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Lecture I: Collective Excitations: From Particles to Fields

Free Scalar Field Theory: Phonons

The aim of this course is to develop the machinery to explore the properties of quantum
systems with very large or infinite numbers of degrees of freedom. To represent such systems
it is convenient to abandon the language of individual elementary particles and speak about
quantum fields. In this lecture, we will consider the simplest physical example of a free or
non-interacting many-particle theory which will exemplify the language of classical and quantum
fields. Our starting point is a toy model of a mechanical system describing a classical chain of
atoms coupled by springs.

. Discrete elastic chain

ks

(I-1)a Ia (I+1)a

RI-1 φI M

Equilibrium position x̄n ≡ na; natural length a; spring constant ks

Goal: to construct and quantise a classical field theory
for the collective (longitundinal) vibrational modes of the chain

. Discrete Classical Lagrangian:

L = T − V =
N∑
n=1

( k.e.︷ ︸︸ ︷
m

2
ẋ2
n −

p.e. in spring︷ ︸︸ ︷
ks
2

(xn+1 − xn − a)2
)

assume periodic boundary conditions (p.b.c.) xN+1 = Na+ x1 (and set ẋn ≡ ∂txn)

Using displacement from equilibrium φn = xn − x̄n

L =
N∑
n=1

(
m

2
φ̇2
n −

ks
2

(φn+1 − φn)2

)
, p.b.c : φN+1 ≡ φ1

In principle, one can obtain exact solution of discrete equation of motion — see PS I

However, typically, one is not concerned with behaviour on ‘atomic’ scales:

1. for such purposes, modelling is too primitive! viz. anharmonic contributions

2. such properties are in any case ‘non-universal’

Aim here is to describe low-energy collective behaviour — generic, i.e. universal

In this case, it is often permissible to neglect the discreteness of the microscopic entities
of the system and to describe it in terms of effective continuum degrees of freedom.
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Lecture I 2

. Continuum Lagrangian

Describe φn as a smooth function φ(x) of a continuous variable x;
makes sense if φn+1 − φn � a (i.e. gradients small)

φn → a1/2φ(x)

∣∣∣∣
x=na

, φn+1 − φn → a3/2∂xφ(x)

∣∣∣∣
x=na

,
∑
n

−→ 1

a

∫ L=Na

0
dx

N.B. [φ(x)] = L1/2

RI

φI

φ(x)

Lagrangian functional︷ ︸︸ ︷
L[φ] =

∫ L

0
dx L(φ, ∂xφ, φ̇),

Lagrangian density︷ ︸︸ ︷
L(φ, ∂xφ, φ̇) =

m

2
φ̇2 − ksa

2

2
(∂xφ)2

. Classical action

S[φ] =

∫
dt L[φ] =

∫
dt

∫ L

0
dx L(φ, ∂xφ, φ̇)

• N -point particle degrees of freedom 7→ continuous classical field φ(x)

• Dynamics of φ(x) specified by functionals L[φ] and S[φ]

What are the corresponding equations of motion...?
——————————————–

. Hamilton’s Extremal Principle: (Revision)

Suppose classical point particle x(t) described by action S[x] =

∫
dt L(x, ẋ)

Configurations x(t) that are realised are those that extremise the action

i.e. for any smooth function η(t), the “variation”,
δS[x] ≡ limε→0

1
ε (S[x+ εη]− S[x]) = 0 is stationary

; Euler-Lagrange equations of motion

S[x+ εη] =

∫ t

0
dtL(x+ εη, ẋ+ εη̇) =

∫ t

0
dt (L(x, ẋ) + εη∂xL+ εη̇∂ẋL) +O(ε2)

δS[x] =

∫
dt (η∂xL+ η̇∂ẋL)

by parts
=

∫
dt

= 0︷ ︸︸ ︷(
∂xL−

d

dt
(∂ẋL)

)
η = 0

Note: boundary term, η∂ẋL|t0 vanishes by construction
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Lecture I 3

(x,t)!

(x,t)"#

!

x

t

. Generalisation to continuum field x 7→ φ(x)?

Apply same extremal principle: φ(x, t) 7→ φ(x, t) + εη(x, t)
with both φ and η periodic in x, i.e. φ(x+ L) = φ(x)

S[φ+ εη] = S[φ] + ε

∫ t

0
dt

∫ L

0
dx
(
mφ̇η̇ − ksa2∂xφ∂xη

)
+O(ε2).

Integrating by parts boundary terms vanish by construction: ηφ̇|t0 = 0 = η∂xφ|L0

δS = −
∫ t

0
dt

∫ L

0
dx
(
mφ̈− ksa2∂2

xφ
)
η = 0

Since η(x, t) is an arbitrary smooth function,
(
m∂2

t − ksa2∂2
x

)
φ = 0,

i.e. φ(x, t) obeys classical wave equation

General solutions of the form: φ+(x+ vt) + φ−(x− vt)
where v = a

√
ks/m is sound wave velocity and φ± are arbitrary smooth functions

x=-νt

φ+
φ–

x=νt

. Comments

• Low-energy collective excitations – phonons – are lattice vibrations
propagating as sound waves at constant velocity v

• Trivial behaviour of model is consequence of simplistic definition:

Lagrangian is quadratic in fields 7→ linear equation of motion

Higher order gradients in expansion (i.e. (∂2φ)2) 7→ dispersion

Higher order terms in potential (i.e. interactions) 7→ dissipation

• L is said to be a ‘free (i.e. non-interacting) scalar (i.e. one-component) field theory’

• In higher dimensions, field has vector components 7→ transverse and longintudinal modes

Variational principle is example of functional analysis
– useful (but not essential method for this course) – see lecture notes

Lecture Notes October 2006



Lecture II 4

Lecture II: Collective Excitations: From Particles to Fields

Quantising the Classical Field

Having established that the low energy properties of the atomic chain are represented by a
free scalar classical field theory, we now turn to the formulation of the quantum system.

. Canonical Quantisation procedure

Recall point particle mechanics:

1. Define canonical momentum, p = ∂ẋL

2. Construct Hamiltonian, H = pẋ− L(p, x)

3. Promote position and momentum to operators with canonical commutation relations

x 7→ x̂, p 7→ p̂, [p̂, x̂] = −i~, H 7→ Ĥ

Natural generalisation to continuous field:

1. Canonical momentum, π(x) ≡ ∂L
∂φ̇(x)

, i.e. applied to chain, π = ∂φ̇(mφ̇2/2) = mφ̇

2. Classical Hamiltonian

H[φ, π] ≡
∫
dx

Hamiltonian density H(φ, π)︷ ︸︸ ︷[
πφ̇− L(∂xφ, φ̇)

]
, i.e. H(φ, π) =

1

2m
π2 +

ksa
2

2
(∂xφ)2

3. Canonical Quantisation

(a) promote φ(x) and π(x) to operators: φ 7→ φ̂, π 7→ π̂

(b) generalise commutation relations, [π̂(x), φ̂(x′)] = −i~δ(x− x′)
N.B. [δ(x− x′)] = [Length]−1 (Ex.)

Operator-valued functions φ̂ and π̂ referred to as quantum fields

Ĥ represents a quantum field theoretical formulation of elastic chain, but not yet a solution.

As with any function, φ̂(x) and π̂(x) can be expressed as Fourier expansion:{
φ̂(x)
π̂(x)

=
1

L1/2

∑
k

e±ikx
{
φ̂k
π̂k

,

{
φ̂k
π̂k
≡ 1

L1/2

∫ L=Na

0
dx e∓ikx

{
φ̂(x)
π̂(x)

∑
k runs over all discrete wavevectors k = 2πm/L, m ∈ Z, Ex: confirm [π̂k, φ̂k′ ] = −i~δkk′

Advice: Maintain strict conventions(!) — we will pass freely between real and Fourier space.
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Lecture II 5

Hermiticity: φ̂†(x) = φ̂(x), implies φ̂†k = φ̂−k (similarly π̂). Using

∫ L

0
dx (∂φ̂)2 =

∑
k,k′

(ikφ̂k)(ik
′φ̂k′)

δk+k′,0︷ ︸︸ ︷
1

L

∫ L

0
dx ei(k+k′)x=

∑
k

k2φ̂kφ̂−k

Ĥ =
∑
k

[ 1

2m
π̂kπ̂−k+

mω2
k/2︷ ︸︸ ︷

ksa
2

2
k2 φ̂kφ̂−k

]
, ωk = v|k|, v = a(ks/m)1/2

i.e. ‘modes k’ decoupled
Comments:

• Ĥ describes low-energy excitations of system (waves)
in terms of microscopic constituents (atoms)

• However, it would be more desirable to develop picture where
relevant excitations appear as fundamental units:

. Quantum Harmonic Oscillator (Revisited)

Ĥ =
p̂2

2m
+

1

2
mω2q̂2

Defining ladder operators

â ≡
√
mω

2~

(
x̂+

i

mω
p̂

)
, â† ≡

√
mω

2~

(
x̂− i

mω
p̂

)
; Ĥ = ~ω

(
â†â+

1

2

)

If we find state |0〉 s.t. â|0〉 = 0 ; Ĥ|0〉 = ~ω
2 |0〉, i.e. |0〉 is g.s.

Using commutation relations [â, â†] = 1, one may then show |n〉 ≡ â†n|0〉
is eigenstate with eigenvalue ~ω(n+ 1

2)

 ! 

Comments: Although single-particle, a-representation suggests many-particle interpretation

• |0〉 represents ‘vacuum’, i.e. state with no particles

• â†|0〉 represents state with single particle of energy ~ω

• â†n|0〉 is n-body state, i.e. operator â† creates particles
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• In ‘diagonal’ form Ĥ = ~ω(â†â+ 1
2) simply counts particles (viz. â†â|n〉 = n|n〉)

and assigns an energy ~ω to each

. Returning to harmonic chain, consider

ak ≡
√
mωk
2~

(
φ̂k +

i

mωk
π̂−k

)
, a†k ≡

√
mωk
2~

(
φ̂−k −

i

mωk
π̂k

)
N.B. By convention, drop hat from operators a

with [ak, a
†
k′ ] =

i

2~

( −i~δkk′︷ ︸︸ ︷
[π̂−k, φ̂−k′ ] −[φ̂k, π̂k′ ]

)
= δkk′

. And obtain (Ex. - PS I)

Ĥ =
∑
k

~ωk
(
a†kak +

1

2

)

Elementary collective excitations of quantum chain (phonons)

created/annihilated by operators a†k and ak

Spectrum of excitations is linear ωk = v|k| (cf. relativistic)

Comments:

• Low-energy excitations of discrete model involve slowly varying collective modes;
i.e. each mode involves many atoms;

• Low-energy (k → 0) 7→ long-wavelength excitations,
i.e. universal, insensitive to microscopic detail;

• Allows many different systems to be mapped onto a few classical field theories;

• Canonical quantisation procedure for point mechanics generalises to quantum field theory;

• Simplest model actions (such as the one considered here) are quadratic in fields
– known as free field theory;

• More generally, interactions ; non-linear equations of motion viz. interacting QFTs.
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. Other examples? †Quantum Electrodynamics

EM field — specified by 4-vector potential A(x) = (φ(x),A(x)) (c = 1)

Classical action : S[A] =

∫
d4x L(A), L = −1

4
FµνF

µν

Fµν = ∂µAν − ∂νAµ — EM field tensor

Classical equation of motion:

Euler− Lagrange eqns.︷ ︸︸ ︷
∂AαL − ∂β

∂L
∂(∂βAα)

= 0 7→
Maxwell′s eqns.︷ ︸︸ ︷
∂αF

αβ = 0

Quantisation of classical field theory identifies elementary excitations: photons

for more details, see handout, or go to QFT!
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Lecture III: Second Quantisation

We have seen how the elementary excitations of the quantum chain can be presented
in terms of new elementary quasi-particles by the ladder operator formalism. Can this
approach be generalised to accommodate other many-body systems? The answer is provided
by the method of second quantisation — an essential tool for the development of interacting
many-body field theories. The first part of this section is devoted largely to formalism – the
second part to applications aimed at developing fluency. Reference: see, e.g., Feynman’s
book on “Statistical Mechanics”

. Notations and Definitions

Starting with single-particle Schrodinger equation,

Ĥ|ψλ〉 = ελ|ψλ〉

how can one construct many-body wavefunction?

