\Delta t \sum_{n=0}^{N-1}}^{\int_{0}^{N} d t^{\prime}} \overbrace{V\left(q_{n}\right)+T\left(p_{n+1}\right)}^{H\left(q,\left.p\right|_{\left.t t^{\prime}=t_{n}\right)}\right)}-\overbrace{\left.p_{n+1} \frac{q_{n+1}-q_{n}}{\Delta t}\right)}^{\left.p \dot{q}\right|_{t^{\prime}=t_{n}}}]
$$

Propagator expressed as FUNCTIONAL INTEGRAL:
Hamiltonian formulation of Feynman Path Integral

$$
\left\langle q_{F}\right| e^{-i \hat{H} t / \hbar}\left|q_{I}\right\rangle=\int_{q(t)=q_{F}, q(0)=q_{I}} D(q, p) \exp [\frac{i}{\hbar} \overbrace{\int_{0}^{t} d t^{\prime} \overbrace{(p \dot{q}-H(p, q))}^{\text {Lagrangian }}]}^{\text {Action }}]
$$

Quantum transition amplitude expressed as sum over all possible phase space trajectories (subject to appropriate b.c.) and weighted by classical action
$\triangleright \underline{\text { Lagrangian formulation: for "free-particle" Hamiltonian } H(p, q)=\frac{p^{2}}{2 m}+V(q)}$

$$
\begin{gathered}
\left\langle q_{F}\right| e^{-i \hat{H} t / \hbar}\left|q_{I}\right\rangle=\int_{q(t)=q_{F}, q(0)=q_{I}} \sum_{\substack{ \\
-(i / \hbar)}}^{\int_{0}^{t} d t^{\prime} V(q)} \int D p \overbrace{\exp \left[-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}\left(\frac{p^{2}}{2 m}-p \dot{q}\right)\right]}^{\text {Gaussian integral on p }} \\
\frac{p^{2}}{2 m}-p \dot{q} \mapsto \frac{1}{2 m} \overbrace{(p-m \dot{q})^{2}}^{p^{\prime 2}}-\frac{1}{2} m \dot{q}^{2}
\end{gathered}
$$

Functional integral justified by discretisation

$$
\left\langle q_{F}\right| e^{-i \hat{H} t / \hbar}\left|q_{I}\right\rangle=\int_{q(t)=q_{F}, q(0)=q_{I}}^{D q \exp \left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}\left(\frac{m \dot{q}^{2}}{2}-V(q)\right)\right]}
$$

$$
D q \rightarrow \widetilde{D} q=\lim _{N \rightarrow \infty}\left(\frac{N m}{i t 2 \pi \hbar}\right)^{N / 2} \prod_{n=1}^{N-1} d q_{n}
$$

\triangleright CONNECTION OF PATH INTEGRAL TO CLASSICAL STATISTICAL MECHANICS

Consider flexible string held under constant tension, T, and confined to 'gutter-like' potential, $V(u)$

i.e. $u(x)$ is displacement from potential minimum

Potential energy stored in spring due to line tension:

$$
\begin{aligned}
& \text { from } x \text { to } x+d x, d V_{T}=T \overbrace{\left[\left(d x^{2}+d u^{2}\right)^{1 / 2}-d x\right]}^{\text {extension }} \simeq \frac{T}{2} d x\left(\partial_{x} u\right)^{2} \\
& V_{T}\left[\partial_{x} u\right] \equiv \int d V_{T}=\frac{1}{2} \int_{0}^{L} d x T\left(\partial_{x} u(x)\right)^{2}
\end{aligned}
$$

and from external (gutter) potential: $V_{\text {ext }}[u] \equiv \int_{0}^{L} d x V[u(x)]$
According to Boltzmann principle,
equilibrium partition function of periodic system $\left(\beta=1 / k_{\mathrm{B}} T\right)$

$$
\mathcal{Z}=\operatorname{tr}\left(e^{-\beta F}\right)=\int_{u(L)=u(0)} D u(x) \exp \left[-\beta \int_{0}^{L} d x\left(\frac{T}{2}\left(\partial_{x} u\right)^{2}+V(u)\right)\right]
$$

"tr" denotes sum over configurations, cf. quantum transmission amplitude
\triangleright Mapping:

$$
\left\langle q^{\prime}\right| e^{-i \hat{H} t / \hbar}|q\rangle=\int D q(t) \exp \left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}\left(\frac{m \dot{q}^{2}}{2}-V(q)\right)\right]
$$

Wick rotation $t \rightarrow-i \tau \mapsto$ imaginary (Euclidean) time path integral

$$
\int_{0}^{t} i d t^{\prime}\left(\partial_{t^{\prime}} q\right)^{2} \longrightarrow-\int_{0}^{\tau} d \tau^{\prime}\left(\partial_{\tau^{\prime}} q\right)^{2}, \quad-\int_{0}^{t} i d t^{\prime} V(q) \longrightarrow-\int_{0}^{\tau} d \tau^{\prime} V(q)
$$

$\left\langle q^{\prime}\right| e^{-i \hat{H} t / \hbar}|q\rangle=\int D q \exp \left[-\frac{1}{\hbar} \int_{0}^{\tau} d \tau^{\prime}\left(\frac{m}{2}\left(\partial_{\tau^{\prime}} q\right)^{2}+V(q)\right)\right] \quad$ N.B. change of relative sign!
(a) Classical partition function of 1 d system coincides with QM amplitude

$$
\mathcal{Z}=\left.\int d q\langle q| e^{-i \hat{H} t / \hbar}|q\rangle\right|_{t=-i \tau}
$$

where time is imaginary, and \hbar play role of temperature, $1 / \beta$
Generally, path integral for quantum field $\phi(\mathbf{q}, t)$ in d space dimensions corresponds to classical statistical mechanics of $d+1$-dim. system
(b) Quantum partition function

$$
\mathcal{Z}=\operatorname{tr}\left(e^{-\beta \hat{H}}\right)=\int d q\langle q| e^{-\beta \hat{H}}|q\rangle
$$

i.e. \mathcal{Z} is transition amplitude $\langle q| e^{-i \hat{H} t / \hbar}|q\rangle$ evaluated at imaginary time $t=-i \hbar \beta$.
(c) Semi-classics

As $\hbar \rightarrow 0$, PI dominated by stationary config. of action $S[p, q]=\int d t(p \dot{q}-H(p, q))$

$$
\begin{gathered}
\delta S=S[p+\delta p, q+\delta q]-S[p, q]=\int d t\left[\delta p \dot{q}+p \delta \dot{q}-\delta p \partial_{p} H-\delta q \partial_{q} H\right]+O\left(\delta p^{2}, \delta q^{2}, \delta p \delta q\right) \\
=\int d t\left[\delta p\left(\dot{q}-\partial_{p} H\right)+\delta q\left(-\dot{p}-\partial_{q} H\right)\right]+O\left(\delta p^{2}, \delta q^{2}, \delta p \delta q\right)
\end{gathered}
$$

i.e. Hamilton's classical e.o.m.: $\dot{q}=\partial_{p} H, \dot{p}=-\partial_{q} H$ with b.c. $q(0)=q_{I}, q(t)=q_{F}$

Similarly, with Lagrangian formulation: $\delta S=0 \Rightarrow \partial_{t}\left(\partial_{\dot{q}} L\right)-\partial_{q} L=0$
What about contributions from fluctuations around classical paths?
Usually, exact evaluation of PI impossible - must resort to approximation schemes...

Principle: consider integral over single variable,

$$
I=\int_{-\infty}^{\infty} d z e^{-f(z)}
$$

Expect integral to be dominated by minima of $f(z)$; suppose unique i.e. $f^{\prime}\left(z_{0}\right)=0$
$f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right) \overbrace{f^{\prime}\left(z_{0}\right)}^{\mapsto_{0}^{0}}+\frac{1}{2}\left(z-z_{0}\right)^{2} f^{\prime \prime}\left(z_{0}\right)+\cdots$

$$
I \simeq e^{-f\left(z_{0}\right)} \int_{-\infty}^{\infty} d z e^{-\left(z-z_{0}\right)^{2} f^{\prime \prime}\left(z_{0}\right) / 2}=\sqrt{\frac{2 \pi}{f^{\prime \prime}\left(z_{0}\right)}} e^{-f\left(z_{0}\right)}
$$

$$
=s!\text { if } s \in Z
$$

Example : $\overbrace{\Gamma(s+1)}=\int_{0}^{\infty} d z z^{s} e^{-z}=\int_{0}^{\infty} d z e^{-f(z)}, \quad f(z)=z-s \ln z$

$$
f^{\prime}(z)=1-\frac{s}{z} \text { i.e. } z_{0}=s, f^{\prime \prime}\left(z_{0}\right)=\frac{s}{z_{0}^{2}}=\frac{1}{s}
$$

$$
\text { i.e. } \Gamma(s+1) \simeq \sqrt{2 \pi s} e^{-(s-s \ln s)}-\text { Stirling's formula }
$$

If minima not on integration contour - deform contour through saddle-point e.g. $\Gamma(s+1), s$ complex

What if exponent pure imaginary? Fast phase fluctuations \leadsto cancellation
i.e. expand around region of slowest (i.e. stationary) phase and use identity

$$
\int_{-\infty}^{\infty} d z e^{i a z^{2} / 2}=\sqrt{\frac{2 \pi}{a}} e^{i \pi / 4}
$$

\triangleright Can we apply same approach to analyse PI? Yes
but we must develop basic tool of QFT - Gaussian functional integral!

Lecture VIII: Quantum Harmonic Oscillator

$\triangleright \underline{\text { Free particle propagator: Difficult to obtain from PI, but useful for normalization, }}$ and easily obtained from equation for Green function, $\left(i \hbar \partial_{t}-\hat{H}\right) \hat{G}_{\text {free }}(t)=i \hbar \delta(t)$, which in Euclidean time $t=-i \tau$ becomes a diffusion equation,

$$
\left(\hbar \partial_{\tau}-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) G_{\text {free }}\left(q_{\mathrm{F}}, q_{\mathrm{I}}, t\right)=\hbar \delta\left(q_{\mathrm{F}}-q_{\mathrm{I}}\right) \delta(\tau)
$$

Solution: (PS3)

$$
G_{\text {free }}\left(q_{F}, q_{I} ; t\right) \equiv\left\langle q_{F}\right| e^{-i \hat{p}^{2} t / 2 m \hbar}\left|q_{I}\right\rangle \theta(t)=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} \exp \left[\frac{i}{\hbar} \frac{m\left(q_{F}-q_{I}\right)^{2}}{2 t}\right] \theta(t)
$$

$\triangleright \underline{\text { Quantum particle in single (Symmetric) well: } V(q)=V(-q) ~}$
e.g. QM amplitude

$$
G(0,0 ; t) \equiv\langle 0| e^{-i \hat{H} t / \hbar}|0\rangle \theta(t)=\int_{q(t)=q(0)=0}^{D q \exp }\left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}\left(\frac{m \dot{q}^{2}}{2}-V(q)\right)\right]
$$

\triangleright Evaluate PI by stationary phase approx: general recipe
(i) Parameterise path as $q(t)=q_{\mathrm{cl}}(t)+r(t)$ and expand action in $r(t)$

$$
\begin{aligned}
& S[\bar{q}+r]=\int_{0}^{t} d t^{\prime}[\frac{m}{2} \overbrace{\left(\dot{q}_{\mathrm{cl}}+\dot{r}\right)^{2}}^{\dot{q}_{\mathrm{cl}}{ }^{2}+2 \dot{q}_{\mathrm{cl}} \dot{r}+\dot{r}^{2}}-V\left(q_{\mathrm{cl}}\right)+r V^{\prime}\left(q_{\mathrm{cl}}\right)+\frac{r^{2}}{2} V^{\prime \prime}\left(q_{\mathrm{cl}}\right)+\cdots \\
& =S\left[q_{\mathrm{cl}}+r\right) \\
& \\
& =\int_{0}^{t} d t^{\prime} r\left(t^{\prime}\right) \overbrace{\left[-m \ddot{q}_{\mathrm{cl}}-V^{\prime}\left(q_{\mathrm{cl}}\right)\right]}^{\frac{\delta S}{\delta\left(t^{\prime}\right)}=0}+\frac{1}{2} \int_{0}^{t} d t^{\prime} r\left(t^{\prime}\right) \overbrace{\left[-m \partial_{t^{\prime}}^{2}-V^{\prime \prime}\left(q_{\mathrm{cl}}\right)\right]}^{\frac{\delta^{2} S}{\delta q\left(t^{\prime}\right) \delta\left(t^{\prime \prime}\right)}} r\left(t^{\prime}\right)+\cdots
\end{aligned}
$$

(ii) Classical trajectory: $m \ddot{q}_{\mathrm{cl}}=-V^{\prime}\left(q_{\mathrm{cl}}\right)$

Many solutions - choose non-singular $q_{\mathrm{cl}}=0$, i.e. $S\left[q_{\mathrm{cl}}\right]=0$ and $V^{\prime \prime}\left(q_{\mathrm{cl}}\right)=m \omega^{2}$ const.

$$
G(0,0 ; t) \simeq \int_{r(0)=r(t)=0} \operatorname{Dr} \exp \left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} r\left(t^{\prime}\right) \frac{m}{2}\left(-\partial_{t^{\prime}}^{2}-\omega^{2}\right) r\left(t^{\prime}\right)\right]
$$

N.B. if V was quadratic, expression trivially exact

More generally, $q_{\mathrm{cl}}(t)$ non-trivial \mapsto non-vanishing $S\left[q_{\mathrm{cl}}\right]$ - see PS3
Fluctuations? - example of a...

\triangleright GAUSSIAN FUNCTIONAL INTEGRATION: mathematical interlude

- One variable Gaussian integral:

$$
\left(\int_{-\infty}^{\infty} d v e^{-a v^{2} / 2}\right)^{2}=2 \pi \int_{0}^{\infty} r d r e^{-a r^{2} / 2}=\frac{2 \pi}{a}
$$

$$
\int_{-\infty}^{\infty} d v e^{-\frac{a}{2} v^{2}}=\sqrt{\frac{2 \pi}{a}}, \quad \operatorname{Re} a>0
$$

- Many variables:

$$
\int d \mathbf{v} e^{-\frac{1}{2} \mathbf{v}^{T} \mathbf{A} \mathbf{v}}=(2 \pi)^{N / 2} \operatorname{det} \mathbf{A}^{-1 / 2}
$$

A is + ve definite real symmetric $N \times N$ matrix
Proof: A diagonalised by orthogonal trans: $\mathbf{D}=\mathbf{O A O}^{T}$
Change of variables: $\mathbf{v}=\mathbf{O}^{T} \mathbf{w}$ (Jacobian $\left.\operatorname{det}(\mathbf{O})=1\right) \leadsto N$ decoupled Gaussian integrations: $\mathbf{v}^{T} \mathbf{A v}=\mathbf{w}^{T} \mathbf{D} \mathbf{w}=\sum_{i}^{N} d_{i} w_{i}^{2}$ and $\prod_{i=1}^{N} d_{i}=\operatorname{det} \mathbf{D}=\operatorname{det} \mathbf{A}$

- Infinite number of variables; interpret $\left\{v_{i}\right\} \mapsto v(t)$ as continuous field and $A_{i j} \mapsto A\left(t, t^{\prime}\right)=\langle t| \hat{A}\left|t^{\prime}\right\rangle$ as operator kernel

$$
\int D v(t) \exp \left[-\frac{1}{2} \int d t \int d t^{\prime} v(t) A\left(t, t^{\prime}\right) v\left(t^{\prime}\right)\right] \propto(\operatorname{det} \hat{A})^{-1 / 2}
$$

(iii) Applied to QW, $A\left(t, t^{\prime}\right)=-\frac{i}{\hbar} m \delta\left(t-t^{\prime}\right)\left(-\partial_{t^{\prime}}^{2}-\omega^{2}\right)$ and

$$
G(0,0 ; t) \simeq J \operatorname{det}\left(-\partial_{t^{\prime}}^{2}-\omega^{2}\right)^{-1 / 2}
$$

where J absorbs constant prefactors ($i m, \hbar$, etc.)
What does 'det' mean? Effectively, we can expand trajectories $r\left(t^{\prime}\right)$
in eigenbasis of \hat{A} subject to b.c. $r(t)=r(0)=0$

$$
\left(-\partial_{t}^{2}-\omega^{2}\right) r_{n}(t)=\epsilon_{n} r_{n}(t), \quad \text { cf. PIB }
$$

i.e. Fourier series expansion: $r_{n}\left(t^{\prime}\right)=\sin \left(\frac{n \pi t^{\prime}}{t}\right), \quad n=1,2, \ldots, \quad \epsilon_{n}=\left(\frac{n \pi}{t}\right)^{2}-\omega^{2}$

$$
\operatorname{det}\left(-\partial_{t}^{2}-\omega^{2}\right)^{-1 / 2}=\prod_{n=1}^{\infty} \epsilon_{n}^{-1 / 2}=\prod_{n=1}^{\infty}\left(\left(\frac{n \pi}{t}\right)^{2}-\omega^{2}\right)^{-1 / 2}
$$

\triangleright For $V=0, G=G_{\text {free }}$ known - use to eliminate constant prefactor J

$$
G(0,0 ; t)=\frac{G(0,0 ; t)}{G_{\text {free }}(0,0 ; t)} G_{\text {free }}(0,0 ; t)=\prod_{n=1}^{\infty}\left[1-\left(\frac{\omega t}{n \pi}\right)^{2}\right]^{-1 / 2}\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} \Theta(t)
$$

Applying identity $\prod_{n=1}^{\infty}\left[1-\left(\frac{x}{n \pi}\right)^{2}\right]^{-1}=\frac{x}{\sin x}$

$$
G(0,0 ; t) \simeq \sqrt{\frac{m \omega}{2 \pi i \hbar \sin (\omega t)}} \Theta(t)
$$

(exact for harmonic oscillator)
Singular behaviour is a feature of ladder-like states of harmonic oscillator leading to periodic coherent superposition and dynamical echo (see PS3).