ε nλλ

ε4
ε3

3
ε2
ε1

1

1

1

1

1

1

ε0

0

nλ

0

5

bosons fermions

Particle indistinguishability demands symmetrisation:
e.g. two-particle wavefunction for fermions i.e. particle 1 in state 1, particle 2...

ψF (x1, x2) ≡ 1√
2

(

state 1, particle 1︷ ︸︸ ︷
ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2))

In Dirac notation: |1, 2〉F ≡
1√
2

(|ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉)
N.B. ⊗ denotes outer product of state vectors

. General normalised, symmetrised, N -particle wavefunction
of bosons (ζ = +1) or fermions (ζ = −1)

|λ1, λ2, . . . λN〉 ≡
1√

N !
∏∞

λ=0 nλ!

∑
P

ζP |ψλP1
〉 ⊗ |ψλP2

〉 . . .⊗ |ψλPN 〉

• nλ — no. of particles in state λ; (for fermions, Pauli exclusion: nλ = 0, 1)
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Lecture III 9

• ∑P : Summation over N ! permutations of {λ1, . . . λN}
required by particle indistinguishability

• Parity P — no. of transpositions of two elements which brings permutation
(P1,P2, · · · PN) back to ordered sequence (1, 2, · · ·N)

In particular, for fermions, 〈x1, . . . xN |λ1, . . . λN〉 is Slater determinant, detψi(xj)

Evidently, “first quantised” representation looks clumsy!
motivates alternative representation...

. Second quantisation

Define vacuum state: |Ω〉, and set of field operators aλ and adjoints a†λ — no hats!

aλ|Ω〉 = 0,
1√∏∞
λ=0 nλ!

N∏
i=1

a†λi |Ω〉 = |λ1, λ2, . . . λN〉

cf. ladder operators for phonons N.B. ambiguity of ordering?

Field operators fulfil commutation relations for bosons (fermions)

[aλ, a
†
µ]−ζ = δλµ, [aλ, aµ]−ζ = [a†λ, a

†
µ]−ζ = 0

where [Â, B̂]−ζ ≡ ÂB̂ − ζB̂Â is the commutator (anti-commutator)

• Operator a†λ creates particle in state λ, and aλ annihilates it

• Commutation relations imply Pauli exclusion for fermions: a†λa
†
λ = 0

• Any N -particle wavefunction can be generated by application of set of
N operators to a unique vacuum state

e.g. |1, 2〉 = a†2a
†
1|Ω〉

• Symmetry of wavefunction under particle interchange maintained by
commutation relations of field operators

e.g. |1, 2〉 = a†2a
†
1|Ω〉 = ζa†1a

†
2|Ω〉 = ζ|2, 1〉

(Providing one maintains a consistent ordering convention,
the nature of that convention doesn’t matter)

+ a+a

a

0

a
...

a
F 1F 2 F 0

. Fock space: Defining FN to be linear span of all N -particle states |λ1, . . . λN〉,
Fock space F is defined as ‘direct sum’ ⊕∞N=0FN

operators a and a† connect different subspaces FN
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• General state |φ〉 of the Fock space is linear combination of states
with any no. of particles

• Note that vacuum |Ω〉 (sometimes written as |0〉) is distinct from zero!

. Change of basis:

Using resolution of identity 1 ≡∑λ |λ〉〈λ|, we have

a†
λ̃
|Ω〉︷︸︸︷
|λ̃〉 =

∑
λ

a†λ|Ω〉︷︸︸︷
|λ〉 〈λ|λ̃〉

i.e. a†
λ̃

=
∑
λ

〈λ|λ̃〉a†λ, and aλ̃ =
∑
λ

〈λ̃|λ〉aλ

e.g. Fourier representation: aλ ≡ ak, aλ̃ ≡ a(x)

a(x) =
∑
k

eikx/
√
L︷ ︸︸ ︷

〈x|k〉 ak, ak =
1√
L

∫ L

0

dx e−ikxa(x)

. Occupation number operator: n̂λ = a†λaλ measures no. of particles in state λ
e.g. (bosons)

a†λaλ(a
†
λ)
n|Ω〉 = a†λ

1 + a†λaλ︷︸︸︷
aλa

†
λ (a†λ)

n−1|Ω〉 = (a†λ)
n|Ω〉+ (a†λ)

2aλ(a
†
λ)
n−1|Ω〉 = · · · = n(a†λ)

n|Ω〉
Ex: check for fermions

So far we have developed an operator-based formulation of many-body states. However,
for this representation to be useful, we have to understand how the action of first quantised
operators on many-particle states can be formulated within the framework of the second
quantisation. To do so, it is natural to look for a formulation in the diagonal basis and
recall the action of the particle number operator. To begin, let us consider...

Second Quantised Representation of Operators

. One-body operators: i.e. operators which address only one particle at a time

Ô1 =

N∑
n=1

ôn, e.g. k.e. T̂ =

N∑
n=1

p̂2
n

2m

Suppose ô diagonal in orthonormal basis |λ〉, i.e. ô =
∑∞

λ=0 |λ〉oλ〈λ|, oλ = 〈λ|ô|λ〉
e.g. k.e., |λ〉 ≡ |p〉 and op = p2/2m

〈λ′1, · · ·λ′N |Ô1|λ1, · · ·λN 〉 =

(
N∑
i=1

oλi

)
〈λ′1, · · ·λ′N |λ1, · · ·λN 〉

= 〈λ′1, · · ·λ′N |
∞∑
λ=0

oλn̂λ|λ1, · · ·λN 〉,
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Since this holds for any basis state, Ô1 =

∞∑
λ=0

oλn̂λ =

∞∑
λ=0

oλa
†
λaλ

i.e. in diagonal representation, simply count number of particles in state λ
and multipy by corresponding eigenvalue of one-body operator

Transforming to general basis (recall aλ =
∑

ν〈λ|ν〉aν)

Ô1 =
∑
λµν

〈µ|λ〉oλ〈λ|ν〉a†µaν =
∑
µν

〈µ|ô|ν〉a†µaν

i.e. Ô1 scatters particle from state ν to µ with probability amplitude 〈µ|ô|ν〉

. Examples of one-body operators:

1. Total number operator: N̂ =
∫
dx a†(x)a(x) =

∑
k a
†
kak

2. Electron spin operator: Ŝ =
∑

αβ Sαβa
†
αaβ, Sαβ = 〈α|Ŝ|β〉 = 1

2σαβ
where α =↑, ↓, and σ are Pauli spin matrices

σz =

(
1 0
0 −1

)
7→ Ŝz =

1

2
(n̂↑ − n̂↓), σ+ = σx + iσy =

(
0 1
0 0

)
7→ Ŝ+ = a†↑a↓

3. Free particle Hamiltonian

∑
p

p2

2m
a†pap

Ex.
=

∫ L

0
dx a†(x)

(−~2∂2
x)

2m
a(x)

i.e. Ĥ = T̂ + V̂ =

∫ L

0
dx a†(x)

[
p̂2

2m
+ V (x)

]
a(x) where p̂ = −i~∂x

. Two-body operators: i.e. operators which address two-particles

E.g. symmetric pairwise interaction: V (x, x′) ≡ V (x′, x) (such as Coulomb)
acting between two-particle states N.B. 1/2 for double counting

V̂ =
1

2

∫
dx

∫
dx′ |x, x′〉V (x, x′)〈x, x′|

When acting on N -body states,

V̂ |x1, x2, · · ·xN 〉 =
1

2

N∑
n6=m

V (xn, xm)|x1, x2, · · ·xN 〉

In second quantised form, it is straightforward to show that (Ex.)

V̂ =
1

2

∫
dx

∫
dx′ a†(x)a†(x′)V (x, x′)a(x′)a(x)
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i.e. annihilation operators check for presence of particles at x and x’ – if they exist, asign the
potential energy and then recreate particles in correct order (viz. statistics)

N.B.
1

2

∫
dx

∫
dx′ V (x, x′)n̂(x)n̂(x′) does not reproduce the two-body operator

. In non-diagonal basis

Ô2 =
∑
λλ′µµ′

Oµ,µ′,λ,λ′a†µ′a†µaλaλ′ , Oµ,µ′,λ,λ′ ≡ 〈µ, µ′|Ô2|λ, λ′〉

e.g. in Fourier basis: a†(x) =
1

L1/2

∑
k

eikxa†k can show that (Ex.)

1

2

∫
dxdx′ a†(x)a†(x′)V (x− x′)a(x′)a(x) =

∑
k1,k2,q

V (q)a†k1
a†k2

ak2+qak1−q

Feynman diagram:

k’,σ’

k’+q,σ’ k–q,σ

k,σ
V(q)
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Lecture IV: Applications of Second Quantisation

1. Phonons: oscillator states |k〉 form a Fock space:
for each mode k, arbitrary state of excitation can be created from vacuum

|k〉 = a†k|Ω〉, ak|Ω〉 = 0, [ak, a
†
k′ ] = δkk′

Hamiltonian, Ĥ =
∑

k ~ωk(a
†
kak + 1/2) is diagonal:

|k1, k2, ...〉 = a†k1
a†k2
· · · |Ω〉 is eigenstate of Ĥ with energy ~ωk1 + ~ωk2 + · · ·

2. Interacting Electron Gas

(i) Free-electron Hamiltonian

Ĥ(0) =
∑
σ=↑,↓

∫
dx c†σ(x)

[
p̂2

2m
+ V (x)

]
cσ(x), [cσ(x), c†σ′(x

′)] = δ(x− x′)δσ,σ′

(ii) Interacting electron gas:

Ĥ = Ĥ(0) +
1

2

∫
dx

∫
dx′
∑
σσ′

c†σ(x)c†σ′(x
′)

e2

|x− x′|cσ′(x
′)cσ(x)

. Comments:

. Phonon Hamiltonian is example of ‘free field theory’:
involves field operators at only quadratic order...

. (whereas) electron Hamiltonian is typical of an interacting field theory
and is infinitely harder to analyze...

To familiarise ourselves with second quantisation, in the remainder of this and the next
lecture, we will explore several case studies: ‘Atomic limit’ of strongly interacting elec-
tron gas: electron crystallisation and Mott transition; Quantum magnetism; and weakly
interacting Bose gas

Tight-binding and the Mott transition

According to band picture of non-interacting electrons, a 1/2-filled band of states is metallic.
But strong Coulomb interaction of electrons can effect a transition to a crystalline phase in
which electrons condense into an insulating magnetic state – Mott transition. We will employ
the second quantisation to explore the basis of this phenomenon.

. ‘Atomic Limit’ of crystal

How do atomic orbitals broaden into band states? Show transparencies
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!
0

!
1

"0

"1

V(x)

x

Es=1

s=0 "0A

E

"0B

"1A

"1B

(n!1)a

E !/ aE

k0

a

x

(n+1)ana

Weak overlap of tightly bound orbital states 7→ narrow band of Bloch states |ψks〉,
specified by band index s, k ∈ [−π/a, π/a] in first Brillouin zone.

Bloch states can be used to define ‘Wannier basis’, cf. discrete Fourier decomposition

|ψns〉 ≡
1√
N

B.Z.∑
k∈[−π/a,π/a]

e−ikna|ψks〉, |ψks〉 ≡
1√
N

N∑
n=1

eikna|ψns〉, k =
2π

Na
m

!n0(x)

(n!1)a

x

(n+1)ana

In ‘atomic limit’, Wannier states |ψns〉 mirror atomic orbital |s〉 on site n

Field operators associated with Wannier basis:

c†ns|Ω〉︷ ︸︸ ︷
|ψns〉 =

∫
dx

c†(x)|Ω〉︷︸︸︷
|x〉

ψns(x)︷ ︸︸ ︷
〈x|ψns〉

c†ns ≡
∫
dx ψns(x)c†(x)

and using completeness
∑

ns ψ
∗
ns(x

′)ψns(x) = δ(x− x′)

c†(x) =
∑
ns

ψ∗ns(x)c†ns, [cns, c
†
n′s′ ]+ = δnn′δss′
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i.e. (if we include spin index σ) operators c†nsσ/cnsσ create/annihilate electrons at site n in
band s with spin σ

. In atomic limit, bands are well-separated in energy.
If electron densities are low, we may focus on lowest band s = 0.

Transforming to Wannier basis,

Ĥ =
∑
σ=↑,↓

∫
dx c†σ(x)

[
p̂2

2m
+ V (x)

]
cσ(x)

+
1

2

∫
dx

∫
dx′
∑
σσ′

c†σ(x)c†σ′(x
′)V (x− x′)cσ′(x′)cσ(x)

=
∑
mn,σ

tmnc
†
mσcnσ +

∑
mnrs,σσ′

Umnrsc
†
mσc

†
nσ′crσ′csσ′

where “hopping” matrix elements tmn = 〈ψm|[ p̂
2

2m + V (x)]|ψn〉 = t∗nm and “interaction pa-
rameters”

Umnrs =
1

2

∫
dx

∫
dx′ψ∗m(x)ψ∗n(x′)

e2

|x− x′|ψr(x
′)ψs(x)

(For lowest band) representation is exact:
but, in atomic limit, matrix elements decay exponentially with lattice separation

(i) “Tight-binding” approximation:

tmn =

{ ε m = n
−t mn neighbours
0 otherwise

, Ĥ(0) '
∑
nσ

ε c†nσcnσ − t
∑
nσ

(
c†n+1σcnσ + h.c.

)

In discrete Fourier basis: c†nσ =
1√
N

B.Z.∑
k∈[−π/a,π/a]

e−iknac†kσ

−t
N∑
nσ

(
c†n+1σcnσ + h.c.

)
= −t

∑
kk′σ

δkk′︷ ︸︸ ︷
1

N

∑
n

e−i(k−k
′)na e−ikac†kσck′σ + h.c. = −2t

∑
kσ

cos(ka) c†kσckσ

Ĥ(0) =
∑
kσ

(ε− 2t cos ka)c†kσckσ

//a

¡ (k)

//a k-

B.Z.

As expected, as k → 0, spectrum becomes free electron-like:
εk → ε− 2t+ t(ka)2 + · · · (with m∗ = ~2/2a2t)

(ii) Interaction
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• Focusing on lattice sites m 6= n:

1. Direct terms Umnnm ≡ Vmn — couple to density fluctuations:
∑

m 6=n Vmnn̂mn̂n
; potential for charge density wave instabilities

2. Exchange coupling JFmn ≡ Umnmn (Ex. – see handout)∑
m6=n,σσ′

Umnmnc
†
mσc

†
nσ′cmσ′cnσ = −2

∑
m 6=n

JFmn

(
Ŝm · Ŝn +

1

4
n̂mn̂n

)
, Ŝm =

1

2
c†mασαβcmβ

i.e. weak ferromagnetic coupling (JF > 0) cf. Hund’s rule in atoms

spin alignment 7→ symmetric spin state and asymmetric spatial state lowers p.e.

But, in atomic limit, both Vmn and JFmn exponentially small in separation |m− n|a

• ‘On-site’ Coulomb or ‘Hubbard’ interaction∑
nσσ′

Unnnnc
†
nσc
†
nσ′cnσ′cnσ = U

∑
n

n̂n↑n̂n↓, U ≡ 2Unnnn

. Minimal model for strong interaction: Mott-Hubbard Hamiltonian

Ĥ = −t
∑
nσ

(c†n+1σcnσ + h.c.) + U
∑
n

n̂n↑n̂n↓

...could have been guessed on phenomenological grounds

Transparencies on Mott-Insulators and the Magnetic State
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Lecture V: Quantum Magnetism and the Ferromagnetic Chain

N 1 2

. Spin S Quantum Heisenberg Magnet spin analogue of discrete harmonic chain

Ĥ = −J
N∑
m=1

Ŝm · Ŝm+1 p.b.c. Ŝn+N = Ŝn

Sign of exchange constant J depends on material parameters c.f. previous lecture.

Our aim is to uncover ground states and nature of low-energy (collective) excitations.

. Classical ground states

• Ferromagnet: all spins aligned along a given (arbitrary) direction
⇒ manifold of continuous degeneracy (cf. crystal)

• Antiferromagnet: Néel state – (where possible) all neighbouring spins antiparallel

. Quantum ground states:

Ĥ = −J
∑
m

[
ŜzmŜ

z
m+1+

1

2
(Ŝ+

mŜ
−
m+1 + Ŝ−mŜ

+
m+1)︷ ︸︸ ︷

ŜxmŜ
x
m+1 + ŜymŜ

y
m+1

]
where Ŝ± = Ŝx ± iŜy denotes spin raising/lowering operator

• Ferromagnet: as classical, e.g. |g.s.〉 = ⊗Nm=1|Szm = S〉

No spin dynamics in |g.s.〉, i.e. no zero-point energy! (cf. phonons)

Manifold of degeneracy explored by action of total spin lowering operator
∑

m Ŝ
−
m

• Antiferromagnet: spin exchange interaction (viz. Ŝ+
mŜ
−
m+1) ; zero point fluctuations

which, depending on dimensionality, may or may not destroy ordered ground state

.Elementary excitations

Development of ordered state breaks continuous spin rotation symmetry ; low-energy
collective excitations (spin waves or magnons) – cf. phonons in a crystal
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Example of general principle known as Goldstone’s theorem: Breaking of a continuous
symmetry accompanied by appearance of gapless excitations

However, as with lattice vibrations, ‘general theory’ is nonlinear.
Fortunately, low-energy excitations described by free theory

To see this, for large spin S, it is helpful to switch to representation in which spin
deviations are parameterised as bosons:

|Sz = S〉 |n = 0〉
|Sz = S − 1〉 |n = 1〉
...

...
|Sz = −S〉 |n = 2S〉

i.e. a maximum of n bosons per lattice site (“softcore” constraint)

For ferromagnet with spins oriented along z-axis,
the g.s. coincides with vacuum |g.s.〉 ≡ |Ω〉, i.e. am|Ω〉 = 0

Mapping useful when spin wave excitation involves n� 2S

. Mapping of operators:

(Setting ~ = 1) operators obey quantum spin algebra

[Ŝα, Ŝβ] = iεαβγŜγ ; [Ŝ+, Ŝ−] = 2Ŝz, [Ŝz, Ŝ±] = ±Ŝ±

cf. bosons: [a, a†] = 1

According to mapping, Ŝz = S − a†a;
therefore, to leading order in S � 1 (spin-wave approximation),

Ŝ− ' (2S)1/2a†, Ŝ+ ' (2S)1/2a

In fact, exact mapping provided by Holstein-Primakoff transformation (Ex.)

Ŝ− = a†
(
2S − a†a

)1/2
, Ŝ+ = (Ŝ−)†, Ŝz = S − a†a

. Applied to ferromagnetic Heisenberg spin S chain, ‘spin-wave’ approximation:

Ĥ = −J
N∑
m=1

{
ŜzmŜ

z
m+1 +

1

2
(Ŝ+

mŜ
−
m+1 + Ŝ−mŜ

+
m+1)

}
= −J

∑
m

{
S2 − S(a†mam − a†m+1am+1) + S(ama

†
m+1 + a†mam+1) +O(S0)

}
= −J

∑
m

{
S2 − 2Sa†mam + S

(
a†mam+1 + h.c.

)
+O(S0)

}
with p.b.c. Ŝm+N = Ŝm and am+N = am
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To leading order in S, Hamiltionian is bilinear in Bose operators;
diagonalised by discrete Fourier transform (Ex.)

a†k =
∑
n

eikn/
√
N︷ ︸︸ ︷

〈n|k〉 a†n, a†n =
1√
N

B.Z.∑
k

e−ikna†k, [ak, a
†
k′ ] = δkk′

Noting

∑
m

(a†mam+1 + h.c.) =
∑
kk′

δkk′︷ ︸︸ ︷
1

N

∑
m

e−i(k−k
′)m e−ikaa†kak′ + h.c. =

∑
k

cos k a†kak

Ĥ = −JNS2 +
B.Z.∑
k

ωka
†
kak +O(S0), where ωk = 2JS(1− cos k) = 4JS sin2(k/2)

At low energy (k → 0), spin waves have free particle-like spectrum

Terms of higher order in S ; spin-wave interactions

2N 1

. Spin S Quantum Heisenberg Antiferromagnet

Ĥ = J

N∑
m=1

Ŝm · Ŝm+1, J > 0, p.b.c. Ŝm+N = Ŝm
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Classical (Néel) ground state no longer an eigenstate;
nevertheless, it serves as useful reference for spin-wave expansion

In this case, useful to rotate spins on one sublattice, say B, through 180o about x,

i.e. ŜxB 7−→ ŜxB, ŜyB 7−→ −ŜyB, ŜzB 7−→ −ŜzB
Transformation is said to be canonical in that it respects spin commutation relations

Under mapping Ŝ±B 7−→ Ŝ∓B

Ĥ = −J
∑
m

[
ŜzmŜ

z
m+1 −

1

2
(Ŝ+

mŜ
+
m+1 + Ŝ−mŜ

−
m+1)

]
In rotated frame, classical ground state is ferromagnetic

but Ŝ−mŜ
−
m+1 ; zero-point fluctuations (ZPF)

Applying spin wave approximation: Ŝzm = S − a†mam, Ŝ−m ' (2S)1/2a†m, etc.

Ĥ = −NJS2 + JS
∑
m

[
a†mam + a†m+1am+1 + amam+1 + a†ma

†
m+1

]
+O(S0)

; processes that do not conserve particle number! (ZPF)

Turning to Fourier representation: am = 1
N1/2

∑
k e

ikmak, etc., and using

N∑
m=1

amam+1 =
∑
kk′

δk+k′,0︷ ︸︸ ︷
1

N

N∑
m=1

ei(k+k′)m eikak′ak =
∑
k

a−kake
ik ≡

∑
k

a−kak

γk = cos k︷ ︸︸ ︷
1

2
(eik + e−ik)

Ĥ = −NJS2 + JS
∑
k

[a†kak+

aka
†
k − 1︷︸︸︷
a†kak +γk(a−kak + a†ka

†
−k)]

= −NJS(S + 1) + JS
∑
k

( a†k a−k )

(
1 γk
γk 1

)(
ak
a†−k

)
+O(S0)

To diagonalise Ĥ, we must implement only operator transformations that preserve
canonical commutation relations:

i.e. setting A =

(
ak
a†−k

)
(k index suppressed), we must implement transformations

A 7→ Ã = LA such that [Ãi, Ã
†
j] = [Ai, A

†
j] = gij, with g =

(
1 0
0 −1

)
Consider operator transformation A 7→ Ã = LA; we require

[Ãi, Ã
†
j]

!
= gij = LimL

∗
nj[Am, A

†
n] = (L g L†)ij

i.e. L belongs to the group of Lorentz transformations. For real elements,

L =

(
cosh θk sinh θk
sinh θk cosh θk

)
Bogoliubov transformations

Lecture Notes October 2006



Lecture VI 21

Lecture VI: Bogoliubov Theory

Inverse transformation

A = L−1Ã,

(
ak
a†−k

)
=

(
cosh θk − sinh θk
− sinh θk cosh θk

)(
αk
α†−k

)
Applied to Hamiltonian,

A†
(

1 γk
γk 1

)
A = Ã†L−1

(
1 γk
γk 1

)
L−1Ã

= Ã†
(

cosh(2θk)− γk sinh(2θk) γk cosh(2θk)− sinh(2θk)
as “12” as “11”

)
Ã

if tanh(2θk) = γk, off-diagonal elements vanish.