Double Well: Tunneling and Instantons

How can QM tunneling be described by path integral? No semi-classical expansion!
\triangleright E.g transition amplitude in double well: $G(a,-a ; t) \equiv\langle a| e^{-i \hat{H} t / \hbar}|-a\rangle$

\triangleright Feynman PI:

$$
G(a,-a ; t)=\int_{q(0)=-a}^{q(t)=a} D q \exp \left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}\left(\frac{m}{2} \dot{q}^{2}-V(q)\right)\right]
$$

Stationary phase analysis: classical e.o.m. $m \ddot{q}=-\partial_{q} V$ \mapsto only singular (high energy) solutions Switch to alternative formulation...
\triangleright Imaginary (Euclidean) time PI: Wick rotation $t=-i \tau$
N.B. (relative) sign change! " $V \rightarrow-V$ "

$$
G(a,-a ; \tau)=\int_{q(0)=-a}^{q(\tau)=a} D q \exp \left[-\frac{1}{\hbar} \int_{0}^{\tau} d \tau^{\prime}\left(\frac{m}{2} \dot{q}^{2}+V(q)\right)\right]
$$

Saddle-point analysis: classical e.o.m. $m \ddot{q}=+V^{\prime}(q)$ in inverted potential! solutions depend on b.c.
(1) $G(a, a ; \tau) \leadsto q_{\mathrm{cl}}(\tau)=a$
(2) $G(-a,-a ; \tau) \leadsto q_{\mathrm{cl}}(\tau)=-a$
(3) $G(a,-a ; \tau) \leadsto q_{\mathrm{cl}}$: rolls from $-a$ to a

Combined with small fluctuations, (1) and (2) recover propagator for single well
(3) accounts for tunneling - known as "instanton" (or "kink")

\triangleright Instanton: classically forbidden trajectory connecting two degenerate minima - i.e. topological, and therefore particle-like

For τ large, $\dot{q_{\mathrm{cl}}} \simeq 0$ (evident), i.e. "first integral" $m \dot{\dot{q}_{\mathrm{cl}}}{ }^{2} / 2-V\left(q_{\mathrm{cl}}\right)=\epsilon \xrightarrow{\tau \rightarrow \infty} 0$ precise value of ϵ fixed by b.c. (i.e. τ)
Saddle-point action (cf. WKB $\left.\int d q p(q)\right)$
$S_{\text {inst. }}=\int_{0}^{\tau} d \tau^{\prime}\left(\frac{m}{2} \dot{q}_{\mathrm{cl}}^{2}+V\left(q_{\mathrm{cl}}\right)\right) \simeq \int_{0}^{\tau} d \tau^{\prime} m \dot{q}_{\mathrm{cl}}^{2}=\int_{-a}^{a} d q_{\mathrm{cl}} m \dot{q}_{\mathrm{cl}}=\int_{-a}^{a} d q_{\mathrm{cl}}\left(2 m V\left(q_{\mathrm{cl}}\right)\right)^{1 / 2}$
Structure of instanton: For $q \simeq a, V(q)=\frac{1}{2} m \omega^{2}(q-a)^{2}+\cdots$, i.e. $\dot{q}_{\mathrm{cl}} \stackrel{\tau \rightarrow \infty}{\sim} \omega\left(q_{\mathrm{cl}}-a\right)$

$$
q_{\mathrm{cl}}(\tau) \stackrel{\tau \rightarrow \infty}{=} a-e^{-\tau \omega} \text {, i.e. temporal extension set by } \omega^{-1} \ll \tau
$$

Imples existence of approximate saddle-point solutions
involving many instantons (and anti-instantons): instanton gas

\triangleright Accounting for fluctuations around n-instanton configuration

$$
G(a, \pm a ; \tau) \simeq \sum_{n \text { even /odd }} K^{n} \int_{0}^{\tau} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{n-1}} d \tau_{n} \overbrace{A_{n}\left(\tau_{1}, \ldots, \tau_{n}\right)}^{A_{n, \mathrm{cc} .} A_{n, \mathrm{qu}}},
$$

constant K set by normalisation
$A_{n, \mathrm{cl} .}=e^{-n S_{\mathrm{inst} .} / \hbar}-$ 'classical' contribution
$A_{n, \text { qu. }}$ - quantum fluctuations (cf. single well): $G_{\text {s.w. }}(0,0 ; t) \sim \frac{1}{\sqrt{\sin \omega t}}$

$$
\begin{aligned}
& A_{n, \mathrm{qu} .} \sim \prod_{i}^{n} \frac{1}{\sqrt{\sin \left(-i \omega\left(\tau_{i+1}-\tau_{i}\right)\right)}} \sim \prod_{i}^{n} e^{-\omega\left(\tau_{i+1}-\tau_{i}\right) / 2} \sim e^{-\omega \tau / 2} \\
& G(a, \pm a ; \tau) \simeq \sum_{n \text { even } / \text { odd }} K^{n} e^{-n S_{\text {inst. }} / \hbar} e^{-\omega \tau / 2} \overbrace{\int_{0}^{\tau} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{n-1}^{n} / n!} d \tau_{n}}^{\tau_{0}^{n}}
\end{aligned}
$$

$$
=\sum_{n \text { even } / \text { odd }} e^{-\omega \tau / 2} \frac{1}{n!}\left(\tau K e^{-S_{\text {inst. }} / \hbar}\right)^{n}
$$

Using $e^{x}=\sum_{n=0}^{\infty} x^{n} / n!$,
N.B. non-perturbative in \hbar !

$$
G(a, a ; \tau) \simeq C e^{-\omega \tau / 2} \cosh \left(\tau K e^{-S_{\text {inst. }} / \hbar}\right), \quad G(a,-a ; \tau) \simeq C e^{-\omega \tau / 2} \sinh \left(\tau K e^{-S_{\text {inst. }} / \hbar}\right)
$$

Consistency check: main contribution from

$$
\bar{n}=\langle n\rangle \equiv \frac{\sum_{n} n X^{n} / n!}{\sum_{n} X^{n} / n!}=X=\tau K e^{-S_{\text {inst } .} / \hbar}
$$

no. per unit time, \bar{n} / τ exponentially small, and indep. of τ, i.e. dilute gas

\triangleright Physical interpretation: For infinite barrier, oscillators independent, coupling splits degeneracy - symmetric/antisymmetric

$$
G(a, \pm a ; \tau) \simeq\langle a \mid S\rangle e^{-\epsilon_{S} \tau / \hbar}\langle S \mid \pm a\rangle+\langle a \mid A\rangle e^{-\epsilon_{A} \tau / \hbar}\langle A \mid \pm a\rangle
$$

Setting $\epsilon_{A / S}=\hbar \omega / 2 \pm \frac{\Delta \epsilon}{2}$, and noting $|\langle a \mid S\rangle|^{2}=\langle a \mid S\rangle\langle S \mid-a\rangle=\frac{C}{2}=|\langle a \mid A\rangle|^{2}=-\langle a \mid A\rangle\langle A \mid-a\rangle$

$$
G(a, \pm a ; \tau) \simeq \frac{C}{2}\left(e^{-(\hbar \omega-\Delta \epsilon) \tau / 2 \hbar} \pm e^{-(\hbar \omega+\Delta \epsilon) \tau / 2 \hbar}\right)=C e^{-\omega \tau / 2}\left\{\begin{array}{l}
\cosh (\Delta \epsilon \tau / \hbar) \\
\sinh (\Delta \epsilon \tau / \hbar)
\end{array} .\right.
$$

\triangleright Remarks:
(i) Legitimacy? How do (neglected) terms $O\left(\hbar^{2}\right)$ compare to $\Delta \epsilon$?

In fact, such corrections are bigger but act equally on $|S\rangle$ and $|A\rangle$
i.e. $\Delta \epsilon=\hbar K e^{-S_{\text {inst. }} / \hbar}$ is dominant contribution to splitting

(ii) Unstable States and Bounces: survival probability: $G(0,0 ; t)$? No even/odd effect:

$$
G(0,0 ; \tau)=C e^{-\omega \tau / 2} \exp \left[\tau K e^{-S_{\text {inst }} / \hbar}\right] \stackrel{\tau \equiv i t}{=} C e^{-i \omega t / 2} \exp \left[-\frac{\Gamma}{2} t\right]
$$

True decay rate has additional factor of $2: \Gamma \sim|K| e^{-S_{\text {inst }} / \hbar}$ (i.e. K imaginary) see Coleman for details

Lecture IX: Coherent States

Generalisation of PI to many-body systems problematic due to particle indistinguishability. Can second quantisation help? automatically respects particle statistics

Require complete basis on Fock space to construct PI
i.e. analogue of $\int d q d p|q\rangle\langle q \mid p\rangle\langle p|=\mathrm{id}$.

Such eigenstates exist and are known as...
reference: Negele and Orland
\triangleright Coherent States (Bosons)
What are eigenstates of Fock space operators: a_{i} and a_{i}^{\dagger} with $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$?
As a state of the Fock space, an eigenstate $|\phi\rangle$ can be expanded as

$$
|\phi\rangle=\sum_{n_{1}, n_{2}, \cdots} C_{n_{1}, n_{2}, \cdots} \frac{\left(a_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}}} \frac{\left(a_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{2}}} \cdots|0\rangle
$$

N.B. notation $|0\rangle$ for vacuum state!
(i) $a_{i}^{\dagger}|\phi\rangle=\phi_{i}|\phi\rangle$? - clearly, eigenstate of a_{i}^{\dagger} can not exist:
if minimum occupation of $|\phi\rangle$ is n_{0}, minimum of $a_{i}^{\dagger}|\phi\rangle$ is $n_{0}+1$
(ii) $a_{i}|\phi\rangle=\phi_{i}|\phi\rangle$? - can exist and given by: $|\phi\rangle \equiv \exp \left[\sum_{i} \phi_{i} a_{i}^{\dagger}\right]|0\rangle$ i.e. $\phi \equiv\left\{\phi_{i}\right\}$

Proof: since a_{i} commutes with all a_{j}^{\dagger} for $j \neq i-$ focus on one element i

$$
\begin{aligned}
& a e^{\phi a^{\dagger}}|0\rangle=\left[a, e^{\phi a^{\dagger}}\right]|0\rangle=\sum_{n=0}^{\infty} \frac{\phi^{n}}{n!}\left[a,\left(a^{\dagger}\right)^{n}\right]|0\rangle=\sum_{n=1}^{\infty} \frac{n \phi^{n}}{n!}\left(a^{\dagger}\right)^{n-1}|0\rangle=\phi \exp \left(\phi a^{\dagger}\right)|0\rangle \\
& a\left(a^{\dagger}\right)^{n}=a a^{\dagger}\left(a^{\dagger}\right)^{n-1}=\left(1+a^{\dagger} a\right)\left(a^{\dagger}\right)^{n-1}=\left(a^{\dagger}\right)^{n-1}+a^{\dagger} a\left(a^{\dagger}\right)^{n-1}=n\left(a^{\dagger}\right)^{n-1}+\left(a^{\dagger}\right)^{n} a
\end{aligned}
$$

i.e. $|\phi\rangle$ is eigenstate of all a_{i} with eigenvalue ϕ_{i}
\triangleright Properties of coherent state $|\phi\rangle$

- Hermitian conjugation:

$$
\forall i: \quad\langle\phi| a_{i}^{\dagger}=\langle\phi| \bar{\phi}_{i}
$$

$\bar{\phi}_{i}$ is complex conjugate of ϕ_{i}

- By direct application of $\partial_{\phi_{i}}$ (and operator commutativity):

$$
\forall i: \quad a_{i}^{\dagger}|\phi\rangle=\partial_{\phi_{i}}|\phi\rangle
$$

- Overlap: with $\langle\theta|=|\theta\rangle^{\dagger}=\langle 0| e^{\sum_{i} \bar{\theta}_{i} a_{i}}$

$$
\langle\theta \mid \phi\rangle=\langle 0| e^{\sum_{i} \bar{\theta}_{i} a_{i}}|\phi\rangle=e^{\sum_{i} \bar{\theta}_{i} \phi_{i}}\langle 0 \mid \phi\rangle=\exp \left[\sum_{i} \bar{\theta}_{i} \phi_{i}\right]
$$

i.e. states are not orthogonal! operators not Hermitian

- Norm: $\langle\phi \mid \phi\rangle=\exp \left[\sum_{i} \bar{\phi}_{i} \phi_{i}\right]$
- Completeness - resolution of id. (for proof see notes)

$$
\int \prod_{i} \frac{d \bar{\phi}_{i} d \phi_{i}}{\pi} e^{-\sum_{i} \bar{\phi}_{i} \phi_{i}}|\phi\rangle\langle\phi|=\mathbf{1}_{\mathcal{F}}
$$

where $d \bar{\phi}_{i} d \phi_{i}=d \operatorname{Re} \phi_{i} d \operatorname{Im} \phi_{i}$

\triangleright Coherent States (Fermions)

Following bosonic case, seek state $|\eta\rangle$ s.t.

$$
a_{i}|\eta\rangle=\eta_{i}|\eta\rangle, \quad \eta=\left\{\eta_{i}\right\}
$$

But anticommutativity $\left[a_{i}, a_{j}\right]_{+}=0(i \neq j)$ demands that $a_{i} a_{j}|\eta\rangle=-a_{j} a_{i}|\eta\rangle$
i.e. eigenvalues η_{i} must anticommute!!

$$
\eta_{i} \eta_{j}=-\eta_{j} \eta_{i}
$$

η_{i} can not be ordinary numbers - in fact, they obey...

\triangleright Grassmann Algebra

In addition to anticommutativity, defining properties:
(i) $\eta_{i}^{2}=0$ (cf. fermions) but note: these are not operators, i.e. $\left[\eta_{i}, \bar{\eta}_{i}\right]_{+} \neq 1$
(ii) Elements η_{i} can be added to, and multiplied, by ordinary complex numbers

$$
c+c_{i} \eta_{i}+c_{j} \eta_{j}, \quad c_{i}, c_{j} \in \mathcal{C}
$$

(iii) Grassmann numbers anticommute with fermionic creation/annihilation operators

$$
\left[\eta_{i}, a_{j}\right]_{+}=0
$$

\triangleright Calculus of Grassmann variables:
(iv) Differentiation: $\partial_{\eta_{i}} \eta_{j}=\delta_{i j}$
N.B. ordering matters $\partial_{\eta_{i}} \eta_{j} \eta_{i}=-\eta_{j} \partial_{\eta_{i}} \eta_{i}=-\eta_{j}$ for $i \neq j$
(v) Integration: $\int d \eta_{i}=0, \quad \int d \eta_{i} \eta_{i}=1$
i.e. differentiation and integration have the same effect!!
\triangleright Gaussian integration:

$$
\begin{aligned}
& \int d \bar{\eta} d \eta e^{-\bar{\eta} a \eta}=\int d \bar{\eta} d \eta(1-\bar{\eta} a \eta)=a \int d \bar{\eta} \bar{\eta} \int d \eta \eta=a \\
& \int \prod_{i} d \bar{\eta}_{i} d \eta_{i} e^{-\bar{\eta}^{T} \mathbf{A} \eta}=\operatorname{det} \mathbf{A} \quad \text { (exercise) }
\end{aligned}
$$

cf. ordinary complex variables
\triangleright Functions of Grassmann variables:
Taylor expansion terminates at low order since $\eta^{2}=0$, e.g.

$$
F(\eta)=F(0)+\eta F^{\prime}(0)
$$

Using rules

$$
\int d \eta F(\eta)=\int d \eta\left[F(0)+\eta F^{\prime}(0)\right]=F^{\prime}(0) \equiv \partial_{\eta} F[\eta]
$$

i.e. differentiation and integration have same effect on $F[\eta]$!