With cosh(2θk) =
1

(1− tanh2(2θk))1/2
=

1

(1− γ2
k)

1/2

diagonal elements given by (1− γ2
k)

1/2 = | sin k|, i.e.

Ĥ = −NJS(S + 1) + JS
∑
k

| sin k|
(
α†kαk + α−kα

†
−k

)
+O(S0)

= −NJS(S + 1) + 2JS
∑
k

| sin k|
[
α†kαk +

1

2

]
+O(S0)

Ground state defined by αk|g.s〉
and spectrum of excitations are linear (i.e. relativistic), (cf. phonons, photons, etc.)

Experiment?

. Do ZPF destroy long-range order?
Referring to sublattice magnetisation

〈g.s.| 1
N

∑
n

(−1)nŜzn|g.s.〉 = S − 〈g.s.| 1
N

∑
k

a†kak|g.s.〉

= S − 1

N

∑
k

〈g.s.|(− sinh θkα−k + cosh θkα
†
k)(cosh θkαk − sinh θkα

†
−k)|g.s.〉

= S − 1

N

∑
k

sinh2 θk = S −
∫

ddk

(2π)d
1

2

[
(1− γ2

k)
−1/2 − 1

]
∼
∫ 1/a

0

kd−1dk
1

k
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i.e. quantum fluctuations destroy long range AFM order in 1d – spin liquid

. Frustration

On “bipartite” lattice, AF LRO survives ZPF in d > 1

For non-bipartite lattice (e.g. triangular), system is said to be frustrated
; spin liquid phase in higher dimension

Bogoliubov Theory of weakly interacting Bose gas

Although strong interactions can lead to the formation of unusual ground states of electron
system, the properties of the weakly interacting system mirror closely the trivial behaviour of the
non-interacting Fermi gas. By contrast, even in the weakly interacting system, the Bose gas has
the capacity to form a correlated phase known as a Bose-Einstein condensate. The aim of this
lecture is to explore the nature of the ground state and the character of the elementary excitation
spectrum in the condensed phase.

Consider N bosons confined to volume Ld. If non-interacting, at T = 0 all bosons

condensed in lowest energy state of single-particle system, viz. |g.s.〉0 =
1√
N !

(a†0)N |Ω〉
How is g.s. and excitation spectrum influenced by weak (repulsive) interaction?

Ĥ =
∑
k

ε
(0)
k︷ ︸︸ ︷

~2k2

2m
a†kak+

ĤI︷ ︸︸ ︷
1

2

∫
ddx ddx′ a†(x)a†(x′)V (x− x′)a(x′)a(x)

ĤI =
1

2Ld

∑
k,k′,q

V (q) a†k′a
†
kak−qak′+q

If interaction is sufficiently weak, g.s. still condensed

with lowest single-particle state macroscopically occupied, i.e.
Nk=0

N
= O(1)

Therefore, since N̂0 = a†k=0ak=0 = O(N)� 1 and a0a
†
0 − a†0a0 = 1,

a0 and a†0 can be approximated by C-number
√
N0

Taking (for simplicity) V (q) = V const.,
i.e. a contact interaction V (x− x′) = V δd(x− x′), expansion in N0 obtains

ĤI =
V

2Ld
N2

0 +
V

Ld
N0

∑
k 6=0

[
2a†kak +

1

2

(
a−kak + a†ka

†
−k

)]
+O(N

1/2
0 )

cf. quantum AF in spin-wave approximation

N.B. Momentum conservation eliminates terms at O(N
3/2
0 )

. Physical interpretation of components:
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• V a†kak represents the ‘Hartree-Fock energy’ of excited particles interacting with condensate
N.B. Contact interaction disguises presence of direct and exchange contributions

• V (a−kak + a†ka
†
−k) represents creation or annihilation of particle pairs from condensate

Note that, in this approximation, total no. of particles is not conserved

Finally, using N = N0 +
∑
k 6=0

a†kak to trade N0 for N , and defining density, n =
N

Ld

Ĥ =
V nN

2
+
∑
k 6=0

[(
ε
(0)
k + V n

)
a†kak +

V n

2

(
a−kak + a†ka

†
−k

)]
As with quantum AF, Ĥ diagonalised by Bogoluibov transformation:(

ak
a†−k

)
=

(
cosh θk − sinh θk
− sinh θk cosh θk

)(
αk

α†−k

)
, with tanh(2θk) =

V n

ε
(0)
k + V n

Ĥ =
V nN

2
− 1

2

∑
k 6=0

(ε
(0)
k + nV ) +

∑
k 6=0

εk︷ ︸︸ ︷[(
ε
(0)
k + V n

)2
− (V n)2

]1/2 (
α†kαk +

1

2

)

In particular, for |k| → 0, low-energy excitations have linear (relativistic)

dispersion, εk = [ε
(0)
k (2V n+ ε

(0)
k )]1/2 ' ~c|k| with ‘sound’ speed c =

(
V n

m

)1/2

.

At high energies (|k| > k0 = mc/~), spectrum becomes free particle-like.

. †Ground state wavefunction: defined by condition αk|g.s.〉 = 0

Since Bogoluibov transformation can be written as αk = ÛakÛ
−1 where (exercise)

Û = exp

∑
k 6=0

θk
2

(a†ka
†
−k − aka−k)


may infer true g.s. from non-interacting g.s. as |g.s.〉 = Û |g.s.〉0

. Experiment? transparencies

When cooled to T ∼ 2K, liquid 4He undergoes transition to Bose-Einstein condensed state

Neutron scattering can be used to infer spectrum of collective excitations

In Helium, steric interactions are strong and at higher energy scales
an important second branch of excitations known as rotons appear

A second example of BEC is presented by ultracold atomic gases:

By confining atoms to a magnetic trap, time of flight measurements
can be used to monitor momentum distribution of condensate

Moreover, the perturbation imposed by a laser due to the optical
dipole interaction provides a means to measure the sound wave velocity
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Lecture VII: Feynman Path Integral

. Motivation:

• Alternative formulation of QM (cf. canonical quantisation)

• Close to classical construction — i.e. semi-classics easily accessed

• Effective formulation of non-perturbative approaches

• Prototype of higher-dimensional field theories

. Time-dependent Schrödinger equation

i~∂t|Ψ〉 = Ĥ|Ψ〉

Formal solution: |ψ(t)〉 = e−iĤt/~|ψ(0)〉 =
∑
n

e−iEnt/~|n〉〈n|ψ(0)〉

. Time-evolution operator

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = e−
i
~ Ĥ(t′−t)θ(t′ − t) N.B. Causal

• Real-space representation:

Ψ(q′, t′) ≡ 〈q′|Ψ(t′)〉 = 〈q′|Û(t′, t)

∫
dq|q〉〈q|
∧ |Ψ(t)〉 =

∫
dq U(q′, t′; q, t)Ψ(q, t),

where U(q′, t′; q, t) = 〈q′|e− i
~ Ĥ(t′−t)|q〉θ(t′ − t) — propagator or Green function:(

i~∂t′ − Ĥ
)
Û(t′ − t) = i~δ(t′ − t) N.B. ∂t′θ(t

′ − t) = δ(t′ − t)

Physically: U(q′, t′; q, t) describes probability amplitude for particle to propagate
from q at time t to q′ at time t′

. Construction of Path Integral

Feynman’s idea: divide time evolution into N →∞ discrete time steps ∆t = t/N

e−iĤt/~ = [e−iĤ∆t/~]N

Then separate the operator content so that momentum operators stand to the left
and position operators to the right:

e−iĤ∆t/~ = e−iT̂∆t/~e−iV̂∆t/~ +O(∆t2)

〈qF |[e−iĤ∆t/~]N |qI〉 ' 〈qF |∧e
−iT̂∆t/~e−iV̂∆t/~

∧ . . .∧e
−iT̂∆t/~e−iV̂∆t/~|qI〉
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Inserting at ∧ resol. of id. =

∫
dqn

∫
dpn|qn〉〈qn|pn〉〈pn|, and using 〈q|p〉 =

1√
2π~

eiqp/~,

e−iV̂∆t/~|qn〉〈qn|pn〉〈pn|e−iT̂∆t/~ = |qn〉e−iV (qn)∆t/~〈qn|pn〉e−iT (pn)∆t/~〈pn|,
and 〈pn+1|qn〉〈qn|pn〉 =

1

2π~
eiqn(pn−pn+1)

〈qF |e−iĤt/~|qI〉 =

∫ N−1∏
n=1

qN=qF ,q0=qI

dqn

N∏
n=1

dpn
2π~

exp

[
− i
~

∆t
N−1∑
n=0

(
V (qn) + T (pn+1)− pn+1

qn+1 − qn
∆t

)]

q
I

qF

tn

p

0N N–1

p
h
ase sp

ace

t

i.e. at each time step, integration over the classical phase space coords. xn ≡ (qn, pn)

Contributions from trajectories where (qn+1 − qn)pn+1 > ~ are negligible
— motivates continuum limit

〈qF |e−iĤt/~|qI〉 =

∫
q(t)=qF ,q(0)=qI

D(q, p)︷ ︸︸ ︷∫ N−1∏
n=1

qN=qF ,q0=qI

dqn

N∏
n=1

dpn
2π~

exp
[
− i

~

∫ t

0

dt′︷ ︸︸ ︷
∆t

N−1∑
n=0

(

H(q, p|t′=tn)︷ ︸︸ ︷
V (qn) + T (pn+1) −

pq̇|t′=tn︷ ︸︸ ︷
pn+1

qn+1 − qn
∆t

)
]

Propagator expressed as functional integral:
Hamiltonian formulation of Feynman Path Integral

〈qF |e−iĤt/~|qI〉 =

∫
q(t)=qF ,q(0)=qI

D(q, p) exp
[ i
~

Action︷ ︸︸ ︷∫ t

0

dt′

Lagrangian︷ ︸︸ ︷
(pq̇ −H(p, q))

]
Quantum transition amplitude expressed as sum over all possible phase space

trajectories (subject to appropriate b.c.) and weighted by classical action
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. Lagrangian formulation: for “free-particle” Hamiltonian H(p, q) = p2

2m
+ V (q)

〈qF |e−iĤt/~|qI〉 =

∫
q(t)=qF ,q(0)=qI

Dq e−(i/~)
∫ t
0 dt
′V (q)

∫
Dp

Gaussian integral on p︷ ︸︸ ︷
exp

[
− i
~

∫ t

0

dt′
(
p2

2m
− pq̇

)]

p2

2m
− pq̇ 7→ 1

2m

p′
2︷ ︸︸ ︷

(p−mq̇)2 −1

2
mq̇2

Functional integral justified by discretisation

〈qF |e−iĤt/~|qI〉 =

∫
q(t)=qF ,q(0)=qI

Dq exp

[
i

~

∫ t

0

dt′
(
mq̇2

2
− V (q)

)]

Dq → D̃q = lim
N→∞

(
Nm

it2π~

)N/2 N−1∏
n=1

dqn

. Connection of path integral to classical statistical mechanics

Consider flexible string held under constant tension, T ,
and confined to ‘gutter-like’ potential, V (u)

x

u

V(u)

i.e. u(x) is displacement from potential minimum

Potential energy stored in spring due to line tension:

from x to x+ dx, dVT = T

extension︷ ︸︸ ︷
[(dx2 + du2)1/2 − dx]' T

2
dx (∂xu)2

VT [∂xu] ≡
∫
dVT =

1

2

∫ L

0

dx T (∂xu(x))2

and from external (gutter) potential: Vext[u] ≡
∫ L

0
dx V [u(x)]

According to Boltzmann principle,
equilibrium partition function of periodic system (β = 1/kBT )

Z = tr
(
e−βF

)
=

∫
u(L)=u(0)

Du(x) exp

[
−β
∫ L

0

dx

(
T

2
(∂xu)2 + V (u)

)]
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“tr” denotes sum over configurations, cf. quantum transmission amplitude

. Mapping:

〈q′|e−iĤt/~|q〉 =

∫
Dq(t) exp

[
i

~

∫ t

0

dt′
(
mq̇2

2
− V (q)

)]
Wick rotation t→ −iτ 7→ imaginary (Euclidean) time path integral∫ t

0

idt′ (∂t′q)
2 −→ −

∫ τ

0

dτ ′(∂τ ′q)
2, −

∫ t

0

idt′V (q) −→ −
∫ τ

0

dτ ′V (q)

〈q′|e−iĤt/~|q〉 =

∫
Dq exp

[
−1

~

∫ τ

0

dτ ′
(m

2
(∂τ ′q)

2 + V (q)
)]

N.B. change of relative sign!

(a) Classical partition function of 1d system coincides with QM amplitude

Z =

∫
dq 〈q|e−iĤt/~|q〉

∣∣∣
t=−iτ

where time is imaginary, and ~ play role of temperature, 1/β

Generally, path integral for quantum field φ(q, t) in d space dimensions
corresponds to classical statistical mechanics of d+ 1-dim. system

(b) Quantum partition function

Z = tr(e−βĤ) =

∫
dq 〈q|e−βĤ |q〉

i.e. Z is transition amplitude 〈q|e−iĤt/~|q〉 evaluated at imaginary time t = −i~β.

(c) Semi-classics

As ~→ 0, PI dominated by stationary config. of action S[p, q] =
∫
dt(pq̇ −H(p, q))

δS = S[p+ δp, q + δq]− S[p, q] =

∫
dt [δp q̇ + p δq̇ − δp ∂pH − δq ∂qH] +O(δp2, δq2, δpδq)

=

∫
dt [δp (q̇ − ∂pH) + δq (−ṗ− ∂qH)] +O(δp2, δq2, δpδq)

i.e. Hamilton’s classical e.o.m.: q̇ = ∂pH, ṗ = −∂qH with b.c. q(0) = qI , q(t) = qF

Similarly, with Lagrangian formulation: δS = 0 ⇒ ∂t(∂q̇L)− ∂qL = 0

What about contributions from fluctuations around classical paths?

Usually, exact evaluation of PI impossible — must resort to approximation schemes...

. saddle-point and stationary phase analysis
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Principle: consider integral over single variable,

I =

∫ ∞
−∞

dz e−f(z)

Expect integral to be dominated by minima of f(z); suppose unique i.e. f ′(z0) = 0

f(z) = f(z0) + (z − z0)

7→ 0︷ ︸︸ ︷
f ′(z0) +

1

2
(z − z0)2f ′′(z0) + · · ·

I ' e−f(z0)

∫ ∞
−∞

dz e−(z−z0)2f ′′(z0)/2 =

√
2π

f ′′(z0)
e−f(z0)

Example :

= s! if s ∈ Z︷ ︸︸ ︷
Γ(s+ 1) =

∫ ∞
0

dz zse−z =

∫ ∞
0

dz e−f(z), f(z) = z − s ln z

f ′(z) = 1− s

z
i.e. z0 = s, f ′′(z0) =

s

z2
0

=
1

s
i.e. Γ(s+ 1) '

√
2πse−(s−s ln s) — Stirling’s formula

If minima not on integration contour – deform contour through saddle-point
e.g. Γ(s+ 1), s complex

What if exponent pure imaginary? Fast phase fluctuations ; cancellation
i.e. expand around region of slowest (i.e. stationary) phase and use identity∫ ∞

−∞
dz eiaz

2/2 =

√
2π

a
eiπ/4

. Can we apply same approach to analyse PI? Yes
but we must develop basic tool of QFT – Gaussian functional integral!
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Lecture VIII: Quantum Harmonic Oscillator

. Free particle propagator: Difficult to obtain from PI, but useful for normalization,

and easily obtained from equation for Green function, (i~∂t − Ĥ)Ĝfree(t) = i~δ(t),
which in Euclidean time t = −iτ becomes a diffusion equation,(

~∂τ −
~2∇2

2m

)
Gfree(qF, qI, t) = ~δ(qF − qI)δ(τ)

Solution: (PS3)

Gfree(qF , qI ; t) ≡ 〈qF |e−ip̂
2t/2m~|qI〉θ(t) =

( m

2πi~t

)1/2

exp

[
i

~
m(qF − qI)2

2t

]
θ(t)

. Quantum particle in single (symmetric) well: V (q) = V (−q)

e.g. QM amplitude

V

q

ω

G(0, 0; t) ≡ 〈0|e−iĤt/~|0〉 θ(t) =

∫
q(t)=q(0)=0

Dq exp

[
i

~

∫ t

0

dt′
(
mq̇2

2
− V (q)

)]
. Evaluate PI by stationary phase approx: general recipe

(i) Parameterise path as q(t) = qcl(t) + r(t) and expand action in r(t)

S[q̄ + r] =

∫ t

0

dt′
[m

2

q̇cl
2 + 2q̇clṙ + ṙ2︷ ︸︸ ︷
(q̇cl + ṙ)2 −

V (qcl) + rV ′(qcl) +
r2

2
V
′′
(qcl) + · · ·︷ ︸︸ ︷

V (qcl + r)
]

= S[qcl] +

∫ t

0

dt′r(t′)

δS
δq(t′) =0︷ ︸︸ ︷

[−mq̈cl − V ′(qcl)] +
1

2

∫ t

0

dt′r(t′)

δ2S
δq(t′)δq(t′′)︷ ︸︸ ︷[

−m∂2
t′ − V ′′(qcl)

]
r(t′) + · · ·

(ii) Classical trajectory: mq̈cl = −V ′(qcl)

Many solutions – choose non-singular qcl = 0, i.e. S[qcl] = 0 and V ′′(qcl) = mω2 const.

G(0, 0; t) '
∫
r(0)=r(t)=0

Dr exp

[
i

~

∫ t

0

dt′r(t′)
m

2

(
−∂2

t′ − ω2
)
r(t′)

]
N.B. if V was quadratic, expression trivially exact
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More generally, qcl(t) non-trivial 7→ non-vanishing S[qcl] — see PS3

Fluctuations? — example of a...

. Gaussian functional integration: mathematical interlude

• One variable Gaussian integral: (
∫∞
−∞ dv e

−av2/2)2 = 2π
∫∞

0
r dr e−ar

2/2 = 2π
a∫ ∞

−∞
dv e−

a
2
v2

=

√
2π

a
, Re a > 0

• Many variables: ∫
dv e−

1
2
vTAv = (2π)N/2det A−1/2

A is +ve definite real symmetric N ×N matrix

Proof: A diagonalised by orthogonal trans: D = OAOT

Change of variables: v = OTw (Jacobian det(O) = 1) ; N decoupled Gaussian

integrations: vTAv = wTDw =
∑N

i diw
2
i and

∏N
i=1 di = det D = det A

• Infinite number of variables; interpret {vi} 7→ v(t) as continuous field and

Aij 7→ A(t, t′) = 〈t|Â|t′〉 as operator kernel∫
Dv(t) exp

[
−1

2

∫
dt

∫
dt′ v(t)A(t, t′)v(t′)

]
∝ (det Â)−1/2

(iii) Applied to QW, A(t, t′) = − i
~mδ(t− t′)(−∂2

t′ − ω2) and

G(0, 0; t) ' J det
(
−∂2

t′ − ω2
)−1/2

where J absorbs constant prefactors (im, ~, etc.)

What does ‘det’ mean? Effectively, we can expand trajectories r(t′)

in eigenbasis of Â subject to b.c. r(t) = r(0) = 0(
−∂2

t − ω2
)
rn(t) = εnrn(t), cf. PIB

i.e. Fourier series expansion: rn(t′) = sin(nπt
′

t
), n = 1, 2, . . . , εn = (nπ

t
)2 − ω2

det
(
−∂2

t − ω2
)−1/2

=
∞∏
n=1

ε−1/2
n =

∞∏
n=1

((nπ
t

)2

− ω2

)−1/2

. For V = 0, G = Gfree known — use to eliminate constant prefactor J

G(0, 0; t) =
G(0, 0; t)

Gfree(0, 0; t)
Gfree(0, 0; t) =

∞∏
n=1

[
1−

(
ωt

nπ

)2
]−1/2 ( m

2πi~t

)1/2

Θ(t)
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Applying identity
∏∞

n=1[1− ( x
nπ

)2]−1 = x
sinx

G(0, 0; t) '
√

mω

2πi~ sin(ωt)
Θ(t)

(exact for harmonic oscillator)

Singular behaviour is a feature of ladder-like states of harmonic oscillator leading to
periodic coherent superposition and dynamical echo (see PS3).

Double Well: Tunneling and Instantons

How can QM tunneling be described by path integral? No semi-classical expansion!

. E.g transition amplitude in double well: G(a,−a; t) ≡ 〈a|e−iĤt/~| − a〉

q

V

. Feynman PI:

G(a,−a; t) =

∫ q(t)=a

q(0)=−a
Dq exp

[
i

~

∫ t

0
dt′
(m

2
q̇2 − V (q)

)]
Stationary phase analysis: classical e.o.m. mq̈ = −∂qV

7→ only singular (high energy) solutions Switch to alternative formulation...

. Imaginary (Euclidean) time PI: Wick rotation t = −iτ
N.B. (relative) sign change! “V → −V ”

G(a,−a; τ) =

∫ q(τ)=a

q(0)=−a
Dq exp

[
−1

~

∫ τ

0
dτ ′
(m

2
q̇2 + V (q)

)]
Saddle-point analysis: classical e.o.m. mq̈ = +V ′(q) in inverted potential!

solutions depend on b.c.
(1) G(a, a; τ) ; qcl(τ) = a
(2) G(−a,−a; τ) ; qcl(τ) = −a
(3) G(a,−a; τ) ; qcl : rolls from −a to a

Combined with small fluctuations, (1) and (2) recover propagator for single well

(3) accounts for tunneling – known as “instanton” (or “kink”)
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q

q
V

-a

-a aa

t

ω–1

. Instanton: classically forbidden trajectory connecting two degenerate minima
— i.e. topological, and therefore particle-like

For τ large, ˙qcl ' 0 (evident), i.e. “first integral” m ˙qcl
2/2− V (qcl) = ε

τ→∞→ 0
precise value of ε fixed by b.c. (i.e. τ)

Saddle-point action (cf. WKB
∫
dqp(q))

Sinst. =

∫ τ

0
dτ ′
(m

2
q̇2

cl + V (qcl)
)
'
∫ τ

0
dτ ′mq̇2

cl =

∫ a

−a
dqclmq̇cl =

∫ a

−a
dqcl(2mV (qcl))

1/2

Structure of instanton: For q ' a, V (q) = 1
2mω

2(q − a)2 + · · ·, i.e. q̇cl
τ→∞' ω(qcl − a)

qcl(τ)
τ→∞

= a− e−τω, i.e. temporal extension set by ω−1 � τ

Imples existence of approximate saddle-point solutions
involving many instantons (and anti-instantons): instanton gas

τ 1 ττ5 τ4 τ 3 τ 2

q

–a

a

. Accounting for fluctuations around n-instanton configuration

G(a,±a; τ) '
∑

n even / odd

Kn

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

An,cl.An,qu.︷ ︸︸ ︷
An(τ1, . . . , τn),

constant K set by normalisation

An,cl. = e−nSinst./~ — ‘classical’ contribution

An,qu. — quantum fluctuations (cf. single well): Gs.w.(0, 0; t) ∼ 1√
sinωt

An,qu. ∼
n∏
i

1√
sin(−iω(τi+1 − τi))

∼
n∏
i

e−ω(τi+1−τi)/2 ∼ e−ωτ/2

G(a,±a; τ) '
∑

n even / odd

Kne−nSinst./~e−ωτ/2

τn/n!︷ ︸︸ ︷∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn
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=
∑

n even / odd

e−ωτ/2
1

n!