Usually, one has a function of many variables $F[\eta]$, say $\eta=\left\{\eta_{1}, \cdots \eta_{N}\right\}$

$$
F(\eta)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^{n} F(0)}{\partial \eta_{i} \cdots \partial \eta_{j}} \eta_{j} \cdots \eta_{i}
$$

with these preliminaries we are in a position to introduce the
\triangleright Fermionic coherent state:

$$
|\eta\rangle=\exp \left[-\sum_{i} \eta_{i} a_{i}^{\dagger}\right]|0\rangle \text { i.e. } \eta=\left\{\eta_{i}\right\}
$$

Proof (cf. bosonic case)

$$
a \exp \left(-\eta a^{\dagger}\right)|0\rangle=a\left(1-\eta a^{\dagger}\right)|0\rangle=\eta a a^{\dagger}|0\rangle=\eta|0\rangle=\eta \exp \left(-\eta a^{\dagger}\right)|0\rangle
$$

Other defining properties mirror bosonic CS - problem set
\triangleright Differences:
(i) Adjoint: $\langle\eta|=\langle 0| e^{-\sum_{i} a_{i} \bar{\eta}_{i}} \equiv\langle 0| e^{\sum_{i} \bar{\eta}_{i} a_{i}} \quad$ but N.B. $\bar{\eta}_{i}$ not related to η_{i}.
(ii) Gaussian integration: $\int d \bar{\eta} d \eta e^{-\bar{\eta} \eta}=1$
N.B. no π 's

Completeness relation

$$
\int \prod_{i} d \bar{\eta}_{i} d \eta_{i} e^{-\sum_{i} \bar{\eta}_{i} \eta_{i}}|\eta\rangle\langle\eta|=\mathbf{1}_{F}
$$

Lecture X: Many-body (Coherent State) Path Integral

Having obtained a complete coherent state basis for the creation and annihilation operators, we could proceed by constructing path integral for the quantum time evolution operator. However, since we will be interested in application involving a phase transition, it is more convenient to begin with the quantum partition function.
$\triangleright \underline{\text { Quantum partition function }}$

$$
\mathcal{Z}=\sum_{\{n\} \in \text { Fock Space }}\langle n| e^{-\beta(\hat{H}-\mu \hat{N})}|n\rangle, \quad F=-k_{\mathrm{B}} T \ln \mathcal{Z}
$$

$$
\beta=\frac{1}{k_{\mathrm{B}} T}, \mu-\text { chemical potential }
$$

In coherent state basis

$$
\mathcal{Z}=\int d[\bar{\psi}, \psi] e^{-\sum_{i} \bar{\psi}_{i} \psi_{i}} \sum_{n}\langle n \mid \psi\rangle\langle\psi| e^{-\beta(\hat{H}-\mu \hat{N})}|n\rangle
$$

Elimination of $|n\rangle$ requires identity: $\langle n \mid \psi\rangle\langle\psi \mid n\rangle=\langle\zeta \psi \mid n\rangle\langle n \mid \psi\rangle$
Proof: for, e.g., $|n\rangle=a_{1}^{\dagger} a_{2}^{\dagger} \cdots a_{n}^{\dagger}|0\rangle$

$$
\begin{aligned}
\langle n \mid \psi\rangle & =\langle 0| a_{n} \cdots a_{2} a_{1}|\psi\rangle=\psi_{n} \cdots \psi_{2} \psi_{1}\langle 0 \mid \psi\rangle=\psi_{n} \cdots \psi_{2} \psi_{1} \\
\langle\psi \mid n\rangle & =\bar{\psi}_{1} \bar{\psi}_{2} \cdots \bar{\psi}_{n} \\
\langle n \mid \psi\rangle\langle\psi \mid n\rangle & =\psi_{n} \cdots \psi_{2} \psi_{1} \bar{\psi}_{1} \bar{\psi}_{2} \cdots \bar{\psi}_{n}=\psi_{1} \bar{\psi}_{1} \psi_{2} \bar{\psi}_{2} \cdots \psi_{n} \bar{\psi}_{n} \\
& =\left(\zeta \bar{\psi}_{1} \psi_{1}\right)\left(\zeta \bar{\psi}_{2} \psi_{2}\right) \cdots\left(\zeta \bar{\psi}_{n} \psi_{n}\right)=\langle\zeta \psi \mid n\rangle\langle n \mid \psi\rangle
\end{aligned}
$$

Note that \hat{H} and \hat{N} even in operators allowing matrix element to be commuted through

$$
\mathcal{Z}=\int d[\bar{\psi}, \psi] e^{-\sum_{i} \bar{\psi}_{i} \psi_{i}}\langle\zeta \psi| e^{-\beta(\hat{H}-\mu \hat{N})}|\psi\rangle
$$

\triangleright Coherent State Path Integral

Applied to many-body Hamiltonian of fermions or bosons

$$
\hat{H}-\mu \hat{N}=\sum_{i j}\left(h_{i j}-\mu \delta_{i j}\right) a_{i}^{\dagger} a_{j}+\sum_{i j} V_{i j} a_{i}^{\dagger} a_{j}^{\dagger} a_{j} a_{i}
$$

N.B. operators are normal ordered

Follow general strategy of Feynman:
(i) Divide 'time' interval, β, into N segments of length $\Delta \beta=\beta / N$

$$
\langle\zeta \psi| e^{-\beta(\hat{H}-\mu \hat{N})}|\psi\rangle=\langle\zeta \psi| e^{-\Delta \beta(\hat{H}-\mu \hat{N})} \wedge^{-\Delta \beta(\hat{H}-\mu \hat{N})} \wedge^{\cdots} e^{-\Delta \beta(\hat{H}-\mu \hat{N})}|\psi\rangle
$$

(ii) At each position ' \wedge ' insert resolution of id.

$$
\mathbf{1}_{\mathcal{F}}=\int d\left[\bar{\psi}_{n}, \psi_{n}\right] e^{-\bar{\psi}_{n} \cdot \psi_{n}}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
$$

i.e. N-independent sets N.B. each ψ_{n} is a vector with elements $\left\{\psi_{i}\right\}_{n}$
(iii) Expand exponent in $\Delta \beta$

$$
\begin{aligned}
\left\langle\psi^{\prime}\right| e^{-\Delta \beta(\hat{H}-\mu \hat{N})}|\psi\rangle & =\left\langle\psi^{\prime}\right|[1-\Delta \beta(\hat{H}-\mu \hat{N})]|\psi\rangle+O(\Delta \beta)^{2} \\
& =\left\langle\psi^{\prime} \mid \psi\right\rangle-\Delta \beta\left\langle\psi^{\prime}\right|(\hat{H}-\mu \hat{N})|\psi\rangle+O(\Delta \beta)^{2} \\
& =\left\langle\psi^{\prime} \mid \psi\right\rangle\left[1-\Delta \beta\left(H\left(\psi^{\prime}, \psi\right)-\mu N\left(\psi^{\prime}, \psi\right)\right)\right]+O(\Delta \beta)^{2} \\
& \simeq e^{\psi^{\prime} \cdot \psi} e^{-\Delta \beta\left(H\left(\psi^{\prime}, \psi\right)-\mu N\left(\psi^{\prime}, \psi\right)\right)} \\
\text { with } \quad H\left(\psi^{\prime}, \psi\right) & =\frac{\left\langle\psi^{\prime}\right| \hat{H}|\psi\rangle}{\left\langle\psi^{\prime} \mid \psi\right\rangle}=\sum_{i j} h_{i j} \bar{\psi}_{i}^{\prime} \psi_{j}+\sum_{i j} V_{i j} \bar{\psi}_{i}^{\prime} \bar{\psi}_{j}^{\prime} \psi_{j} \psi_{i}
\end{aligned}
$$

similarly $N\left(\psi^{\prime}, \psi\right)$ N.B. $\left\langle\psi^{\prime} \mid \psi\right\rangle$ bilinear in ψ, i.e. commutes with everything

$$
\mathcal{Z}=\int \prod_{\substack{n=0 \\ \bar{\psi}_{N}=\zeta \psi_{0}, \psi_{N}=\zeta \psi_{0}}}^{N} d\left[\bar{\psi}_{n}, \psi_{n}\right] e^{-\sum_{n=1}^{N}\left[\bar{\psi}_{n} \cdot\left(\psi_{n}-\psi_{n-1}\right)+\Delta \beta\left(H\left(\bar{\psi}_{n}, \psi_{n-1}\right)-\mu N\left(\bar{\psi}_{n}, \psi_{n-1}\right)\right)\right]}
$$

Continuum limit $N \rightarrow \infty$

$$
\Delta \beta \sum_{n=0}^{N} \rightarrow \int_{0}^{\beta} d \tau,\left.\quad \frac{\psi_{n}-\psi_{n-1}}{\Delta \beta} \rightarrow \partial_{\tau} \psi\right|_{\tau=n \Delta \beta}, \quad \prod_{n=0}^{N} d\left[\bar{\psi}_{n}, \psi_{n}\right] \rightarrow D(\bar{\psi}, \psi)
$$

comment on "small" Grassmann nos.

$$
\mathcal{Z}=\int_{\substack{\bar{\psi}(\beta)=\zeta \bar{\psi}(0) \\ \psi(\beta)=\zeta \psi(0)}} D(\bar{\psi}, \psi) e^{-S[\bar{\psi}, \psi]}, \quad S[\bar{\psi}, \psi]=\int_{0}^{\beta} d \tau\left(\bar{\psi} \cdot \partial_{\tau} \psi+H(\bar{\psi}, \psi)-\mu N(\bar{\psi}, \psi)\right)
$$

With particular example:

$$
S[\bar{\psi}, \psi]=\int_{0}^{\beta} d \tau\left[\sum_{i j} \bar{\psi}_{i}(\tau)\left[\left(\partial_{\tau}-\mu\right) \delta_{i j}+h_{i j}\right] \psi_{j}(\tau)+\sum_{i j} V_{i j} \bar{\psi}_{i}(\tau) \bar{\psi}_{j}(\tau) \psi_{j}(\tau) \psi_{i}(\tau)\right]
$$

quantum partition function expressed as path integral over fields $\psi_{i}(\tau)$

\triangleright Matsubara frequency representation

Often convenient to express path integral in frequency domain

$$
\psi(\tau)=\frac{1}{\sqrt{\beta}} \sum_{\omega_{n}} \psi_{n} e^{-i \omega_{n} \tau}, \quad \psi_{\omega_{n}}=\frac{1}{\sqrt{\beta}} \int_{0}^{\beta} d \tau \psi(\tau) e^{i \omega_{n} \tau}
$$

where, since $\psi(\tau)=\zeta \psi(\tau+\beta)$

$$
\omega_{n}=\left\{\begin{array}{ll}
2 n \pi / \beta, & \text { bosons, } \\
(2 n+1) \pi / \beta, & \text { fermions }
\end{array}, \quad n \in \mathcal{Z}\right.
$$

ω_{n} are known as Matsubara frequencies
Using $\frac{1}{\beta} \int_{0}^{\beta} d \tau e^{i\left(\omega_{n}-\omega_{m}\right) \tau}=\delta_{\omega_{n} \omega_{m}}$

$$
\begin{aligned}
S[\bar{\psi}, \psi]= & \sum_{i j \omega_{n}} \bar{\psi}_{i \omega_{n}}\left[\left(-i \omega_{n}-\mu\right) \delta_{i j}+h_{i j}\right] \psi_{j \omega_{n}}+ \\
& +\frac{1}{\beta} \sum_{i j} \sum_{\omega_{n_{1}} \omega_{n_{2}} \omega_{n_{3}} \omega_{n_{4}}} V_{i j} \bar{\psi}_{i \omega_{n_{1}}} \bar{\psi}_{j \omega_{n_{2}}} \psi_{j \omega_{n_{3}}} \psi_{i \omega_{n_{4}}} \delta_{\omega_{n_{1}}+\omega_{n_{2}}, \omega_{n_{3}}+\omega_{n_{4}}}
\end{aligned}
$$

e.g. Harmonic chain: $\hat{H}=\sum_{k} \hbar \omega_{k}\left(a_{k}^{\dagger} a_{k}+1 / 2\right)$

$$
S=\int_{0}^{\beta} d \tau \sum_{k} \bar{\psi}_{k}\left(\partial_{\tau}+\hbar \omega_{k}-\mu\right) \psi_{k}
$$

e.g. Electron gas: $\hat{H}=\sum_{\sigma} \int d r c_{\sigma}^{\dagger}(\mathbf{r}) \frac{\hat{p}^{2}}{2 m} c_{\sigma}(\mathbf{r})-\sum_{\sigma \sigma^{\prime}} \int d r d r^{\prime} c_{\sigma}^{\dagger}(\mathbf{r}) c_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right) \frac{e^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} c_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right) c_{\sigma}(\mathbf{r})$

$$
\begin{aligned}
S= & \int_{0}^{\beta} d \tau \sum_{\sigma} \int d r \bar{\psi}_{\sigma}(\mathbf{r}, \tau)\left(\partial_{\tau}+\frac{\hat{p}^{2}}{2 m}-\mu\right) \psi_{\sigma}(\mathbf{r}, \tau) \\
& -\int_{0}^{\beta} d \tau \sum_{\sigma, \sigma^{\prime}} \int d r d r^{\prime} \bar{\psi}_{\sigma}(\mathbf{r}, \tau) \bar{\psi}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}, \tau\right) \frac{e^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}, \tau\right) \psi_{\sigma}(\mathbf{r}, \tau)
\end{aligned}
$$

\triangleright Connection between coherent state and Feynman Path integral

e.g. QHO: $\hat{H}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \quad\left[a, a^{\dagger}\right]=1$, i.e. bosons! $\quad e^{-\beta \hbar \omega / 2}$ in $D(\bar{\psi}, \psi)$

$$
\mathcal{Z}=\operatorname{tr} e^{-\beta \hat{H}}=\int_{\psi(\beta)=\psi(0)} D(\bar{\psi}, \psi) \exp \left[-\int_{0}^{\beta} d \tau \bar{\psi}\left(\partial_{\tau}+\hbar \omega\right) \psi\right]
$$

Setting $\psi(\tau)=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left[q(\tau)+\frac{i}{m \omega} p(\tau)\right]$, with p, q real, and noting $\int_{0}^{\beta} d \tau q \dot{p}=-\int_{0}^{\beta} d \tau p \dot{q}$

$$
\mathcal{Z}=\int_{\text {p.b.c }} D(p, q) \exp \left[-\int_{0}^{\beta} d \tau\left(\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}-\frac{i p \dot{q}}{\hbar}\right)\right]
$$

cf. (Euclidean time) FPI; $\beta=\frac{i}{\hbar} t, \quad \tau=\frac{i}{\hbar} t^{\prime}, \quad \frac{i}{\hbar} \frac{\partial q}{\partial \tau}=\frac{\partial q}{\partial t^{\prime}}$

$$
\mathcal{Z}=\int D(p, q) \exp \left[\frac{i}{\hbar} \int_{0}^{t} d t^{\prime}(p \dot{q}-H(p, q))\right]
$$

\triangleright Evaluation of \mathcal{Z} from field integral
(i) 'Bosonic' oscillator: $\hat{H}=\hbar \omega\left(a^{\dagger} a+1 / 2\right)$

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{B}}=\overbrace{\int D(\bar{\psi}, \psi) \exp \left[-\int_{0}^{\beta} d \tau \bar{\psi}\left(\partial_{\tau}+\hbar \omega\right) \psi\right]}^{J \operatorname{det}\left(\partial_{\tau}+\hbar \omega\right)^{-1}}=\int\left(\prod_{n} d \bar{\psi}_{\omega_{n}} d \psi_{\omega_{n}}\right) e^{-\sum_{n} \bar{\psi}_{\omega_{n}}\left(-i \omega_{n}+\hbar \omega\right) \psi_{\omega_{n}}} \\
& =J \prod_{\omega_{n}}\left[\beta\left(-i \omega_{n}+\hbar \omega\right)\right]^{-1}=\frac{J}{\hbar \omega \beta} \prod_{n=1}^{\infty}\left[(\hbar \omega \beta)^{2}+(2 n \pi)^{2}\right]^{-1}=\frac{J^{\prime}}{\hbar \omega \beta} \prod_{n=1}^{\infty}\left[1+\left(\frac{\hbar \omega \beta}{2 \pi n}\right)^{2}\right]^{-1} \\
& =\frac{J^{\prime}}{2 \sinh (\hbar \omega \beta / 2)} \text { where } \prod_{n=1}^{\infty}\left[1+\left(\frac{x}{\pi n}\right)^{2}\right]^{-1}=\frac{x}{\sinh x}
\end{aligned}
$$

Normalisation: as $T \rightarrow 0, \mathcal{Z}_{\mathrm{B}}$ dominated by g.s., i.e. $\lim _{\beta \rightarrow \infty} \mathcal{Z}_{\mathrm{B}}=e^{-\beta \hbar \omega / 2}$

$$
\text { i.e. } J^{\prime}=1, \quad \mathcal{Z}_{\mathrm{B}}=\frac{1}{2 \sinh (\hbar \beta \omega / 2)}
$$

(ii) 'Fermionic' oscillator: $\hat{H}=\hbar \omega\left(a^{\dagger} a+1 / 2\right),\left[a, a^{\dagger}\right]_{+}=1$

Gaussian Grassmann integration

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{F}}=J \operatorname{det}\left(\partial_{\tau}+\hbar \omega\right)=J \prod_{\omega_{n}}\left[\beta\left(-i \omega_{n}+\hbar \omega\right)\right]=J \prod_{n=0}^{\infty}\left[(\hbar \omega \beta)^{2}+((2 n+1) \pi)^{2}\right] \\
& =J^{\prime} \prod_{n=1}^{\infty}\left[1+\left(\frac{\hbar \omega \beta}{(2 n+1) \pi}\right)^{2}\right]=J^{\prime} \cosh (\hbar \omega \beta / 2), \quad \prod_{n=1}^{\infty}\left[1+\left(\frac{x}{\pi(2 n+1)}\right)^{2}\right]=\cosh (x / 2)
\end{aligned}
$$

Using normalisation: $\lim _{\beta \rightarrow \infty} \mathcal{Z}_{\mathrm{F}}=e^{-\beta \hbar \omega / 2}$

$$
J^{\prime}=2 e^{-\beta \hbar \omega} \quad \mathcal{Z}_{F}=2 e^{-\beta \hbar \omega} \cosh (\hbar \beta \omega / 2)
$$

cf. direct computation: $\mathcal{Z}_{B}=e^{-\beta \hbar \omega / 2} \sum_{n=0}^{\infty} e^{-n \beta \hbar \omega}, \mathcal{Z}_{F}=e^{-\beta \hbar \omega / 2} \sum_{n=0}^{1} e^{-n \beta \hbar \omega}$.
Note that normalising prefactor J^{\prime} involves only a constant offset of free energy, $F=-\frac{1}{\beta} \ln \mathcal{Z}$ statistical correlations encoded in content of functional integral

Lecture XI: Matsubara frequency summations

\triangleright Quantum partition function of ideal (i.e. non-interacting) gas (from coherent states)
Useful for "normalisation" of interacting theories
e.g. (1) Fermions: $\hat{H}=\sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$

As a warm-up, in coherent state representation:

$$
\mathcal{Z}_{0}=\operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\sum_{n}\langle n| e^{-\beta(\hat{H}-\mu \hat{N})}|n\rangle=\int d(\bar{\psi}, \psi) e^{-\sum_{\alpha} \bar{\psi}_{\alpha} \psi_{\alpha}}\langle-\psi| e^{-\beta(\hat{H}-\mu \hat{N})}|\psi\rangle
$$

Using identity

$$
\begin{aligned}
e^{-\beta(\hat{H}-\mu \hat{N})} & =e^{-\beta \sum_{\alpha}\left(\epsilon_{\alpha}-\mu\right) a_{\alpha}^{\dagger} a_{\alpha}}=\prod_{\alpha} e^{-\beta\left(\epsilon_{\alpha}-\mu\right) \hat{n}_{\alpha}}=\prod_{\alpha}\left[1+\left(e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}-1\right) \hat{n}_{\alpha}\right] \\
\mathcal{Z}_{0} & =\int d(\bar{\psi}, \psi) e^{-\sum_{\alpha} \bar{\psi}_{\alpha} \psi_{\alpha}} \prod_{\alpha}\{\overbrace{e^{-\bar{\psi}_{\alpha} \psi_{\alpha}}}^{\langle-\psi \mid \psi\rangle}\left[1+\left(e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}-1\right)\left(-\bar{\psi}_{\alpha} \psi_{\alpha}\right)\right]\} \\
& =\prod_{\alpha} \int d \bar{\psi}_{\alpha} d \psi_{\alpha} \overbrace{e^{-2 \bar{\psi}_{\alpha} \psi_{\alpha}}}^{1-2 \bar{\psi}_{\alpha} \psi_{\alpha}}\left[1+\left(e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}-1\right)\left(-\bar{\psi}_{\alpha} \psi_{\alpha}\right)\right] \\
& =\prod_{\alpha} \int d \bar{\psi}_{\alpha} d \psi_{\alpha}\left[1-2 \bar{\psi}_{\alpha} \psi_{\alpha}-\left(e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}-1\right) \bar{\psi}_{\alpha} \psi_{\alpha}\right] \\
& =\prod_{\alpha} \int d \bar{\psi}_{\alpha} d \psi_{\alpha}\left[-\bar{\psi}_{\alpha} \psi_{\alpha}\left(1+e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}\right)\right] \\
& =\prod_{\alpha}\left[1+e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}\right] \quad \text { i.e. Fermi }- \text { Dirac distribution }
\end{aligned}
$$

Exercise: show (using CS) that in Bosonic case

$$
\mathcal{Z}_{0}=\prod_{\alpha} \sum_{n=0}^{\infty} e^{-n \beta\left(\epsilon_{\alpha}-\mu\right)}=\prod_{\alpha}\left[1-e^{-\beta\left(\epsilon_{\alpha}-\mu\right)}\right]^{-1} \quad \text { i.e. Bose }- \text { Einstein distribution }
$$

What about field integral...?
\triangleright Quantum partition function of ideal gas:

$$
\begin{aligned}
& \mathcal{Z}_{0}=\int_{\text {b.c. }} D(\bar{\psi}, \psi) \exp \left[-\int_{0}^{\beta} d \tau \sum_{\alpha} \bar{\psi}_{\alpha}\left(\partial_{\tau}+\epsilon_{\alpha}-\mu\right) \psi_{\alpha}\right] \\
& =\int D(\bar{\psi}, \psi) \exp \left[-\sum_{\alpha, \omega_{n}} \bar{\psi}_{\alpha, \omega_{n}}\left(-i \omega_{n}+\epsilon_{\alpha}-\mu\right) \psi_{\alpha, \omega_{n}}\right]=J \prod_{\alpha, \omega_{n}}\left[\beta\left(-i \omega_{n}+\epsilon_{\alpha}-\mu\right)\right]^{-\zeta}
\end{aligned}
$$

where J absorbs constant prefactors
From $\mathcal{Z}_{0}=\operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{N})}$ we can obtain thermal occupation number:
$n(T) \equiv \frac{1}{\mathcal{Z}_{0}} \operatorname{tr}\left[\hat{N} e^{-\beta(\hat{H}-\mu \hat{N})}\right]=\frac{1}{\beta \mathcal{Z}_{0}} \partial_{\mu} \mathcal{Z}_{0}=\frac{1}{\beta} \partial_{\mu} \ln \mathcal{Z}_{0} \equiv-\partial_{\mu} F=-\frac{\zeta}{\beta} \sum_{\alpha, \omega_{n}} \frac{1}{i \omega_{n}-\epsilon_{\alpha}+\mu}$
\triangleright To perform summations of the form, $I=\sum_{\omega_{n}} h\left(\omega_{n}\right)$, helpful to
introduce complex auxiliary function $g(z)$ with simple poles at $z=i \omega_{n}$

$$
\text { e.g. } g(z)= \begin{cases}\frac{\beta}{\exp (\beta z)-1}, & \text { bosons } \\ \frac{\beta}{\exp (\beta z)+1}, & \text { fermions }\end{cases}
$$

In bosonic case: poles when $\beta z=2 \pi i n$, i.e. $z=i \omega_{n}$; close to pole,

$$
\frac{\beta}{e^{\beta\left(i \omega_{n}+\delta z\right)}-1}=\frac{\beta}{e^{\beta \delta z}-1} \simeq \frac{1}{\delta z}
$$

noting that $g(z)$ has simple poles with residue ζ,

$$
I=\frac{\zeta}{2 \pi i} \oint_{\gamma_{1}} d z g(z) h(-i z)=\left.\zeta \sum_{\omega_{n}} \operatorname{Res}[g(z) h(-i z)]\right|_{z=i \omega_{n}}
$$

where contour encircles poles

As long as we don't to cross singularities of $g(z) h(-i z)$, we are free to distort contour If $g(z) h(-i z)$ decays sufficiently fast at $|z| \rightarrow \infty$ (i.e. faster than z^{-1}), useful to
'inflate' contour to infinite circle when integral along outer perimeter vanishes and

$$
I=\frac{\zeta}{2 \pi i} \oint_{\gamma_{2}} h(-i z) g(z)=\left.\overbrace{-}^{\text {N.B. }} \zeta \sum_{k} \operatorname{Res}[h(-i z) g(z)]\right|_{z=z_{k}}
$$

For problem at hand,

$$
h\left(\omega_{n}\right)=-\frac{\zeta}{\beta} \sum_{\alpha} \frac{1}{i \omega_{n}-\epsilon_{\alpha}+\mu}, \quad h(-i z)=-\frac{\zeta}{\beta} \sum_{\alpha} \frac{1}{z-\epsilon_{\alpha}+\mu}
$$

Although $h(-i z)$ seems to scale as $1 / z$ at infinity,
this reflects failure of continuum limit of the action: $\bar{\psi}_{m} \frac{\left(\psi_{m+1}-\psi_{m}\right)}{\Delta \beta} \mapsto \bar{\psi} \partial_{\tau} \psi$
Integral made convergent by including infinitesimal

$$
\left(i \omega_{n}-\epsilon_{\alpha}+\mu\right) \mapsto\left(i \omega_{n} e^{-i \omega_{n} 0^{+}}-\epsilon_{\alpha}+\mu\right)
$$

Since $h(-i z)$ involves simple poles at $z=\epsilon_{\alpha}-\mu$,
$n(T)=-\left.\zeta \sum_{\alpha} \operatorname{Res}[g(z) h(-i z)]\right|_{z=\epsilon_{\alpha}-\mu}=\sum_{\alpha} \frac{1}{e^{\beta\left(\epsilon_{\alpha}-\mu\right)}-\zeta}=\sum_{\alpha} \begin{cases}n_{\mathrm{B}}\left(\epsilon_{\alpha}\right), & \text { bosons, } \\ n_{\mathrm{F}}\left(\epsilon_{\alpha}\right), & \text { fermions }\end{cases}$ where $n_{\mathrm{F} / \mathrm{B}}$ are Fermi/Bose distribution functions

\triangleright Applications of Field Integral:

In remaining lectures we will address two case studies which exhibit phase transition to non-trivial ground state at low temperatures

- Bose-Einstein condensation and superfluidity
- Superconductivity

Bose-Einstein condensation from field integral

Although we could start our analysis of application of the field integral with the weakly interacting electron gas, we would find that correlation effects could be considered perturbatively. Our analysis of the field integral would not engage any non-trivial field configurations of the action: the platform of the non-interacting electron system remains adiabatically connected to that of the weakly interacting system. In the following we will explore a problem in which the development of a non-trivial ground state - the BoseEinstein condensate - is accompanied by the appearance of collective modes absent in the non-interacting system.
\triangleright Consider Bose gas subject to weak short-ranged repulsive contact interaction:

$$
\hat{H}=\int d^{d} r a^{\dagger}(\mathbf{r}) \hat{H}_{0} a(\mathbf{r})+\frac{g}{2} \int d^{d} r a^{\dagger}(\mathbf{r}) a^{\dagger}(\mathbf{r}) a(\mathbf{r}) a(\mathbf{r})
$$

\triangleright Expressed as field integral: $\mathcal{Z}=\operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\int_{\psi(\beta)=\psi(0)} D(\bar{\psi}, \psi) e^{-S[\bar{\psi}, \psi]}$, where

$$
S=\int_{0}^{\beta} d \tau \int d^{d} r\left[\bar{\psi}\left(\partial_{\tau}+\hat{H}_{0}-\mu\right) \psi+\frac{g}{2}(\bar{\psi} \psi)^{2}\right]
$$

As a warm-up exercise, consider first the...

\triangleright Non-interacting Bose gas $(g=0)$

$$
\left.\mathcal{Z}_{0} \equiv \mathcal{Z}\right|_{g=0}=\int_{\psi(\beta)=\psi(0)} D(\bar{\psi}, \psi) e^{-\sum_{a, \omega_{n}} \bar{\psi}_{a, \omega_{n}}\left(-i \omega_{n}+\epsilon_{a}-\mu\right) \psi_{a, \omega_{n}}}=J \prod_{a, \omega_{n}} \frac{1}{\beta\left(-i \omega_{n}+\epsilon_{a}-\mu\right)}
$$

where eigenvalues of $\hat{H}_{0}, \epsilon_{a} \geq 0$ and $\epsilon_{0}=0$
While stability requires $\mu \leq 0$, precise value fixed by condition $N=\sum_{a} n_{\mathrm{B}}\left(\epsilon_{a}\right)$
\triangleright Bose-Einstein condensation (BEC)

- As T reduced, μ increases until, at $T=T_{\mathrm{c}}, \mu=0$
- For $T<T_{\mathrm{c}}, \mu$ remains zero and a macroscopic number of particles, $N_{0}=N-N_{1}$, condense into ground state: BEC

$$
\text { i.e. for } T<T_{\mathrm{c}},\left.\quad \sum_{a} n_{\mathrm{B}}\left(\epsilon_{a}\right)\right|_{\mu=0} \equiv N_{1}<N
$$

\triangleright How can this phenomenon be incorporated into path integral?
Although condensate characterised by g.s. component $\psi_{0} \equiv \psi_{a=0, \omega_{n}=0}$, for $T<T_{\mathrm{c}}$, fluctuations seemingly unbound (i.e. $\mu=\epsilon_{0}=0$ and action for ψ_{0} vanishes!)

In this case, we must treat ψ_{0} as a
Lagrange multiplier which fixes particle number below T_{c} :

$$
\begin{aligned}
& \left.S_{0}\right|_{\mu=0^{-}}=-\beta \bar{\psi}_{0} \mu \psi_{0}+\sum_{a, \omega_{n}}^{\prime} \bar{\psi}_{a \omega_{n}}\left(-i \omega_{n}+\epsilon_{a}-\mu\right) \psi_{a \omega_{n}} \\
& \mathcal{Z}_{0}=e^{\beta} \bar{\psi}_{0} \mu \psi_{0} \times J \prod_{a, \omega_{n}}^{\prime} \frac{1}{\beta\left(-i \omega_{n}+\epsilon_{a}-\mu\right)} \\
& \text { i.e. } N=\left.\frac{1}{\beta} \partial_{\mu} \ln \mathcal{Z}_{0}\right|_{\mu=0^{-}}=\bar{\psi}_{0} \psi_{0}-\frac{1}{\beta} \sum_{a, \omega_{n}}^{\prime} \frac{1}{i \omega_{n}-\epsilon_{a}}=\bar{\psi}_{0} \psi_{0}+N_{1}
\end{aligned}
$$

i.e. $\bar{\psi}_{0} \psi_{0}=N_{0}$ translates to no. of particles in condensate

\triangleright Weakly Interacting Bose Gas

Bosons confined to box of size L with p.b.c. and $\hat{H}_{0}=\hat{\mathbf{p}}^{2} / 2 m$ described by action

$$
S=\int_{0}^{\beta} d \tau \int d^{d} r\left[\bar{\psi}\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu\right) \psi+\frac{g}{2}(\bar{\psi} \psi)^{2}\right]
$$

Since field integral intractable, turn to MEAN-FIELD THEORY
(a.k.a. "saddle-point" approximation - Landau theory) valid for $T \ll T_{c}$

Variation of action w.r.t. $\bar{\psi}$ obtains the saddle-point equation:

$$
\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu+g \bar{\psi} \psi\right) \psi=0
$$

solved by constant $\psi(\mathbf{r}, \tau) \equiv \frac{1}{L^{d / 2}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \psi_{\mathbf{k}}(\tau)=\frac{\psi_{0}}{L^{d / 2}}$ where ψ_{0} minimises saddle-point action

$$
\frac{1}{\beta} S\left[\bar{\psi}_{0}, \psi_{0}\right]=-\mu \bar{\psi}_{0} \psi_{0}+\frac{g}{2 L^{d}}\left(\bar{\psi}_{0} \psi_{0}\right)^{2}, \quad \text { i.e. } \quad\left(-\mu+\frac{g}{L^{d}} \bar{\psi}_{0} \psi_{0}\right) \psi_{0}=0
$$

$\operatorname{Re} \psi$

- For $\mu<0$, only trivial solution $\psi_{0}=0$ - no condensate
- For $\mu \geq 0$, s.p.e. solved by any configuration with $\left|\psi_{0}\right|=\gamma \equiv \sqrt{\mu L^{d} / g}$
N.B. interaction allows $\mu>0 ; \bar{\psi}_{0} \psi_{0} \propto L^{d}$ reflects macroscopic population of g.s.
- Condensation of Bose gas is example of a continuous phase transition, i.e. "order parameter" ψ_{0} grows continuously from zero
- saddle-point solution is "continuously degenerate", $\psi_{0}=\gamma \exp (i \phi), \phi \in[0,2 \pi]$
- One ground state chosen \leadsto spontaneous symmetry breaking - Goldstone's theorem: expect branch of gapless excitations

Taking into account fluctuations, we may address the phenomenon of superfluidity...