(
τKe−Sinst./~

)n
Using ex =

∑∞
n=0 x

n/n!, N.B. non-perturbative in ~!

G(a, a; τ) ' Ce−ωτ/2 cosh
(
τKe−Sinst./~

)
, G(a,−a; τ) ' Ce−ωτ/2 sinh

(
τKe−Sinst./~

)
Consistency check: main contribution from

n̄ = 〈n〉 ≡
∑

n nX
n/n!∑

nX
n/n!

= X = τKe−Sinst./~

no. per unit time, n̄/τ exponentially small, and indep. of τ , i.e. dilute gas

q

q

V

S

A

ψ

. Physical interpretation: For infinite barrier, oscillators independent,
coupling splits degeneracy – symmetric/antisymmetric

G(a,±a; τ) ' 〈a|S〉e−εSτ/~〈S| ± a〉+ 〈a|A〉e−εAτ/~〈A| ± a〉
Setting εA/S = ~ω/2± ∆ε

2 , and noting |〈a|S〉|2 = 〈a|S〉〈S|−a〉 = C
2 = |〈a|A〉|2 = −〈a|A〉〈A|−a〉

G(a,±a; τ) ' C

2

(
e−(~ω−∆ε)τ/2~ ± e−(~ω+∆ε)τ/2~

)
= Ce−ωτ/2

{
cosh(∆ετ/~)
sinh(∆ετ/~)

.

. Remarks:

(i) Legitimacy? How do (neglected) terms O(~2) compare to ∆ε?

In fact, such corrections are bigger but act equally on |S〉 and |A〉
i.e. ∆ε = ~Ke−Sinst./~ is dominant contribution to splitting

q q

V

q

q–V

m

q
m

τ

(ii) Unstable States and Bounces: survival probability: G(0, 0; t)? No even/odd effect:

G(0, 0; τ) = Ce−ωτ/2 exp
[
τKe−Sinst/~

]
τ=it
= Ce−iωt/2 exp

[
−Γ

2
t

]
True decay rate has additional factor of 2: Γ ∼ |K|e−Sinst/~ (i.e. K imaginary)

see Coleman for details
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Lecture IX: Coherent States

Generalisation of PI to many-body systems problematic due to particle indistinguishabil-
ity. Can second quantisation help? automatically respects particle statistics

Require complete basis on Fock space to construct PI
i.e. analogue of

∫
dq dp |q〉〈q|p〉〈p| = id.

Such eigenstates exist and are known as... reference: Negele and Orland

. Coherent States (Bosons)

What are eigenstates of Fock space operators: ai and a†i with [ai, a
†
j] = δij?

As a state of the Fock space, an eigenstate |φ〉 can be expanded as

|φ〉 =
∑

n1,n2,···

Cn1,n2,···
(a†1)n1

√
n1

(a†2)n2

√
n2

· · · |0〉

N.B. notation |0〉 for vacuum state!

(i) a†i |φ〉 = φi|φ〉? — clearly, eigenstate of a†i can not exist:

if minimum occupation of |φ〉 is n0, minimum of a†i |φ〉 is n0 + 1

(ii) ai|φ〉 = φi|φ〉? — can exist and given by: |φ〉 ≡ exp[
∑

i φia
†
i ]|0〉 i.e. φ ≡ {φi}

Proof: since ai commutes with all a†j for j 6= i — focus on one element i

aeφa
†|0〉 = [a, eφa

†
]|0〉 =

∞∑
n=0

φn

n!
[a, (a†)n]|0〉 =

∞∑
n=1

nφn

n!
(a†)n−1|0〉 = φ exp(φa†)|0〉

a(a†)n = aa†(a†)n−1 = (1 + a†a)(a†)n−1 = (a†)n−1 + a†a(a†)n−1 = n(a†)n−1 + (a†)na

i.e. |φ〉 is eigenstate of all ai with eigenvalue φi

. Properties of coherent state |φ〉

• Hermitian conjugation:

∀i : 〈φ|a†i = 〈φ|φ̄i
φ̄i is complex conjugate of φi

• By direct application of ∂φi (and operator commutativity):

∀i : a†i |φ〉 = ∂φi |φ〉
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• Overlap: with 〈θ| = |θ〉† = 〈0|e
∑
i θ̄iai

〈θ|φ〉 = 〈0|e
∑
i θ̄iai |φ〉 = e

∑
i θ̄iφi〈0|φ〉 = exp

[∑
i

θ̄iφi

]
i.e. states are not orthogonal! operators not Hermitian

• Norm: 〈φ|φ〉 = exp

[∑
i

φ̄iφi

]
• Completeness — resolution of id. (for proof see notes)∫ ∏

i

dφ̄idφi
π

e−
∑
i φ̄iφi |φ〉〈φ| = 1F

where dφ̄idφi = dReφidImφi

. Coherent States (Fermions)

Following bosonic case, seek state |η〉 s.t.

ai|η〉 = ηi|η〉, η = {ηi}

But anticommutativity [ai, aj]+ = 0 (i 6= j) demands that aiaj|η〉 = −ajai|η〉
i.e. eigenvalues ηi must anticommute!!

ηiηj = −ηjηi
ηi can not be ordinary numbers — in fact, they obey...

. Grassmann Algebra

In addition to anticommutativity, defining properties:

(i) η2
i = 0 (cf. fermions) but note: these are not operators, i.e. [ηi, η̄i]+ 6= 1

(ii) Elements ηi can be added to, and multiplied, by ordinary complex numbers

c+ ciηi + cjηj, ci, cj ∈ C

(iii) Grassmann numbers anticommute with fermionic creation/annihilation operators
[ηi, aj]+ = 0

. Calculus of Grassmann variables:

(iv) Differentiation: ∂ηiηj = δij
N.B. ordering matters ∂ηiηjηi = −ηj∂ηiηi = −ηj for i 6= j

(v) Integration:
∫
dηi = 0,

∫
dηiηi = 1
i.e. differentiation and integration have the same effect!!
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. Gaussian integration:∫
dη̄dη e−η̄aη =

∫
dη̄dη (1− η̄aη) = a

∫
dη̄η̄

∫
dηη = a∫ ∏

i

dη̄idηi e
−η̄TAη = detA (exercise)

cf. ordinary complex variables

. Functions of Grassmann variables:

Taylor expansion terminates at low order since η2 = 0, e.g.

F (η) = F (0) + ηF ′(0)

Using rules ∫
dηF (η) =

∫
dη [F (0) + ηF ′(0)] = F ′(0) ≡ ∂ηF [η]

i.e. differentiation and integration have same effect on F [η]!

Usually, one has a function of many variables F [η], say η = {η1, · · · ηN}

F (η) =
∞∑
n=0

1

n!

∂nF (0)

∂ηi · · · ∂ηj
ηj · · · ηi

but series must terminate at n = N

with these preliminaries we are in a position to introduce the

. Fermionic coherent state: |η〉 = exp[−∑i ηia
†
i ]|0〉 i.e. η = {ηi}

Proof (cf. bosonic case)

a exp(−ηa†)|0〉 = a(1− ηa†)|0〉 = ηaa†|0〉 = η|0〉 = η exp(−ηa†)|0〉

Other defining properties mirror bosonic CS — problem set

. Differences:

(i) Adjoint: 〈η| = 〈0|e−
∑
i aiη̄i ≡ 〈0|e

∑
i η̄iai but N.B. η̄i not related to ηi!

(ii) Gaussian integration:

∫
dη̄dη e−η̄η = 1 N.B. no π’s

Completeness relation ∫ ∏
i

dη̄idηie
−

∑
i η̄iηi |η〉〈η| = 1F
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Lecture X: Many-body (Coherent State) Path Integral

Having obtained a complete coherent state basis for the creation and annihilation op-
erators, we could proceed by constructing path integral for the quantum time evolution
operator. However, since we will be interested in application involving a phase transition,
it is more convenient to begin with the quantum partition function.

. Quantum partition function

Z =
∑

{n}∈Fock Space

〈n|e−β(Ĥ−µN̂)|n〉, F = −kBT lnZ

β = 1
kBT

, µ — chemical potential

In coherent state basis

Z =

∫
d[ψ̄, ψ]e−

∑
i ψ̄iψi

∑
n

〈n|ψ〉〈ψ|e−β(Ĥ−µN̂)|n〉

Elimination of |n〉 requires identity: 〈n|ψ〉〈ψ|n〉 = 〈ζψ|n〉〈n|ψ〉

Proof: for, e.g., |n〉 = a†1a
†
2 · · · a†n|0〉

〈n|ψ〉 = 〈0|an · · · a2a1|ψ〉 = ψn · · ·ψ2ψ1〈0|ψ〉 = ψn · · ·ψ2ψ1

〈ψ|n〉 = ψ̄1ψ̄2 · · · ψ̄n
〈n|ψ〉〈ψ|n〉 = ψn · · ·ψ2ψ1ψ̄1ψ̄2 · · · ψ̄n = ψ1ψ̄1ψ2ψ̄2 · · ·ψnψ̄n

= (ζψ̄1ψ1)(ζψ̄2ψ2) · · · (ζψ̄nψn) = 〈ζψ|n〉〈n|ψ〉

Note that Ĥ and N̂ even in operators allowing matrix element to be commuted through

Z =

∫
d[ψ̄, ψ]e−

∑
i ψ̄iψi〈ζψ|e−β(Ĥ−µN̂)|ψ〉

. Coherent State Path Integral

Applied to many-body Hamiltonian of fermions or bosons

Ĥ − µN̂ =
∑
ij

(hij − µδij)a†iaj +
∑
ij

Vij a
†
ia
†
jajai

N.B. operators are normal ordered

Follow general strategy of Feynman:

(i) Divide ‘time’ interval, β, into N segments of length ∆β = β/N

〈ζψ|e−β(Ĥ−µN̂)|ψ〉 = 〈ζψ|e−∆β(Ĥ−µN̂)

∧e
−∆β(Ĥ−µN̂)

∧ · · · e
−∆β(Ĥ−µN̂)|ψ〉
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(ii) At each position ‘∧’ insert resolution of id.

1F =

∫
d[ψ̄n, ψn]e−ψ̄n·ψn|ψn〉〈ψn|

i.e. N-independent sets N.B. each ψn is a vector with elements {ψi}n

(iii) Expand exponent in ∆β

〈ψ′|e−∆β(Ĥ−µN̂)|ψ〉 = 〈ψ′|
[
1−∆β(Ĥ − µN̂)

]
|ψ〉+O(∆β)2

= 〈ψ′|ψ〉 −∆β〈ψ′|(Ĥ − µN̂)|ψ〉+O(∆β)2

= 〈ψ′|ψ〉 [1−∆β (H(ψ′, ψ)− µN(ψ′, ψ))] +O(∆β)2

' eψ
′·ψe−∆β(H(ψ′,ψ)−µN(ψ′,ψ))

with H(ψ′, ψ) =
〈ψ′|Ĥ|ψ〉
〈ψ′|ψ〉 =

∑
ij

hijψ̄
′
iψj +

∑
ij

Vijψ̄
′
iψ̄
′
jψjψi

similarly N(ψ′, ψ) N.B. 〈ψ′|ψ〉 bilinear in ψ, i.e. commutes with everything

Z =

∫ N∏
n=0

ψ̄N=ζψ̄0,ψN=ζψ0

d[ψ̄n, ψn]e−
∑N
n=1[ψ̄n·(ψn−ψn−1)+∆β(H(ψ̄n,ψn−1)−µN(ψ̄n,ψn−1))]

Continuum limit N →∞

∆β
N∑
n=0

→
∫ β

0

dτ,
ψn − ψn−1

∆β
→ ∂τψ

∣∣∣
τ=n∆β

,
N∏
n=0

d[ψ̄n, ψn]→ D(ψ̄, ψ)

comment on “small” Grassmann nos.

Z =

∫
ψ̄(β)=ζψ̄(0)
ψ(β)=ζψ(0)

D(ψ̄, ψ)e−S[ψ̄,ψ], S[ψ̄, ψ] =

∫ β

0

dτ
(
ψ̄ · ∂τψ +H(ψ̄, ψ)− µN(ψ̄, ψ)

)
With particular example:

S[ψ̄, ψ] =

∫ β

0

dτ

[∑
ij

ψ̄i(τ) [(∂τ − µ)δij + hij]ψj(τ) +
∑
ij

Vij ψ̄i(τ)ψ̄j(τ)ψj(τ)ψi(τ)

]

quantum partition function expressed as path integral over fields ψi(τ)

. Matsubara frequency representation

Often convenient to express path integral in frequency domain

ψ(τ) =
1√
β

∑
ωn

ψne
−iωnτ , ψωn =

1√
β

∫ β

0

dτ ψ(τ)eiωnτ
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where, since ψ(τ) = ζψ(τ + β)

ωn =

{
2nπ/β, bosons,
(2n+ 1)π/β, fermions

, n ∈ Z

ωn are known as Matsubara frequencies

Using
1

β

∫ β

0

dτ ei(ωn−ωm)τ = δωnωm

S[ψ̄, ψ] =
∑
ijωn

ψ̄iωn [(−iωn − µ) δij + hij]ψjωn +

+
1

β

∑
ij

∑
ωn1ωn2ωn3ωn4

Vijψ̄iωn1
ψ̄jωn2

ψjωn3
ψiωn4

δωn1+ωn2 ,ωn3+ωn4

e.g. Harmonic chain: Ĥ =
∑

k ~ωk(a
†
kak + 1/2)

S =

∫ β

0

dτ
∑
k

ψ̄k(∂τ + ~ωk − µ)ψk

e.g. Electron gas: Ĥ =
∑

σ

∫
dr c†σ(r) p̂

2

2m
cσ(r)−∑σσ′

∫
dr dr′ c†σ(r)c†σ′(r

′) e2

|r−r′|cσ′(r
′)cσ(r)

S =

∫ β

0

dτ
∑
σ

∫
drψ̄σ(r, τ)(∂τ +

p̂2

2m
− µ)ψσ(r, τ)

−
∫ β

0

dτ
∑
σ,σ′

∫
dr dr′ψ̄σ(r, τ)ψ̄σ′(r

′, τ)
e2

|r− r′|ψσ′(r
′, τ)ψσ(r, τ)

. Connection between coherent state and Feynman Path integral

e.g. QHO: Ĥ = ~ω(a†a + 1/2), [a, a†] = 1, i.e. bosons! e−β~ω/2 in D(ψ̄, ψ)

Z = tr e−βĤ =

∫
ψ(β)=ψ(0)

D(ψ̄, ψ) exp

[
−
∫ β

0

dτ ψ̄(∂τ + ~ω)ψ

]

Setting ψ(τ) =
(
mω
2~

)1/2
[q(τ)+ i

mω
p(τ)], with p, q real, and noting

∫ β

0

dτ qṗ = −
∫ β

0

dτ pq̇

Z =

∫
p.b.c

D(p, q) exp

[
−
∫ β

0

dτ

(
p2

2m
+

1

2
mω2q2 − ipq̇

~

)]

cf. (Euclidean time) FPI; β =
i

~
t, τ =

i

~
t′,

i

~
∂q

∂τ
=
∂q

∂t′

Z =

∫
D(p, q) exp

[
i

~

∫ t

0

dt′ (pq̇ −H(p, q))

]
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. Evaluation of Z from field integral

(i) ‘Bosonic’ oscillator: Ĥ = ~ω(a†a+ 1/2)

ZB =

J det(∂τ + ~ω)−1︷ ︸︸ ︷∫
D(ψ̄, ψ) exp

[
−
∫ β

0

dτ ψ̄ (∂τ + ~ω)ψ

]
=

∫
(
∏
n

dψ̄ωndψωn) e−
∑
n ψ̄ωn (−iωn+~ω)ψωn

= J
∏
ωn

[β(−iωn + ~ω)]−1 =
J

~ωβ

∞∏
n=1

[
(~ωβ)2 + (2nπ)2

]−1
=

J ′

~ωβ

∞∏
n=1

[
1 +

(
~ωβ
2πn

)2
]−1

=
J ′

2 sinh(~ωβ/2)
where

∞∏
n=1

[
1 +

( x

πn

)2
]−1

=
x

sinhx

Normalisation: as T → 0, ZB dominated by g.s., i.e. limβ→∞ZB = e−β~ω/2

i.e. J ′ = 1, ZB =
1

2 sinh(~βω/2)

(ii) ‘Fermionic’ oscillator: Ĥ = ~ω(a†a+ 1/2), [a, a†]+ = 1
Gaussian Grassmann integration

ZF = J det(∂τ + ~ω) = J
∏
ωn

[β(−iωn + ~ω)] = J
∞∏
n=0

[
(~ωβ)2 + ((2n+ 1)π)2

]
= J ′

∞∏
n=1

[
1 +

(
~ωβ

(2n+ 1)π

)2
]

= J ′ cosh(~ωβ/2),
∞∏
n=1

[
1 +

(
x

π(2n+ 1)

)2
]

= cosh(x/2)

Using normalisation: limβ→∞ZF = e−β~ω/2

J ′ = 2e−β~ω ZF = 2e−β~ω cosh(~βω/2).

cf. direct computation: ZB = e−β~ω/2
∑∞

n=0 e
−nβ~ω, ZF = e−β~ω/2

∑1
n=0 e

−nβ~ω.

Note that normalising prefactor J ′ involves only a constant offset of free energy,
F = − 1

β
lnZ statistical correlations encoded in content of functional integral
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Lecture XI: Matsubara frequency summations

. Quantum partition function of ideal (i.e. non-interacting) gas (from coherent states)

Useful for “normalisation” of interacting theories

e.g. (1) Fermions: Ĥ =
∑
α

εαa
†
αaα

As a warm-up, in coherent state representation:

Z0 = tr e−β(Ĥ−µN̂) =
∑
n

〈n|e−β(Ĥ−µN̂)|n〉 =

∫
d(ψ̄, ψ)e−

∑
α ψ̄αψα〈−ψ|e−β(Ĥ−µN̂)|ψ〉

Using identity

e−β(Ĥ−µN̂) = e−β
∑
α(εα−µ)a†αaα =

∏
α

e−β(εα−µ)n̂α =
∏
α

[
1 +

(
e−β(εα−µ) − 1

)
n̂α
]

Z0 =

∫
d(ψ̄, ψ)e−

∑
α ψ̄αψα

∏
α

{ 〈−ψ|ψ〉︷ ︸︸ ︷
e−ψ̄αψα

[
1 +

(
e−β(εα−µ) − 1

)
(−ψ̄αψα)

] }

=
∏
α

∫
dψ̄αdψα

1− 2ψ̄αψα︷ ︸︸ ︷
e−2ψ̄αψα

[
1 +

(
e−β(εα−µ) − 1

)
(−ψ̄αψα)

]
=
∏
α

∫
dψ̄αdψα

[
1− 2ψ̄αψα −

(
e−β(εα−µ) − 1

)
ψ̄αψα

]
=
∏
α

∫
dψ̄αdψα

[
−ψ̄αψα(1 + e−β(εα−µ))

]
=
∏
α

[
1 + e−β(εα−µ)

]
i.e. Fermi−Dirac distribution

Exercise: show (using CS) that in Bosonic case

Z0 =
∏
α

∞∑
n=0

e−nβ(εα−µ) =
∏
α

[
1− e−β(εα−µ)

]−1
i.e. Bose− Einstein distribution

What about field integral...?

. Quantum partition function of ideal gas:

Z0 =

∫
b.c.

D(ψ̄, ψ) exp

[
−
∫ β

0

dτ
∑
α

ψ̄α(∂τ + εα − µ)ψα

]

=

∫
D(ψ̄, ψ) exp

[
−
∑
α,ωn

ψ̄α,ωn(−iωn + εα − µ)ψα,ωn

]
= J

∏
α,ωn

[β(−iωn + εα − µ)]−ζ
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where J absorbs constant prefactors

From Z0 = tr e−β(Ĥ−µN̂) we can obtain thermal occupation number:

n(T ) ≡ 1

Z0

tr[N̂ e−β(Ĥ−µN̂)] =
1

βZ0

∂µZ0 =
1

β
∂µ lnZ0 ≡ −∂µF = − ζ

β

∑
α,ωn

1

iωn − εα + µ

. To perform summations of the form, I =
∑

ωn
h(ωn), helpful to

introduce complex auxiliary function g(z) with simple poles at z = iωn

e.g. g(z) =


β

exp(βz)− 1
, bosons

β

exp(βz) + 1
, fermions

In bosonic case: poles when βz = 2πin, i.e. z = iωn; close to pole,

β

eβ(iωn+δz) − 1
=

β

eβ δz − 1
' 1

δz

noting that g(z) has simple poles with residue ζ,

I =
ζ

2πi

∮
γ1

dz g(z)h(−iz) = ζ
∑
ωn

Res [g(z)h(−iz)]|z=iωn

where contour encircles poles

ωγ
1

ωγ
2

As long as we don’t to cross singularities of g(z)h(−iz), we are free to distort contour

If g(z)h(−iz) decays sufficiently fast at |z| → ∞ (i.e. faster than z−1), useful to
‘inflate’ contour to infinite circle when integral along outer perimeter vanishes and

I =
ζ

2πi

∮
γ2

h(−iz)g(z) =

N.B.︷︸︸︷
− ζ

∑
k

Res [h(−iz)g(z)]|z=zk

For problem at hand,

h(ωn) = − ζ
β

∑
α

1

iωn − εα + µ
, h(−iz) = − ζ

β

∑
α

1

z − εα + µ
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Although h(−iz) seems to scale as 1/z at infinity,

this reflects failure of continuum limit of the action: ψ̄m
(ψm+1 − ψm)

∆β
7→ ψ̄∂τψ

Integral made convergent by including infinitesimal
(iωn − εα + µ) 7→ (iωne

−iωn0+ − εα + µ)

Since h(−iz) involves simple poles at z = εα − µ,

n(T ) = −ζ
∑
α

Res [g(z)h(−iz)]|z=εα−µ =
∑
α

1

eβ(εα−µ) − ζ =
∑
α

{
nB(εα), bosons,
nF(εα), fermions

where nF/B are Fermi/Bose distribution functions

. Applications of Field Integral:

In remaining lectures we will address two case studies which
exhibit phase transition to non-trivial ground state at low temperatures

• Bose-Einstein condensation and superfluidity

• Superconductivity
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Bose-Einstein condensation from field integral

Although we could start our analysis of application of the field integral with the weakly
interacting electron gas, we would find that correlation effects could be considered per-
turbatively. Our analysis of the field integral would not engage any non-trivial field con-
figurations of the action: the platform of the non-interacting electron system remains
adiabatically connected to that of the weakly interacting system. In the following we will
explore a problem in which the development of a non-trivial ground state — the Bose-
Einstein condensate — is accompanied by the appearance of collective modes absent in the
non-interacting system.