Lecture XII: Superfluidity

Previously, we have seen that, when treated in a mean-field or saddle-point approximation, the field theory of the weakly interacting Bose gas shows a transition to a Bose-Einstein condensed phase when $\mu=0$ where the order parameter, the complex condensate wavefunction ψ_{0} acquires a non-zero expectation value, $\left|\psi_{0}\right|=\gamma \equiv \sqrt{\mu L^{d} / g}$. The spontaneous breaking of the continuous symmetry associated with the phase of the order parameter is accompanied by the appearance of massless collective phase fluctuations. In the following, we will explore the properties of these fluctuations and their role in the phenomenon of superfluidity.
\triangleright Starting with the model action for a Bose system, $(\hbar=1)$

$$
S[\bar{\psi}, \psi]=\int_{0}^{\beta} d \tau \int d^{d} r\left[\bar{\psi}\left(\partial_{\tau}-\frac{\partial^{2}}{2 m}-\mu\right) \psi+\frac{g}{2}(\bar{\psi} \psi)^{2}\right]
$$

saddle-point analysis revealed that, for $\mu>0, \psi$
acquires a non-zero expectation value: $\left|\psi_{0}\right|=\left(\mu L^{d} / g\right)^{1 / 2}$

$\operatorname{Re} \psi$

Phase transition accompanied by spontaneous symmetry breaking
(of $U(1)$ field associated with phase of global ψ)
To investigate consequence of transition, must explore role of fluctuations
To do so, it is convenient to parameterise $\psi(\mathbf{r}, \tau)=[\rho(\mathbf{r}, \tau)]^{1 / 2} e^{i \phi(\mathbf{r}, \tau)}$

Using

$$
\frac{1}{2} \int_{0}^{\beta} d \tau \partial_{\tau}\left(\rho^{1 / 2} \rho^{1 / 2}\right)=-\left.\frac{\rho}{2}\right|_{0} ^{\beta}=0
$$

1. $\int_{0}^{\beta} d \tau \bar{\psi} \partial_{\tau} \psi=\overbrace{\int_{0}^{\beta} d \tau \rho^{1 / 2} \partial_{\tau} \rho^{1 / 2}}+\int_{0}^{\beta} d \tau i \rho \partial_{\tau} \phi$
2. $\partial\left(\rho^{1 / 2} e^{i \phi}\right)=e^{i \phi}\left(\frac{1}{2 \rho^{1 / 2}} \partial \rho+i \rho^{1 / 2} \partial \phi\right)$
3. $\int_{0}^{\beta} d \tau \bar{\psi} \partial^{2} \psi=-\int_{0}^{\beta} d \tau \partial \bar{\psi} \cdot \partial \psi=-\int_{0}^{\beta} d \tau\left(\frac{1}{4 \rho}(\partial \rho)^{2}+\rho(\partial \phi)^{2}\right)$

$$
S[\rho, \phi]=\int_{0}^{\beta} d \tau \int d^{d} r\left\{i \rho \partial_{\tau} \phi+\frac{1}{2 m}\left[\frac{1}{4 \rho}(\partial \rho)^{2}+\rho(\partial \phi)^{2}\right]-\mu \rho+\frac{g \rho^{2}}{2}\right\}
$$

Expansion of action around saddle-point: $\rho(\mathbf{r}, \tau)=\left(\rho_{0}+\delta \rho(\mathbf{r}, \tau)\right) e^{i \phi(\mathbf{r}, \tau)}$,

$$
\begin{aligned}
S[\delta \rho, \phi]= & \int_{0}^{\beta} d \tau \int
\end{aligned} d^{d} r\left\{-\mu\left(\rho_{0}+\delta \rho\right)+\frac{g\left(\rho_{0}+\delta \rho\right)^{2}}{2}\right)
$$

Finally, discarding gradient terms involving massive fluctuations $\delta \rho$,

$$
S[\delta \rho, \phi] \simeq S_{0}\left[\rho_{0}\right]+\int_{0}^{\beta} d \tau \int d^{d} r\left[i \delta \rho \partial_{\tau} \phi+\frac{g}{2} \delta \rho^{2}+\frac{\rho_{0}}{2 m}(\partial \phi)^{2}\right]
$$

- First term has canonical structure 'momentum $\times \partial_{\tau}$ (coordinate)', cf. "p \dot{q} "
- Second term describes "massive" fluctuations in "Mexican hat" potential
- Third term measures energy cost of spatially varying massless phase flucutations:
i.e. ϕ is a Goldstone mode

Gaussian integration over $\delta \rho$:

$$
\begin{gathered}
\frac{g}{2}\left(\delta \rho+\frac{i}{g} \partial_{\tau} \phi\right)^{2}+\frac{\left(\partial_{\tau} \phi\right)^{2}}{2 g} \\
\int D(\delta \rho) \exp [-\int_{0}^{\beta} d \tau \int d^{d} r \overbrace{\left(i \delta \rho \partial_{\tau} \phi+\frac{g \delta \rho^{2}}{2}\right)}]=\text { const. } \times \exp \left[-\int_{0}^{\beta} d \tau \int d^{d} r \frac{\left(\partial_{\tau} \phi\right)^{2}}{2 g}\right]
\end{gathered}
$$

\leadsto effective action for low-energy degrees of freedom, ϕ,

$$
S[\phi] \simeq S_{0}+\frac{1}{2} \int_{0}^{\beta} d \tau \int d^{d} r\left[\frac{1}{g}\left(\partial_{\tau} \phi\right)^{2}+\frac{\rho_{0}}{m}(\partial \phi)^{2}\right]
$$

cf. Lagrangian formulation of harmonic chain (or massless Klein-Gordon field)

$$
S=\int d t \int d^{d} r\left[\frac{m}{2} \dot{\phi}^{2}-\frac{1}{2} k_{s} a^{2}(\partial \phi)^{2}\right]=\int d x \partial^{\mu} \phi \partial_{\mu} \phi
$$

i.e. low-energy excitations involve collective phase fluctuations with a spectrum $\omega_{\mathbf{k}}=\frac{g \rho_{0}}{m}|\mathbf{k}|$

However, action differs from harmonic chain in that phase field ϕ is periodic on $2 \pi-$ i.e. the space is not simply connected

This means that it can support topologically non-trivial
field configurations involving windings - i.e. vortices
\triangleright PhYSICAL RAMIFICATIONS: current density

$$
\begin{aligned}
& \hat{\mathbf{j}}(\mathbf{r}, \tau)=\frac{1}{2}\left[a^{\dagger}(\mathbf{r}, \tau) \frac{\hat{\mathbf{p}}}{m} a(\mathbf{r}, \tau)-\left(\frac{\hat{\mathbf{p}}}{m} a^{\dagger}(\mathbf{r}, \tau)\right) a(\mathbf{r}, \tau)\right] \\
& \quad \xrightarrow{\text { fun. int }} \frac{i}{2 m}[(\partial \bar{\psi}(\mathbf{r}, \tau)) \psi(\mathbf{r}, \tau)-\bar{\psi}(\mathbf{r}, \tau) \partial \psi(\mathbf{r}, \tau)] \simeq \frac{\rho_{0}}{m} \partial \phi(\mathbf{r}, \tau)
\end{aligned}
$$

i.e. $\partial \phi$ is measure of (super)current flow

Variation of action $S[\delta \rho, \phi] \leadsto$

$$
i \partial_{\tau} \phi=-g \delta \rho, \quad i \partial_{\tau} \delta \rho=\frac{\rho_{0}}{m} \partial^{2} \phi=\partial \cdot \mathbf{j}
$$

- First equation: system adjusts to fluctuations of density by dynamical phase fluctuation
- Second equation \leadsto continuity equation (conservation of mass)

Crucially, s.p.e. possess steady state solutions with non-vanishing current flow: if ϕ independent of $\tau, \delta \rho=0$ and $\frac{\rho_{0}}{m} \partial^{2} \phi=\partial \cdot \mathbf{j}=0$

For $T<T_{\mathrm{c}}$, a configuration with a uniform
density profile can support a steady state divergenceless (super)flow
Superflow imposed by boundary conditions, cf. Coulomb: $\partial^{2} \phi=-\frac{\rho(\mathbf{r})}{\epsilon}$
e.g. $\phi(\mathbf{r}) \simeq-\phi_{0} \ln \left|x^{2}+y^{2}\right|$ translates to a line vortex

Notice that a 'mass term' in the phase action (viz. $m_{\phi} \phi^{2}$) would spoil this property, i.e. the phenomenon of superflow is intimately linked to the Goldstone mode
\triangleright Steady state current flow in normal environments is prevented by the mechanism of energy dissipation, i.e. particles scatter off imperfections inside the system and thereby convert part of their energy into the creation of elementary excitations

How can dissipative loss of energy be avoided?
Trivially, no energy can be exchanged if there are no elementary excitations to create
In reality, this means that the excitations of the system should be energetically inaccessible (k.e. of carriers too small to create excitations)

But this is not the case here! there is no energy gap ($\left.\omega_{\mathbf{k}}=v_{s}|\mathbf{k}|\right)$
However, there is an ingenuous argument due to Landau (see notes) showing that a linear excitation spectrum can stabilize dissipationless transport for $v<v_{s}$

Cooper instability of Electron gas

In the final section of the course, we will explore a pairing instability of the electron gas which leads to condensate formation and the phenomenon of superconductivity.
\triangleright History:

- 1911 discovery of superconductivity (Onnes)
- 1950 Development of (correct) phenomenology (Ginzburg-Landau)
- 1951 "isotope effect" - clue to (conventional) mechanism
- 1957 BCS theory of conventional superconductivity (Bardeen-Cooper-Schrieffer)
- 1976 Discovery of "unconventional" superconductivity (Steglich)
- 1986 Discovery of high temperature superconductivity in cuprates (Bednorz-Müller)
- ???? awaiting theory?
$\triangleright($ Conventional $)$ mechanism: exchange of phonons induces non-local electron interaction

$$
\hat{H}^{\prime}=\hat{H}_{0}+\sum_{\mathbf{k} \mathbf{k}^{\prime} \mathbf{q}} \frac{\left|M_{\mathbf{q}}\right|^{2} \hbar \omega_{\mathbf{q}}}{\left(\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{k}-\mathbf{q}}\right)^{2}-\left(\hbar \omega_{\mathbf{q}}\right)^{2}} c_{\mathbf{k}-\mathbf{q} \sigma}^{\dagger} c_{\mathbf{k}^{\prime}+\mathbf{q} \sigma^{\prime}}^{\dagger} c_{\mathbf{k}^{\prime} \sigma^{\prime}} c_{\mathbf{k} \sigma}
$$

Electrons can lower their energy by sharing lattice polarisation
As a result electrons can condense as pairs into state with energy gap to excitations

\triangleright Cooper instabllity

Consider two electrons above filled Fermi sea: Is weak pair interaction $V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$ sufficient to create bound state?

Consider variational state

$$
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\overbrace{\frac{1}{\sqrt{2}}\left(\left|\uparrow_{1}\right\rangle \otimes\left|\downarrow_{2}\right\rangle-\left|\uparrow_{2}\right\rangle \otimes\left|\downarrow_{1}\right\rangle\right)}^{\text {spin singlet }} \overbrace{\sum_{|\mathbf{k}| \geq k_{\mathrm{F}}} g_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}}^{\text {spatial symm. } g_{\mathbf{k}}=g_{-\mathbf{k}}}
$$

Applied to (spin-independent) Schrödinger equation: $\hat{H} \psi=E \psi$

$$
\sum_{\mathbf{k}} g_{\mathbf{k}}\left[2 \epsilon_{\mathbf{k}}+V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right] e^{i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}=E \sum_{\mathbf{k}} g_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}
$$

Fourier transforming equation: $\times \frac{1}{L^{d}} \int_{0}^{L} d^{d}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) e^{-i \mathbf{k}^{\prime} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}$

$$
\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k}-\mathbf{k}^{\prime}} g_{\mathbf{k}^{\prime}}=\left(E-2 \epsilon_{\mathbf{k}}\right) g_{\mathbf{k}}, \quad V_{\mathbf{k}-\mathbf{k}^{\prime}}=\frac{1}{L^{d}} \int d^{d} r V(\mathbf{r}) e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}
$$

If we assume $V_{\mathbf{k}-\mathbf{k}^{\prime}}= \begin{cases}-\frac{V}{L^{d}} & \left\{\left|\epsilon_{\mathbf{k}}-\epsilon_{F}\right|,\left|\epsilon_{\mathbf{k}^{\prime}}-\epsilon_{F}\right|\right\}<\omega_{D} \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{gathered}
-\frac{V}{L^{d}} \sum_{\mathbf{k}^{\prime}} g_{\mathbf{k}^{\prime}}=\left(E-2 \epsilon_{\mathbf{k}}\right) g_{\mathbf{k}} \mapsto-\frac{V}{L^{d}} \sum_{\mathbf{k}} \frac{1}{E-2 \epsilon_{\mathbf{k}}} \sum_{\mathbf{k}^{\prime}} g_{\mathbf{k}^{\prime}}=\sum_{\mathbf{k}} g_{\mathbf{k}} \mapsto-\frac{V}{L^{d}} \sum_{\mathbf{k}} \frac{1}{E-2 \epsilon_{\mathbf{k}}}=1 \\
\text { Using } \frac{1}{L^{d}} \sum_{\mathbf{k}}=\int \frac{d^{d} k}{(2 \pi)^{d}}=\int \nu(\epsilon) d \epsilon \sim \nu\left(\epsilon_{F}\right) \int d \epsilon, \text { where } \nu(\epsilon)=\frac{1}{\left|\partial_{\mathbf{k}} \epsilon_{\mathbf{k}}\right|} \text { is DoS } \\
-\frac{V}{L^{d}} \sum_{\mathbf{k}} \frac{1}{E-2 \epsilon_{\mathbf{k}}} \simeq-\nu\left(\epsilon_{F}\right) V \int_{\epsilon_{F}}^{\epsilon_{F}+\omega_{D}} \frac{d \epsilon}{E-2 \epsilon}=\frac{\nu\left(\epsilon_{F}\right) V}{2} \ln \left(\frac{E-2 \epsilon_{F}-2 \omega_{D}}{E-2 \epsilon_{F}}\right)=1
\end{gathered}
$$

In limit of "weak coupling", i.e. $\nu\left(\epsilon_{F}\right) V \ll 1$

$$
E \simeq 2 \epsilon_{F}-2 \omega_{D} e^{-\frac{2}{\nu\left(\epsilon_{F}\right) V}}
$$

- i.e. pair forms a bound state (no matter how small interaction!)
- energy of bound state is non-perturbative in $\nu\left(\epsilon_{F}\right) V$
\triangleright Radius of pair wavefunction: $g(\mathbf{r})=\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}}$,
Using $g_{\mathbf{k}}=\frac{1}{2 \epsilon_{\mathbf{k}}-E} \times$ const., $\partial_{\mathbf{k}}=\frac{\partial \epsilon_{\mathbf{k}}}{\partial \mathbf{k}} \frac{\partial}{\partial \epsilon_{\mathbf{k}}}=\mathbf{v} \frac{\partial}{\partial \epsilon_{\mathbf{k}}}$, and

$$
\begin{aligned}
& \frac{1}{L^{d}} \sum_{\mathbf{k}}\left|\partial_{\mathbf{k}} g_{\mathbf{k}}\right|^{2}=\int d^{d} r d^{d} r^{\prime} \mathbf{r} \cdot \mathbf{r}^{\prime} \overbrace{\frac{1}{L^{d}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}}^{\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} g(\mathbf{r}) g^{*}\left(\mathbf{r}^{\prime}\right)=\int d^{d} r \mathbf{r}^{2}|g(\mathbf{r})|^{2}, \\
& \left\langle\mathbf{r}^{2}\right\rangle=\frac{\int d^{d} r \mathbf{r}^{2}|g(\mathbf{r})|^{2}}{\int d^{d} r|g(\mathbf{r})|^{2}}=\frac{\sum_{\mathbf{k}}\left|\partial_{\mathbf{k}} g_{\mathbf{k}}\right|^{2}}{\sum_{\mathbf{k}}\left|g_{\mathbf{k}}\right|^{2}}=\frac{\int_{\epsilon_{F}}^{\epsilon_{F}+\omega_{D}} d \epsilon \nu(\epsilon) \mathbf{v}^{2}\left(\frac{\partial}{\partial \epsilon} \frac{1}{2 \epsilon-E}\right)^{2}}{\int_{\epsilon_{F}}^{\epsilon_{F}+\omega_{D}} d \epsilon \nu(\epsilon) \frac{1}{(2 \epsilon-E)^{2}}} \\
& \quad \simeq \frac{v_{F}^{2} \int_{\epsilon_{F}}^{\epsilon_{F}+\omega_{D}} \frac{4 d \epsilon}{(2 \epsilon-E)^{4}}}{\int_{\epsilon_{F}}^{\epsilon_{F}+\omega_{D}} \frac{d \epsilon}{(2 \epsilon-E)^{2}}}=\frac{4}{3} \frac{v_{F}^{2}}{\left(2 \epsilon_{F}-E\right)^{2}}
\end{aligned}
$$

if binding energy $2 \epsilon_{F}-E \sim k_{\mathrm{B}} T_{c}, T_{c} \sim 10 \mathrm{~K}, v_{F} \sim 10^{8} \mathrm{~cm} / \mathrm{s}, \xi_{0}=\left\langle\mathbf{r}^{2}\right\rangle^{1 / 2} \sim 10^{4} A$, i.e. other electrons must be important

\triangleright BCS WAVEFUNCTION

Two electrons in a paired state has wavefunction

$$
\phi\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{1}\right\rangle \otimes\left|\downarrow_{2}\right\rangle-\left|\downarrow_{1}\right\rangle \otimes\left|\uparrow_{2}\right\rangle\right) g\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Drawing analogy with Bose condensate, consider variational state

$$
\psi\left(\mathbf{r}_{1} \cdots \mathbf{r}_{2 N}\right)=\mathcal{N} \prod_{n=1}^{N / 2} \phi\left(\mathbf{r}_{2 n-1}-\mathbf{r}_{2 n}\right)
$$

Is ψ compatible with Pauli principle? For a single pair,

$$
\begin{aligned}
& |\phi\rangle=\frac{1}{L^{d}} \int_{0}^{L} d^{d} r_{1} \int_{0}^{L} d^{d} r_{2} g\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) c_{\uparrow}^{\dagger}\left(\mathbf{r}_{1}\right) c_{\downarrow}^{\dagger}\left(\mathbf{r}_{2}\right)|\Omega\rangle \\
& =\sum_{\mathbf{k}, \mathbf{k}^{\prime}} \overbrace{\frac{1}{\delta^{2 d}} \int_{0}^{L} d^{d} r_{1} \int_{0}^{L} d^{d} r_{2} g\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) e^{i \mathbf{k} \cdot \mathbf{r}_{1}} e^{i \mathbf{k}^{\prime} \cdot \mathbf{r}_{2}}}^{\delta_{\mathbf{k}}, 0} g_{\mathbf{k}}^{\dagger}
\end{aligned} c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow}^{\dagger}|\Omega\rangle=\sum_{\mathbf{k}} g_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}|\Omega\rangle .
$$ where $g_{\mathbf{k}}=\frac{1}{L^{d}} \int d^{d} r g(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}$

Then, of the terms in the expansion of

$$
|\psi\rangle=\prod_{n=1}^{N}\left[\sum_{\mathbf{k}_{n}} g_{\mathbf{k}_{n}} c_{\mathbf{k}_{n} \uparrow}^{\dagger} c_{-\mathbf{k}_{n} \downarrow}^{\dagger}\right]|\Omega\rangle
$$

those with all $\mathbf{k}_{n} \mathrm{~S}$ different survive
Generally, more convenient to work in grand canonical ensemble
where one allows for (small) fluctuations in the total particle number, viz. cf. coherent state of pairs

$$
|\psi\rangle=\prod_{\mathbf{k}}(u_{\mathbf{k}}+v_{\mathbf{k}} c_{\left.\mathbf{k} \uparrow c_{-\mathbf{k} \downarrow}^{\dagger}\right)|\Omega\rangle}^{\sim} \overbrace{\exp \left[\sum_{\mathbf{k}} g_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right]}|\Omega\rangle
$$

where normalisation demands $u_{\mathbf{k}}^{2}+v_{\mathbf{k}}^{2}=1$ (exercise)
In non-interacting electron gas $v_{\mathbf{k}}= \begin{cases}1 & |\mathbf{k}|<k_{F} \\ 0 & |\mathbf{k}|>k_{F}\end{cases}$
In interacting system, to determine the variational parameters, $\left(u_{\mathbf{k}}, v_{\mathbf{k}}\right)$, one can use a variational principle, i.e. to minimise $\langle\psi| \hat{H}-\epsilon_{F} \hat{N}|\psi\rangle$

\triangleright BCS Hamiltonian

However, since we are interested in both the g.s. energy and spectrum of excitations, we will follow a different route and explore the model Hamiltonian

$$
\hat{H}=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}-\frac{V}{L^{d}} \sum_{\mathbf{k k}^{\prime}} c_{\mathbf{k}^{\prime} \uparrow}^{\dagger} c_{-\mathbf{k}^{\prime} \downarrow}^{\dagger} c_{-\mathbf{k} \downarrow} c_{\mathbf{k} \uparrow}
$$

Lecture XIII: BCS theory of Superconductivity

\triangleright From Cooper argument, two electrons above Fermi sea can form a bound state

$$
\begin{aligned}
& |\phi\rangle=\frac{1}{L^{d}} \int_{0}^{L} d^{d} r_{1} \int_{0}^{L} d^{d} r_{2} g\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) c_{\uparrow}^{\dagger}\left(\mathbf{r}_{1}\right) c_{\downarrow}^{\dagger}\left(\mathbf{r}_{2}\right)|\Omega\rangle \\
& =\sum_{\mathbf{k}, \mathbf{k}^{\prime}} \overbrace{\frac{1}{L^{2 d}} \int_{0}^{L} d^{d} r_{1} \int_{0}^{L} d^{d} r_{2} g\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) e^{i \mathbf{k} \cdot \mathbf{r}_{1}} e^{i \mathbf{k}^{\prime} \cdot \mathbf{r}_{2}}}^{\delta_{\mathbf{k}+\mathbf{k}^{\prime}, 0} g_{\mathbf{k}}} c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow}^{\dagger}|\Omega\rangle=\sum_{\mathbf{k}} g_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}|\Omega\rangle
\end{aligned}
$$

$$
\text { where } g_{\mathbf{k}}=\frac{1}{L^{d}} \int d^{d} r g(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} \text { denotes pair wavefunction }
$$

To develop insight into the many-body system, consider effective theory
involving only interaction between pairs: BCS Hamiltonian

$$
\hat{H}=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}-\frac{V}{L^{d}} \sum_{\mathbf{k} \mathbf{k}^{\prime}} c_{\mathbf{k}^{\prime} \uparrow}^{\dagger} c_{-\mathbf{k}^{\prime} \downarrow}^{\dagger} c_{-\mathbf{k} \downarrow} c_{\mathbf{k} \uparrow}
$$

Transition to condensate signalled by development of "anomalous average"

$$
\left.\left.\bar{b}_{\mathbf{k}}=\langle\text { g.s. }| c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} \mid \text { g.s. }\right\rangle \text {, i.e. } \mid \text { g.s. }\right\rangle \text { is not an eigenstate of particle number! }
$$

Since we expect quantum fluctuations of $\bar{b}_{\mathbf{k}}$ to be small, we may set

$$
c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}=\bar{b}_{\mathbf{k}}+\overbrace{c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}-\bar{b}_{\mathbf{k}}}^{\text {small }}
$$

(cf. approach to BEC where a_{0}^{\dagger} replaced by a C-number) so that

$$
\begin{aligned}
\hat{H}-\mu \hat{N} & =\sum_{\mathbf{k} \sigma} \overbrace{\left(\epsilon_{\mathbf{k}}-\mu\right)}^{\xi_{\mathbf{k}}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}-\frac{V}{L^{d}} \sum_{\mathbf{k k ^ { \prime }}} c_{\mathbf{k}^{\prime} \uparrow}^{\dagger} c_{-\mathbf{k}^{\prime} \downarrow}^{\dagger} c_{-\mathbf{k} \downarrow} c_{\mathbf{k} \uparrow}, \\
& \simeq \sum_{\mathbf{k} \sigma} \xi_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}-\frac{V}{L^{d}} \sum_{\mathbf{k} \mathbf{k}^{\prime}}\left(\bar{b}_{\mathbf{k}} c_{-\mathbf{k}^{\prime} \downarrow} c_{\mathbf{k}^{\prime} \uparrow}+b_{\mathbf{k}^{\prime}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}-\bar{b}_{\mathbf{k}} b_{\mathbf{k}^{\prime}}\right)+O(\text { small })^{2}
\end{aligned}
$$

Setting $\frac{V}{L^{d}} \sum_{\mathbf{k}} b_{\mathbf{k}} \equiv \Delta$, obtain the "Bogoliubov-de Gennes" or "Gor'kov" Hamiltonian

$$
\begin{aligned}
\hat{H}-\mu \hat{N} & =\sum_{\mathbf{k} \sigma} \xi_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}-\sum_{\mathbf{k}}\left(\begin{array}{c}
\left.\bar{\Delta} c_{-\mathbf{k}^{\prime} \downarrow} c_{\mathbf{k}^{\prime} \uparrow}+\Delta c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)+\frac{L^{d}|\Delta|^{2}}{V} \\
\\
\end{array}=\sum_{\mathbf{k}}\left(\begin{array}{cc}
c_{\mathbf{k} \uparrow}^{\dagger} & c_{-\mathbf{k} \downarrow}
\end{array}\right)\left(\begin{array}{cc}
\xi_{\mathbf{k}} & -\Delta \\
-\bar{\Delta} & -\xi_{\mathbf{k}}
\end{array}\right)\binom{c_{\mathbf{k} \uparrow}}{c_{-\mathbf{k} \downarrow}^{\dagger}}+\sum_{\mathbf{k}} \xi_{\mathbf{k}}+\frac{L^{d}|\Delta|^{2}}{V}\right.
\end{aligned}
$$

For simplicity, let us for now assume that Δ is real
(soon we will see that global phase is arbitrary...)

Bilinear in fermion operators, $\hat{H}-\mu \hat{N}$ diagonalised by transformation

$$
\binom{c_{\mathbf{k} \uparrow}}{c_{-\mathbf{k} \downarrow}^{\dagger}}=\overbrace{\left(\begin{array}{cc}
u_{\mathbf{k}} & v_{\mathbf{k}} \\
-v_{\mathbf{k}} & u_{\mathbf{k}}
\end{array}\right)}^{\mathrm{O}^{T}}\binom{\gamma_{\mathbf{k} \uparrow}}{\gamma_{-\mathbf{k} \downarrow}^{\dagger}}
$$

where anticommutation relations require $O^{T} O=\mathbf{1}$,
i.e. $u_{\mathbf{k}}^{2}+v_{\mathbf{k}}^{2}=1$ (orthogonal transformations)

Substituting, transformed Hamiltonian OHO^{T} diagonalised if (Ex.)

$$
2 \xi_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}+\Delta\left(v_{k}^{2}-u_{\mathbf{k}}^{2}\right)=0
$$

i.e. setting $u_{k}=\sin \theta_{\mathbf{k}}$ and $v_{\mathbf{k}}=\cos \theta_{\mathbf{k}}$,

$$
\tan 2 \theta_{\mathbf{k}}=-\frac{\Delta}{\xi_{\mathbf{k}}}, \quad \sin 2 \theta_{\mathbf{k}}=\frac{\Delta}{\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}}, \quad \cos 2 \theta_{\mathbf{k}}=-\frac{\xi_{\mathbf{k}}}{\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}}
$$

(N.B. for complex $\Delta=|\Delta| e^{i \phi}, v_{\mathbf{k}}=e^{i \phi} \cos \theta_{\mathbf{k}}$)

As a result,

$$
\begin{aligned}
\hat{H}- & \mu \hat{N}=\sum_{\mathbf{k}} \xi_{\mathbf{k}}+\frac{L^{d} \Delta^{2}}{V}+\sum_{\mathbf{k}}\left(\begin{array}{ll}
\gamma_{\mathbf{k} \uparrow}^{\dagger} & \gamma_{-\mathbf{k} \downarrow}
\end{array}\right)\left(\begin{array}{ll}
\left(\xi_{\mathbf{k}}^{2}+\Delta^{2}\right)^{1 / 2} & -\left(\xi_{\mathbf{k}}^{2}+\Delta^{2}\right)^{1 / 2}
\end{array}\right)\binom{\gamma_{\mathbf{k} \uparrow}}{\gamma_{-\mathbf{k} \downarrow}^{\dagger}} \\
& =\sum_{\mathbf{k}}\left(\xi_{\mathbf{k}}-\left(\xi_{\mathbf{k}}^{2}+\Delta^{2}\right)^{1 / 2}\right)+\frac{L^{d} \Delta^{2}}{V}+\sum_{\mathbf{k} \sigma}\left(\xi_{\mathbf{k}}^{2}+\Delta^{2}\right)^{1 / 2} \gamma_{\mathbf{k} \sigma}^{\dagger} \gamma_{\mathbf{k} \sigma}
\end{aligned}
$$

Quasi-particle excitations, created by $\gamma_{\mathbf{k} \sigma}^{\dagger}$, have minimum energy Δ
g.s. identified as state annihilated by all the quasi-particle operators $\gamma_{\mathbf{k} \sigma}$, i.e.

$$
\begin{aligned}
& \mid \text { g.s. }\rangle \equiv \prod_{\mathbf{k}} \gamma_{-\mathbf{k} \downarrow} \gamma_{\mathbf{k} \uparrow}|\Omega\rangle=\prod_{\mathbf{k}}\left(u_{\mathbf{k}} c_{-\mathbf{k} \downarrow}+v_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger}\right)\left(u_{\mathbf{k}} c_{\mathbf{k} \uparrow}-v_{\mathbf{k}} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|\Omega\rangle \\
& =\prod_{\mathbf{k}} v_{\mathbf{k}}\left(u_{\mathbf{k}} c_{-\mathbf{k} \downarrow} c_{-\mathbf{k} \downarrow}^{\dagger}+v_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|\Omega\rangle=\text { const. } \times \prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} \uparrow_{-\mathbf{k} \downarrow}^{\dagger}\right)|\Omega\rangle \\
& \quad \text { in fact, const. }=1
\end{aligned}
$$

Note that global phase of Δ is arbitrary, i.e. |g.s.) continuously degenerate (cf. BEC) \triangleright Self-consistency condition: BCS gap equation

$$
\begin{aligned}
\Delta \equiv & \left.\left.\frac{V}{L^{d}} \sum_{\mathbf{k}} \bar{b}_{\mathbf{k}}=\frac{V}{L^{d}} \sum_{\mathbf{k}}\langle\text { g.s. }| c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} \right\rvert\, \text { g.s. }\right\rangle=\frac{V}{L^{d}} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}} \\
& =\frac{V}{2 L^{d}} \sum_{\mathbf{k}} \sin 2 \theta_{\mathbf{k}}=\frac{V}{2 L^{d}} \sum_{\mathbf{k}} \frac{\Delta}{\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}}
\end{aligned}
$$

i.e. $\quad 1=\frac{V}{2 L^{d}} \sum_{\mathbf{k}} \frac{1}{\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}}=\frac{V \nu(\mu)}{2} \int_{-\omega_{D}}^{\omega_{D}} d \xi \frac{1}{\sqrt{\xi^{2}+\Delta^{2}}}=V \nu(\mu) \sinh ^{-1}\left(\omega_{D} / \Delta\right)$

$$
\text { if } \omega_{D} \gg \Delta, \Delta \simeq 2 \omega_{D} e^{-\frac{1}{\nu(\mu) V}}
$$

\triangleright In limit $\Delta \rightarrow 0, v_{\mathbf{k}}^{2}=\cos ^{2} \theta_{\mathbf{k}}=\frac{1}{2}(\cos 2 \theta+1)=\frac{1}{2}\left(1-\frac{\xi_{k}}{\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}}\right) \mapsto \theta\left(\mu-\epsilon_{\mathbf{k}}\right)$,
and |g.s.) collapses to filled Fermi sea with chemical potential μ
For $\Delta \neq 0$, states in vicinity of μ rearrange into condensate of Cooper pairs \triangleright Spectrum of quasi-particle excitations $\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}$ shows rigid energy gap Δ
\triangleright Density of quasi-particle states:

$$
\begin{aligned}
\rho(\epsilon) & =\frac{1}{L^{d}} \sum_{\mathbf{k} \sigma} \delta\left(\epsilon-\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}}\right)=\int d \xi \nu(\xi) \delta\left(\epsilon-\sqrt{\xi^{2}+\Delta^{2}}\right) \\
& \approx \nu(\mu) \sum_{s= \pm 1} \int_{-\infty}^{\infty} d \xi \frac{\delta\left(\xi-s\left(\epsilon^{2}-\Delta^{2}\right)^{1 / 2}\right)}{\left|\frac{\partial}{\partial \xi}\left(\xi^{2}+\Delta^{2}\right)^{1 / 2}\right|}=2 \nu(\mu) \Theta(\epsilon-\Delta) \frac{\epsilon}{\left(\epsilon^{2}-\Delta^{2}\right)^{1 / 2}}
\end{aligned}
$$

i.e. spectral weight transferred from Fermi surface to interval $[\Delta, \infty]$

\triangleright Field Theory of Superconductivity

Starting point is Hamiltonian for local (contact) pairing interaction:

$$
\hat{H}=\int d^{d} r\left[\sum_{\sigma} c_{\sigma}^{\dagger}(\mathbf{r}) \frac{\hat{\mathbf{p}}^{2}}{2 m} c_{\sigma}(\mathbf{r})-V c_{\uparrow}^{\dagger}(\mathbf{r}) c_{\downarrow}^{\dagger}(\mathbf{r}) c_{\downarrow}(\mathbf{r}) c_{\uparrow}(\mathbf{r})\right]
$$

\triangleright Quantum partition function: $\mathcal{Z}=\operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{N})}$
$\mathcal{Z}=\int_{\psi(\beta)=-\psi(0)} D(\bar{\psi}, \psi) \exp \{-\overbrace{\int_{0}^{\beta} d \tau \int_{0}^{L} d^{d} r}^{x \equiv(\tau, \mathbf{r})}\left[\sum_{\sigma} \bar{\psi}_{\sigma}\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu\right) \psi_{\sigma}-V \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}\right]\}$
where $\psi_{\sigma}(\mathbf{r}, \tau)$ denote Grassmann (anticommuting) fields
Options for analysis:

- perturbative expansion in V ? No - transition to condensate non-perturbative in V
- Mean-field (saddle-point) analysis

To prepare for s.p. analysis, it is useful to trade Grassmann fields for "slow fields" that parameterise the low-energy fluctuations of condensed phase

This is achieved by a general technique known as...

\triangleright Hubbard-Stratonovich Decoupling:

Introduce complex commuting field $\Delta(\mathbf{r}, \tau)$ whose expectation value translates to that of "anomalous average" $\left\langle c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger}\right\rangle$
$e^{V \int d x \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}}=\int D(\bar{\Delta}, \Delta) \exp \{-\int d x \overbrace{\left[\frac{|\Delta(\mathbf{r}, \tau)|^{2}}{V}+\left(\bar{\Delta} \psi_{\downarrow} \psi_{\uparrow}+\Delta \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow}\right)\right]}^{\frac{1}{V}\left(\bar{\Delta}+V \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow}\right)\left(\Delta+V \psi_{\downarrow} \psi_{\uparrow}\right)-V \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}}\}$
Using identity $\int_{0}^{\beta} d \tau \bar{\psi}_{\downarrow} \partial_{\tau} \psi_{\downarrow}=-\int_{0}^{\beta}\left(\partial_{\tau} \bar{\psi}_{\downarrow}\right) \psi_{\downarrow}=\int_{0}^{\beta} \psi_{\downarrow} \partial_{\tau} \bar{\psi}_{\downarrow}$
$\int_{0}^{\beta} d \tau \int_{0}^{L} d^{d} r \bar{\psi}_{\downarrow} \overbrace{\left(\partial_{\tau}-\frac{\hbar^{2} \partial^{2}}{2 m}-\mu\right)}^{\left[\hat{G}_{\downarrow}^{(\mathrm{p})}\right]^{-1}} \psi_{\downarrow}=\int_{0}^{\beta} d \tau \int_{0}^{L} d^{d} r \psi_{\downarrow} \overbrace{\left(\partial_{\tau}+\frac{\hbar^{2} \partial^{2}}{2 m}+\mu\right)}^{\left[\hat{G}_{0}^{(\mathrm{h})}\right]^{-1}} \bar{\psi}_{\downarrow}$
where $\hat{G}_{0}^{(\mathrm{p} / \mathrm{h})}$ denotes GF or propagator of free particle/hole Hamiltonian,

$$
\begin{aligned}
& \mathcal{Z}=\int D(\bar{\psi}, \psi) \int D(\bar{\Delta}, \Delta) e^{-\int d x \frac{\left.\Delta \Delta\right|^{2}}{g}} \\
& \times \exp [-\int d x \overbrace{\left(\begin{array}{ll}
\bar{\psi}_{\uparrow} & \left.\psi_{\downarrow}\right)
\end{array}\right.}^{\text {Nambu spinor } \bar{\Psi}} \overbrace{\left(\begin{array}{cc}
{\left[\begin{array}{c}
\left.\hat{G}_{0}^{(\mathrm{p})}\right]^{-1} \\
\bar{\Delta}
\end{array}\right.} & \left.\begin{array}{c}
\Delta \\
{\left[\hat{G}_{0}^{(\mathrm{h})}\right]^{-1}}
\end{array}\right)
\end{array}\right.}^{\text {Gorkov Hamiltonian } \hat{\mathcal{G}}^{-1}}\binom{\psi_{\uparrow}}{\bar{\psi}_{\downarrow}}] \\
& =\int D(\bar{\psi}, \psi) \int D(\bar{\Delta}, \Delta) e^{-\int d x \frac{|\Delta|^{2}}{g}} \exp \left[-\int d x \bar{\Psi} \hat{\mathcal{G}}^{-1} \Psi\right]
\end{aligned}
$$

Using Gaussian Grassmann field integral:

$$
\begin{aligned}
& \int D(\bar{\Psi}, \Psi) \exp \left[-\sum_{i j} \bar{\Psi}_{i} A_{i j} \Psi_{j}\right]=\operatorname{det} \mathbf{A}=\exp [\ln \operatorname{det} \mathbf{A}]=\exp [\operatorname{tr} \ln \mathbf{A}] \\
& \mathcal{Z}=\int D(\bar{\Delta}, \Delta) \exp [-\overbrace{\int d x \frac{|\Delta|^{2}}{V}+\operatorname{tr} \ln \hat{\mathcal{G}}^{-1}[\Delta]}^{\text {Effective action } S[\Delta]}] \\
& \text { meaning of trace }
\end{aligned}
$$

i.e. \mathcal{Z} expressed as functional field integral over complex scalar field $\Delta(x)$

Formal expression is exact; but to proceed, we must invoke some approximation:
\triangleright Examples of Hubbard-Stratonovich decoupling
e.g. (1) weakly interacting electron gas: $\mathcal{Z} \equiv \operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\int_{\substack{\bar{\psi}(0)=-\bar{\psi}(\beta) \\ \psi(0)=-\psi(\beta)}} D(\bar{\psi}, \psi) e^{-S[\bar{\psi}, \psi]}$

$$
\begin{aligned}
S=\int_{0}^{\beta} d \tau & {\left[\int d^{d} r \sum_{\sigma} \bar{\psi}_{\sigma}(\mathbf{r}, \tau)\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu\right) \psi_{\sigma}(\mathbf{r}, \tau)\right.} \\
& \left.+\frac{1}{2} \int d^{d} r d^{d} r^{\prime} \sum_{\sigma, \sigma^{\prime}} \bar{\psi}_{\sigma}(\mathbf{r}, \tau) \bar{\psi}_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}, \tau\right) \frac{e^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}, \tau\right) \psi_{\sigma}(\mathbf{r}, \tau)\right]
\end{aligned}
$$

Coulomb interaction decoupled by scalar field, $\mathcal{Z}=\int D(\bar{\psi}, \psi) \int D \phi e^{-S_{\text {eff }}}$

$$
S_{\mathrm{eff}}=\int_{0}^{\beta} d \tau\left[\int d^{d} r \sum_{\sigma} \bar{\psi}_{\sigma}(\mathbf{r}, \tau)\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu+i e \phi\right) \psi_{\sigma}(\mathbf{r}, \tau)+\frac{1}{8 \pi}(\partial \phi)^{2}\right]
$$

Physically: ϕ represents bosonic photon field that mediates Coulomb interaction
e.g. (2) itinerant ferromagnetism in Hubbard model

$$
S=\int d \tau \sum_{\mathbf{k} \sigma} \bar{\psi}_{\mathbf{k} \sigma}\left(\partial_{\tau}+\epsilon_{\mathbf{k}}-\mu\right) \psi_{\mathbf{k} \sigma}+3 U \int d \tau \sum_{\mathbf{m}} \overbrace{\bar{\psi}_{\mathbf{m} \uparrow} \bar{\psi}_{\mathbf{m} \downarrow} \psi_{\mathbf{m} \downarrow} \psi_{\mathbf{m} \uparrow}}^{-2 \mathbf{S}_{\mathbf{m}}^{2}}
$$

where $\mathbf{S}_{\mathbf{m}}=\frac{1}{2} \sum_{\alpha \beta} \bar{\psi}_{\mathbf{m} \alpha} \sigma_{\alpha \beta} \psi_{\mathbf{m} \beta}$ (cf. electron spin operator)
Hubbard interaction decoupled by vector field, $\mathcal{Z}=\int D(\bar{\psi}, \psi) \int D M e^{-S_{\text {eff }}}$

$$
S_{\mathrm{eff}}=\int d \tau \sum_{\mathbf{k} \sigma} \bar{\psi}_{\mathbf{k} \sigma}\left(\partial_{\tau}+\epsilon_{\mathbf{k}}-\mu\right) \psi_{\mathbf{k} \sigma}+\int d \tau \sum_{\mathbf{m}}\left[\frac{\mathbf{M}_{\mathbf{m}}^{2}}{2 U}-\sum_{\alpha \beta} \bar{\psi}_{\mathbf{m} \alpha} \mathbf{M}_{\mathbf{m}} \cdot \sigma_{\alpha \beta} \psi_{\mathbf{m} \beta}\right]
$$

Physically: \vec{M} represents bosonic magnetisation field

Lecture XIV: Field Theory of Superconductivity

Recap: Cast as field integral
$\mathcal{Z}=\int_{\psi(\beta)=-\psi(0)} D(\bar{\psi}, \psi) \exp \{-\overbrace{\int_{0}^{\beta} d \tau \int_{0}^{L} d^{d} r}^{x \equiv(\tau, \mathbf{r})}[\sum_{\sigma} \bar{\psi}_{\sigma} \overbrace{\left(\partial_{\tau}+\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu\right)}^{\left[\hat{G}_{0}^{(\mathbf{p})}\right]^{-1}} \psi_{\sigma}-V \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}]\}$
local pair interaction may be decoupled by Hubbard-Stratonovich field, $\Delta(x)$
Integrating over the Grassmann fields, $\bar{\psi}_{\sigma}$, and $\psi_{\sigma}, \mathcal{Z}=\int D(\bar{\Delta}, \Delta) e^{-S[\Delta]}$ with

$$
\begin{array}{r}
\int d x\langle x| \operatorname{tr}_{2} \ln \hat{\mathcal{G}}^{-1}[\Delta]|x\rangle \quad\left[\hat{G}_{0}^{\mathrm{p} / \mathrm{h}}\right]^{-1}=\partial_{\tau}+/-\left(\frac{\hat{\mathbf{p}}^{2}}{2 m}-\mu\right) \\
S[\Delta]=\int d x \frac{|\Delta|^{2}}{V}-\overbrace{\operatorname{tr} \ln \hat{\mathcal{G}}^{-1}[\Delta]}, \quad \hat{\mathcal{G}}^{-1}=\quad\left(\begin{array}{cc}
{\left[\hat{G}_{0}^{(\mathrm{p})}\right]^{-1}} & \Delta \\
\bar{\Delta} & {\left[\hat{G}_{0}^{(\mathrm{h})}\right]^{-1}}
\end{array}\right)
\end{array}
$$

To proceed further, it was necessary to invoke some approximation
$\triangleright \underline{I}$ Mean-field theory: far from critical temperature, T_{c}, we expect
field integral to be dominated by saddle-point:

$$
\begin{aligned}
\delta S \equiv & S[\Delta+\delta \Delta]-S[\Delta]=\int d x \frac{1}{V}\left(\bar{\Delta} \delta \Delta+\delta \bar{\Delta} \Delta+|\delta \Delta|^{2}\right) \\
= & \quad-\operatorname{tr} \ln \left[\hat{\mathcal{G}}^{-1}+\left(\begin{array}{cc}
0 & \delta \Delta \\
\delta \bar{\Delta} & 0
\end{array}\right)\right]+\operatorname{tr} \ln \left[\begin{array}{c}
\ln \left[\hat{\mathcal{G}}^{-1}\right] \\
\left.1+\hat{\mathcal{G}}\left(\begin{array}{cc}
0 & \delta \Delta \\
\delta \bar{\Delta} & 0
\end{array}\right)\right] \\
= \\
= \\
=(\cdots)-\int d x \frac{1}{V}(\bar{\Delta} \delta \Delta+\delta \bar{\Delta} \Delta)-\operatorname{tr}\left[\hat{\mathcal{G}}\left(\begin{array}{cc}
0 & \delta \Delta \\
\delta \bar{\Delta} & 0
\end{array}\right)\right]+O\left(|\delta \Delta|^{2}\right) \\
\\
\quad \text { where } \operatorname{tr}\left[\hat{\mathcal{G}}_{21}(x, x) \delta \Delta(x)+\mathcal{G}_{12}(x, x) \delta \bar{\Delta}(x)\right)+O\left(|\delta \Delta|^{2}\right) \\
\end{array}\right.
\end{aligned}
$$

i.e. $\Delta(x)$ obeys the saddle-point condition: $\frac{\delta S}{\delta \bar{\Delta}}=\frac{\Delta(x)}{V}-\mathcal{G}_{12}(x, x)=0$

With the Ansatz $\Delta(x)=\Delta$ const., $\hat{\mathcal{G}}|k\rangle=\mathcal{G}(k)|k\rangle$, with $|k\rangle \equiv\left|\omega_{n}, \mathbf{k}\right\rangle$ and

$$
\begin{aligned}
& \mathcal{G}^{-1}(k)=\left(\begin{array}{cc}
-i \omega_{n}+\xi_{k} & \Delta \\
\bar{\Delta} & -i \omega_{n}-\xi_{k}
\end{array}\right), \quad \xi_{k}=\frac{\hbar^{2} k^{2}}{2 m}-\mu \\
& \mathcal{G}(k)=\frac{1}{-\omega_{n}^{2}-\xi_{k}^{2}-|\Delta|^{2}}\left(\begin{array}{cc}
-i \omega_{n}-\xi_{k} & -\Delta \\
-\bar{\Delta} & -i \omega_{n}+\xi_{k}
\end{array}\right)
\end{aligned}
$$

i.e. Δ obeys the gap equation:

$$
\begin{array}{r}
\frac{\Delta}{V}=\langle x| \hat{\mathcal{G}}_{12}|x\rangle=\sum_{k} \overbrace{\langle x \mid k\rangle}^{e^{-i k \cdot x} / \sqrt{\beta L^{d / 2}}} \mathcal{G}_{12}(k)\langle k \mid x\rangle=\frac{1}{\beta L^{d}} \sum_{k} \mathcal{G}_{12}(k)=\frac{1}{\beta L^{d}} \sum_{\omega_{n}, \mathbf{k}} \frac{\Delta}{\omega_{n}^{2}+E_{k}^{2}} \\
\text { with } E_{k}=\sqrt{\xi_{k}^{2}+|\Delta|^{2}} \text { and } k \cdot x=\omega_{n} \tau-\mathbf{k} \cdot \mathbf{r}
\end{array}
$$

Using (fermionic) Matsubara frequency summation

$$
\sum_{\omega_{n}} h\left(\omega_{n}\right)=\sum_{p} \operatorname{Res}\left[h(-i z) \frac{\beta}{e^{\beta z}+1}\right]_{z=z_{p}}
$$

with $h(-i z)=\frac{1}{\left(z-E_{k}\right)\left(-z-E_{k}\right)}, z_{p}= \pm E_{k}$ with residue $h\left(z_{p}\right)= \pm \frac{1}{2 E_{k}}$ and

$$
\frac{\Delta}{V}=\frac{1}{L^{d}} \sum_{\mathbf{k}}\left(\frac{1}{e^{-\beta E_{k}}+1}-\frac{1}{e^{\beta E_{k}}+1}\right) \frac{\Delta}{2 E_{k}}=\frac{1}{L^{d}} \sum_{\mathbf{k}} \tanh \left(\beta E_{k} / 2\right) \frac{\Delta}{2 E_{k}}
$$

For $T=0, \beta \rightarrow \infty$,

$$
\frac{1}{V}=\frac{1}{L^{d}} \sum_{\mathbf{k}} \frac{1}{2 E_{k}}=\int \frac{d \xi \nu(\xi)}{2 \sqrt{\xi^{2}+|\Delta|^{2}}} \simeq \frac{\nu(0)}{2} \int_{-\hbar \omega_{D}}^{\hbar \omega_{D}} \frac{d \xi}{\sqrt{\xi^{2}+|\Delta|^{2}}}=\nu(0) \sinh ^{-1}\left(\frac{\hbar \omega_{D}}{|\Delta|}\right)
$$

i.e. $|\Delta| \simeq 2 \hbar \omega_{D} \exp \left[-\frac{1}{\nu(0) V}\right]$

For $T=T_{c}, \Delta=0$,

$$
\frac{1}{V} \simeq \nu(0) \int_{-\hbar \omega_{D}}^{\hbar \omega_{D}} d \xi \frac{\tanh \left(\beta_{c} \xi / 2\right)}{2 \xi} \simeq \nu(0) \ln \left(1.14 \beta_{c} \hbar \omega_{D}\right), \quad k_{\mathrm{B}} T_{c} \simeq 1.14 \hbar \omega_{D} \exp \left[-\frac{1}{\nu(0) V}\right]
$$

close to T_{c}, we may develop perturbative expansion in (small) $\Delta(x)$
Noting: $\quad \hat{\mathcal{G}}^{-1}[\Delta]=\hat{\mathcal{G}}_{0}^{-1}\left[1+\hat{\mathcal{G}}_{0}\left(\begin{array}{cc}0 & \Delta \\ \Delta & 0\end{array}\right)\right], \quad \hat{\mathcal{G}}_{0} \equiv \hat{\mathcal{G}}(\Delta=0)$
$\operatorname{tr} \ln \hat{\mathcal{G}}^{-1}[\Delta]=\operatorname{tr} \ln \hat{\mathcal{G}}_{0}^{-1}-\frac{1}{2} \operatorname{tr}\left[\hat{\mathcal{G}}_{0}\left(\begin{array}{cc}0 & \Delta \\ \bar{\Delta} & 0\end{array}\right)\right]^{2}+\cdots, \quad \ln (1+z)=-\sum_{n=1}^{\infty} \frac{(-z)^{n}}{n}$

- Zeroth order term in $\Delta \leadsto$ 'free particle' contribution, viz. $\mathcal{Z}_{0}=e^{\operatorname{trln} \hat{\mathcal{G}}_{0}^{-1}}=\operatorname{det} \hat{\mathcal{G}}_{0}^{-1}$
- First (and all odd) order term(s) absent
- Second order term:

$$
\begin{aligned}
& \text { Noting } \hat{G}_{0}^{(\mathrm{p} / \mathrm{h})} \overbrace{|k\rangle}^{\left|\omega_{n}, \mathbf{k}\right\rangle}=\overbrace{\left(-i \omega_{n}+\left(\hbar^{2} \mathbf{k}^{2} / 2 m-\mu\right)\right)^{-1}}^{G_{0}^{(\mathrm{p} / \mathrm{h})}(k)}|k\rangle \\
& \text { and using id. }=\sum_{k}|k\rangle\langle k|, \quad \Delta_{k}=\frac{1}{\sqrt{\beta L^{d}}} \int d x e^{-i k \cdot x} \Delta(x) \\
& \operatorname{tr}\left[\hat{G}_{0}^{(\mathrm{p})} \Delta \hat{G}_{0}^{(\mathrm{h})} \bar{\Delta}\right]=\sum_{k k^{\prime}} G_{0}^{(\mathrm{p})}(k) \overbrace{\langle k| \Delta\left|k^{\prime}\right\rangle}^{\Delta_{k^{\prime}-k} / \sqrt{\beta L^{d}}} G_{0}^{(\mathrm{h})}\left(k^{\prime}\right)\left\langle k^{\prime}\right| \bar{\Delta}|k\rangle \\
& \stackrel{q=k^{\prime}-k}{=} \sum_{q} \Delta_{q} \bar{\Delta}_{q} \overbrace{\frac{1}{\beta L^{d}} \sum_{k} G_{0}^{(\mathrm{p})}(k) G_{0}^{(\mathrm{h})}(k+q)}^{\text {pairing susceptibility } \Pi(q)} \\
& \text { i.e. } \quad \Pi\left(\omega_{m}, \mathbf{q}\right)=\frac{1}{\beta L^{d}} \sum_{\omega_{n}, \mathbf{k}} \frac{1}{-i \omega_{n}+\xi_{\mathbf{k}}} \frac{1}{-i\left(\omega_{n}+\omega_{m}\right)-\xi_{\mathbf{k}+\mathbf{q}}}, \quad \xi_{\mathbf{k}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}-\mu
\end{aligned}
$$

Combined with bare term,

$$
S[\Delta]=\sum_{q}\left[\frac{1}{V}+\Pi(q)\right] \bar{\Delta}_{q} \Delta_{q}+O\left(|\Delta|^{4}\right)
$$

In principle, one can evaluate $\Pi(q)$ explicitly;
however we can proceed more simply by considering a...

- 'Gradient expansion':

$$
\begin{aligned}
& \Pi\left(\mathbf{q}, \omega_{m}\right)=\Pi(0)+i \omega_{m} \overbrace{\frac{\partial}{\partial\left(i \omega_{m}\right)} \Pi(0)}^{\tau}+q_{\alpha} \overbrace{\frac{\partial}{\partial q_{\alpha}} \Pi(0)}^{=0}+\frac{1}{2} q_{\alpha} q_{\beta} \overbrace{\frac{\partial^{2}}{\partial q_{\alpha} \partial q_{\beta}} \Pi(0)}^{K \delta_{\alpha \beta},}+O\left(\omega_{m}^{2}, \mathbf{q}^{4}\right) \\
& \quad=\Pi(0)+i \omega_{m} \tau+\frac{K}{2} \mathbf{q}^{2}+O\left(\omega_{m}^{2}, \mathbf{q}^{4}\right)
\end{aligned}
$$

At large enough temperatures, $k_{\mathrm{B}} T_{c} \gg 1 / \tau$, dynamics may be neglected altogether (viz. $\Delta(x) \equiv \Delta(\mathbf{r})$) and one obtains

\triangleright GInZBURG-LANDAU ACTION

$$
\begin{aligned}
S[\Delta] & =\int_{0}^{\beta} d \tau \sum_{\mathbf{q}}\left(\frac{t}{2}+K \mathbf{q}^{2}\right) \bar{\Delta}_{\mathbf{q}} \Delta_{\mathbf{q}}+O\left(|\Delta|^{4}\right) \\
& =\beta \int d^{d} r\left[\frac{t}{2}|\Delta|^{2}+\frac{K}{2}|\partial \Delta|^{2}+u|\Delta|^{4}+\cdots\right]
\end{aligned}
$$

where $\frac{t}{2}=\frac{1}{V}+\Pi(0)$, and $K, u>0$
(cf. weakly interacting Bose gas)
\triangleright LANDAU ThEORY: If we assume that dominant contribution to $\mathcal{Z}=e^{-\beta F}$ arises from minumum action, i.e. spatially homogeneous Δ that minimises

$$
\frac{S[\Delta]}{\beta L^{d}}=\frac{t}{2}|\Delta|^{2}+u|\Delta|^{4}
$$

one obtains $\quad|\Delta|\left(t+4 u|\Delta|^{2}\right)=0, \quad|\Delta|= \begin{cases}0 & t>0 \\ \sqrt{-t / 4 u} & t<0\end{cases}$
i.e. for $t<0$, spontaneous breaking of continuous $\mathrm{U}(1)$ symmetry associated with phase \leadsto gapless fluctuations - Goldstone modes

With $\Pi(0) \simeq-\nu(0) \ln \left(1.14 \beta \hbar \omega_{D}\right)$ (as before), T_{c} fixed by condition $\frac{t}{2} \equiv \frac{1}{V}+\left.\Pi(0)\right|_{T=T_{c}}=0$, i.e. $\frac{1}{V}=\nu(0) \ln \left(1.14 \beta_{c} \hbar \omega_{D}\right)$

Therefore
$\frac{t}{2}=\frac{1}{V}+\Pi(0, T)=\nu(0) \ln \left(\frac{\beta_{c}}{\beta}\right)=\nu(0) \ln \left(\frac{T}{T_{c}}\right)=\nu(0) \ln \left(1+\frac{T-T_{c}}{T_{c}}\right) \simeq \nu(0)\left(\frac{T-T_{c}}{T_{c}}\right)$
i.e. physically t is a 'reduced temperature'

Lecture XV: Superconductivity and Gauge Invariance

\triangleright Recall: Starting with Hamiltonian for electrons with local (contact) pairing interaction:

$$
\hat{H}=\int d^{d} r\left[\sum_{\sigma} c_{\sigma}^{\dagger}(\mathbf{r}) \frac{\hat{\mathbf{p}}^{2}}{2 m} c_{\sigma}(\mathbf{r})-V c_{\uparrow}^{\dagger}(\mathbf{r}) c_{\downarrow}^{\dagger}(\mathbf{r}) c_{\downarrow}(\mathbf{r}) c_{\uparrow}(\mathbf{r})\right]
$$

quantum partition function can be expressed as field integral involving complex field

$$
\mathcal{Z}=\int D[\bar{\Delta}, \Delta] e^{-S[\bar{\Delta}, \Delta]}, \quad S=\sum_{q}\left[\frac{1}{V}+\Pi(q)\right]\left|\Delta_{q}\right|^{2}+O\left(\Delta^{4}\right)
$$

where pair susceptibility

$$
\Pi(q)=\frac{1}{\beta L^{d}} \sum_{k} G_{0}^{(\mathrm{p})}(k) G_{0}^{(\mathrm{h})}(k+q), \quad G_{0}^{(\mathrm{p} / \mathrm{h})}(k)=\frac{1}{-i \omega_{n}^{+} /-\left(\hbar^{2} \mathbf{k}^{2} / 2 m-\mu\right)}
$$

Gradient expansion of action \leadsto Ginzburg-Landau theory

$$
\begin{aligned}
& S[\Delta]=\beta \int d^{d} r\left[\frac{t}{2}|\Delta|^{2}+\frac{K}{2}|\partial \Delta|^{2}+u|\Delta|^{4}+\cdots\right] \\
& \quad \text { where } \frac{t}{2}=\frac{1}{V}+\Pi(0) \simeq \nu(0) \frac{T-T_{c}}{T_{c}}, \text { and constants } K, u>0
\end{aligned}
$$

\triangleright What about the physical properties of the condensed phase?
To establish origin of perfect diamagnetism (and zero resistance), one must accommodate electromagnetic field in Ginzburg-Landau action
\triangleright Inclusion of EM field into action requires minimal substitution: $\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}}-e \mathbf{A}$
and addition of action for photon field ($\left.\hbar=1, c=1,4 \pi \epsilon_{0}=1, \mu_{0}=1 / \epsilon_{0} c^{2}=4 \pi.\right)$

$$
S_{\mathrm{EM}}=-\int d x \frac{1}{4 \mu_{0}} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Repitition of field theory in presence of vector field obtains

$$
\begin{array}{r}
\text { generalised Ginzburg-Landau theory: } \mathcal{Z}=\int D \mathbf{A} \int D[\Delta, \bar{\Delta}] e^{-S} \\
S=\beta \int d^{d} r[\frac{t}{2}|\Delta|^{2}+\frac{K}{2}|(\partial-i 2 e \mathbf{A}) \Delta|^{2}+u|\Delta|^{4}+\overbrace{\frac{1}{8 \pi}(\partial \times \mathbf{A})^{2}}^{\mathcal{L}_{\mathrm{EM}}}]
\end{array}
$$

Factor of 2 due to pairing (focusing only on spatial fluctuations of A)
\triangleright Gauge Invariance: Action invariant under local gauge transformation

$$
\mathbf{A} \mapsto \mathbf{A}^{\prime}=\mathbf{A}-\partial \phi(\mathbf{r}), \quad \Delta \mapsto \Delta^{\prime}=e^{-2 i e \phi(\mathbf{r})} \Delta
$$

$$
\begin{aligned}
& (\partial-i 2 e \mathbf{A}) \Delta \mapsto(\partial-i 2 e(\mathbf{A}-\partial \phi)) e^{-2 i e \phi(\mathbf{r})} \Delta=e^{-2 i e \phi(\mathbf{r})}(\partial-i 2 e \mathbf{A}) \Delta \\
& \text { i.e. }|(\partial-i 2 e \mathbf{A}) \Delta|^{2}(\text { as well as } \partial \times \mathbf{A}) \text { invariant }
\end{aligned}
$$

\triangleright "Anderson-Higgs mechanism": phase of complex order parameter $\Delta=|\Delta| e^{-2 i e \phi(\mathbf{r})}$ can be absorbed into $\mathbf{A} \mapsto \mathbf{A}^{\prime}=\mathbf{A}-\partial \phi(\mathbf{r})$

$$
S=\beta \int d^{d} r\left[\frac{t}{2}|\Delta|^{2}+\frac{K}{2}(\partial|\Delta|)^{2}+\frac{m_{\nu}^{2}}{2} \mathbf{A}^{2}+u|\Delta|^{4}+\frac{1}{8 \pi}(\partial \times \mathbf{A})^{2}\right]
$$

where $m_{\nu}^{2}=4 e^{2} K|\Delta|^{2}$
i.e. massless phase degree of freedom $\phi(\mathbf{r})$ has disappeared and photon field \mathbf{A} has acquired a 'mass'!

Example of a general principle:
"Below T_{c}, Goldstone bosons (ϕ) and gauge field \mathbf{A} conspire to create massive excitations, and massless excitations are unobservable", cf. electroweak theory

Coherence (healing) length $\xi=\sqrt{K / t}$ describes scale over which fluctuations are correlated - diverges on approaching transition
\triangleright Meissner effect: minimisation of action w.r.t. A

$$
\frac{1}{4 \pi} \partial \times \overbrace{(\partial \times \mathbf{A})}^{\mathbf{B}}-m_{\nu}^{2} \mathbf{A}=0 \quad \mapsto \quad\left(\partial^{2}-4 \pi m_{\nu}^{2}\right) \mathbf{B}=0
$$

$\mathbf{B}=0$ is the only constant uniform solution \leadsto perfect diamagnetism
$1 / m_{\nu}$ provides the length scale (London penetration depth),
over which a magnetic field can penetrates the superconductor at the boundary
Free energy of superconductor first proposed on phenomenological grounds - how? ...\& why is crude gradient expansion so successful?

$\triangleright \underline{\text { Statistical Field Theory }}$

Superconducting transition is an example of a "critical phenomena"
Close to critical point T_{c}, the thermodynamic properties of a system are dictated by "universal" characteristics

To understand why, consider a simpler prototype:
the classical Ising (i.e. one-component) ferromagnet:

$$
H=-J \sum_{\langle i j\rangle} S_{i}^{z} S_{j}^{z}+B \sum_{i} S_{i}^{z}, \quad S_{i}^{z}= \pm 1
$$

Equilibrium Phase diagram?

What happens in the vicinity of critical point?

1. 1st order transition - order parameter (magnetisation) changes discontinuously; correlation length (scale over which fluctuations correlated) remains finite
2. 2nd order transition - order parameter changes continuously;
correlation length diverges $\left(\xi \sim 1 / t^{1 / 2}\right)$
...motivates consideration of "hydrodynamic" theory which surrenders information about microscopic length scales and involves a coarse-grained order parameter field

$$
\mathcal{Z}=e^{-\beta F}=\int D S(\mathbf{r}) e^{-\beta H_{\mathrm{eff}}[S(\mathbf{r})]}
$$

with $\beta H_{\text {eff }}[S]$ constrained (only) by fundamental symmetry (translation, rotation, etc.)

$$
\beta H_{\mathrm{eff}}[S(\mathbf{r})]=\int d^{d} r\left[\frac{t}{2} S^{2}+\frac{K}{2}(\partial S)^{2}+u S^{4}+\cdots+B S\right]
$$

cf. Ginzburg-Landau Theory
\triangleright Landau theory: $S(\mathbf{r})=S$ const.

$$
\frac{\beta F}{L^{d}}=\min _{S}\left[\frac{t}{2} S^{2}+u S^{4}\right], \quad \text { etc. }
$$

\triangleright Continuous phase transitions separate into Universality classes
with the same characteristic critical behaviour
E.g. (1) Ising model - liquid/gas: $S \rightarrow$ density $\rho, B \rightarrow$ pressure P
E.g. (2) Superconductivity - classical XY ferromagnet: $\Delta^{\prime}+i \Delta^{\prime \prime} \rightarrow\left(S_{x}, S_{y}\right)$