. Consider Bose gas subject to weak short-ranged repulsive contact interaction:

Ĥ =

∫
ddr a†(r)Ĥ0 a(r) +

g

2

∫
ddr a†(r)a†(r)a(r)a(r)

. Expressed as field integral: Z = tr e−β(Ĥ−µN̂) =
∫
ψ(β)=ψ(0)

D(ψ̄, ψ) e−S[ψ̄,ψ], where

S =

∫ β

0

dτ

∫
ddr
[
ψ̄(∂τ + Ĥ0 − µ)ψ +

g

2
(ψ̄ψ)2

]
As a warm-up exercise, consider first the...

. Non-interacting Bose gas (g = 0)

Z0 ≡ Z
∣∣∣
g=0

=

∫
ψ(β)=ψ(0)

D(ψ̄, ψ) e−
∑
a,ωn

ψ̄a,ωn (−iωn+εa−µ)ψa,ωn = J
∏
a,ωn

1

β(−iωn + εa − µ)

where eigenvalues of Ĥ0, εa ≥ 0 and ε0 = 0

While stability requires µ ≤ 0, precise value fixed by condition N =
∑

a nB(εa)

. Bose-Einstein condensation (BEC)

 T 

 µ  

 0 
 Tc 

• As T reduced, µ increases until, at T = Tc, µ = 0

• For T < Tc, µ remains zero and a macroscopic number of particles, N0 = N −N1,
condense into ground state: BEC

i.e. for T < Tc,
∑
a

nB(εa)
∣∣∣
µ=0
≡ N1 < N

Lecture Notes October 2006



Lecture XI 46

. How can this phenomenon be incorporated into path integral?

Although condensate characterised by g.s. component ψ0 ≡ ψa=0,ωn=0, for T < Tc,
fluctuations seemingly unbound (i.e. µ = ε0 = 0 and action for ψ0 vanishes!)

In this case, we must treat ψ0 as a
Lagrange multiplier which fixes particle number below Tc:

S0|µ=0− = −β ψ̄0µψ0 +
∑
a,ωn

′
ψ̄aωn (−iωn + εa − µ)ψaωn

Z0 = eβ ψ̄0µψ0 × J
∏
a,ωn

′ 1

β(−iωn + εa − µ)

i.e. N =
1

β
∂µ lnZ0|µ=0− = ψ̄0ψ0 −

1

β

∑
a,ωn

′ 1

iωn − εa
= ψ̄0ψ0 +N1

i.e. ψ̄0ψ0 = N0 translates to no. of particles in condensate

. Weakly Interacting Bose Gas

Bosons confined to box of size L with p.b.c. and Ĥ0 = p̂2/2m described by action

S =

∫ β

0

dτ

∫
ddr

[
ψ̄(∂τ +

p̂2

2m
− µ)ψ +

g

2
(ψ̄ψ)2

]
Since field integral intractable, turn to mean-field theory

(a.k.a. “saddle-point” approximation – Landau theory) valid for T � Tc

Variation of action w.r.t. ψ̄ obtains the saddle-point equation:(
∂τ +

p̂2

2m
− µ+ gψ̄ψ

)
ψ = 0

solved by constant ψ(r, τ) ≡ 1
Ld/2

∑
k e

ik·rψk(τ) = ψ0

Ld/2

where ψ0 minimises saddle-point action

1

β
S[ψ̄0, ψ0] = −µψ̄0ψ0 +

g

2Ld
(ψ̄0ψ0)2, i.e.

(
−µ+

g

Ld
ψ̄0ψ0

)
ψ0 = 0
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• For µ < 0, only trivial solution ψ0 = 0 – no condensate

• For µ ≥ 0, s.p.e. solved by any configuration with |ψ0| = γ ≡
√
µLd/g

N.B. interaction allows µ > 0; ψ̄0ψ0 ∝ Ld reflects macroscopic population of g.s.

• Condensation of Bose gas is example of a continuous phase transition, i.e. “order parameter”
ψ0 grows continuously from zero

• saddle-point solution is “continuously degenerate”, ψ0 = γ exp(iφ), φ ∈ [0, 2π]

• One ground state chosen ; spontaneous symmetry breaking – Goldstone’s theorem:
expect branch of gapless excitations

Taking into account fluctuations, we may address the phenomenon of superfluidity...
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Lecture XII: Superfluidity

Previously, we have seen that, when treated in a mean-field or saddle-point approximation,
the field theory of the weakly interacting Bose gas shows a transition to a Bose-Einstein
condensed phase when µ = 0 where the order parameter, the complex condensate wave-
function ψ0 acquires a non-zero expectation value, |ψ0| = γ ≡

√
µLd/g. The spontaneous

breaking of the continuous symmetry associated with the phase of the order parameter is
accompanied by the appearance of massless collective phase fluctuations. In the following,
we will explore the properties of these fluctuations and their role in the phenomenon of
superfluidity.

. Starting with the model action for a Bose system, (~ = 1)

S[ψ̄, ψ] =

∫ β

0

dτ

∫
ddr

[
ψ̄

(
∂τ −

∂2

2m
− µ

)
ψ +

g

2
(ψ̄ψ)2

]
saddle-point analysis revealed that, for µ > 0, ψ

acquires a non-zero expectation value: |ψ0| = (µLd/g)1/2

Phase transition accompanied by spontaneous symmetry breaking
(of U(1) field associated with phase of global ψ)

To investigate consequence of transition, must explore role of fluctuations

To do so, it is convenient to parameterise ψ(r, τ) = [ρ(r, τ)]1/2eiφ(r,τ)

Using 1.

∫ β

0

dτ ψ̄∂τψ =

1

2

∫ β

0

dτ ∂τ (ρ
1/2ρ1/2) = −ρ

2

∣∣∣β
0

= 0︷ ︸︸ ︷∫ β

0

dτρ1/2∂τρ
1/2 +

∫ β

0

dτ iρ∂τφ

2. ∂(ρ1/2eiφ) = eiφ
(

1

2ρ1/2
∂ρ+ iρ1/2∂φ

)
3.

∫ β

0

dτ ψ̄∂2ψ = −
∫ β

0

dτ ∂ψ̄ · ∂ψ = −
∫ β

0

dτ

(
1

4ρ
(∂ρ)2 + ρ(∂φ)2

)

S[ρ, φ] =

∫ β

0

dτ

∫
ddr

{
iρ∂τφ+

1

2m

[
1

4ρ
(∂ρ)2 + ρ(∂φ)2

]
− µρ+

gρ2

2

}
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Expansion of action around saddle-point: ρ(r, τ) = (ρ0 + δρ(r, τ)) eiφ(r,τ),

S[δρ, φ] =

∫ β

0

dτ

∫
ddr

{
−µ(ρ0 + δρ) +

g(ρ0 + δρ)2

2

+i(ρ0 + δρ)∂τφ+
1

2m

[
1

4(ρ0 + δρ)
(∂(δρ))2 + (ρ0 + δρ)(∂φ)2

]}

= S0[ρ0] +

∫ β

0

dτ

∫
ddr
{ = 0︷ ︸︸ ︷

(−µ+ gρ0) δρ+
gδρ2

2

+

7→ 0︷ ︸︸ ︷
iρ0∂τφ +iδρ∂τφ+

1

2m

[
1

4ρ0

(∂(δρ))2 + ρ0(∂φ)2

]}
+O(δρ3, δρ, ∂φ)

Finally, discarding gradient terms involving massive fluctuations δρ,

S[δρ, φ] ' S0[ρ0] +

∫ β

0

dτ

∫
ddr
[
iδρ ∂τφ+

g

2
δρ2 +

ρ0

2m
(∂φ)2

]
• First term has canonical structure ‘momentum × ∂τ (coordinate)’, cf. “pq̇”

• Second term describes “massive” fluctuations in “Mexican hat” potential

• Third term measures energy cost of spatially varying massless phase flucutations:
i.e. φ is a Goldstone mode

Gaussian integration over δρ:

∫
D(δρ) exp

[
−
∫ β

0

dτ

∫
ddr

g

2

(
δρ+

i

g
∂τφ

)2

+
(∂τφ)2

2g︷ ︸︸ ︷(
iδρ ∂τφ+

gδρ2

2

) ]
= const.× exp

[
−
∫ β

0

dτ

∫
ddr

(∂τφ)2

2g

]
; effective action for low-energy degrees of freedom, φ,

S[φ] ' S0 +
1

2

∫ β

0

dτ

∫
ddr

[
1

g
(∂τφ)2 +

ρ0

m
(∂φ)2

]
.

cf. Lagrangian formulation of harmonic chain (or massless Klein-Gordon field)

S =

∫
dt

∫
ddr

[
m

2
φ̇2 − 1

2
ksa

2(∂φ)2

]
=

∫
dx ∂µφ∂µφ

i.e. low-energy excitations involve collective phase fluctuations with a spectrum ωk =
gρ0

m
|k|

However, action differs from harmonic chain in that phase field φ
is periodic on 2π – i.e. the space is not simply connected

This means that it can support topologically non-trivial
field configurations involving windings – i.e. vortices
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. Physical ramifications: current density

ĵ(r, τ) =
1

2

[
a†(r, τ)

p̂

m
a(r, τ)−

(
p̂

m
a†(r, τ)

)
a(r, τ)

]
fun. int−→ i

2m

[
(∂ψ̄(r, τ))ψ(r, τ)− ψ̄(r, τ)∂ψ(r, τ)

]
' ρ0

m
∂φ(r, τ)

i.e. ∂φ is measure of (super)current flow
Variation of action S[δρ, φ] ;

i∂τφ = −gδρ, i∂τδρ =
ρ0

m
∂2φ = ∂ · j

• First equation: system adjusts to fluctuations of density
by dynamical phase fluctuation

• Second equation ; continuity equation (conservation of mass)

Crucially, s.p.e. possess steady state solutions with non-vanishing

current flow: if φ independent of τ , δρ = 0 and
ρ0

m
∂2φ = ∂ · j = 0

For T < Tc, a configuration with a uniform
density profile can support a steady state divergenceless (super)flow

Superflow imposed by boundary conditions, cf. Coulomb: ∂2φ = −ρ(r)

ε

e.g. φ(r) ' −φ0 ln |x2 + y2| translates to a line vortex

Notice that a ‘mass term’ in the phase action (viz. mφφ
2) would spoil this property,

i.e. the phenomenon of superflow is intimately linked to the Goldstone mode

. Steady state current flow in normal environments is prevented by the mechanism of
energy dissipation, i.e. particles scatter off imperfections inside the system and thereby
convert part of their energy into the creation of elementary excitations

How can dissipative loss of energy be avoided?

Trivially, no energy can be exchanged if there are no elementary excitations to create

In reality, this means that the excitations of the system should be
energetically inaccessible (k.e. of carriers too small to create excitations)

But this is not the case here! there is no energy gap (ωk = vs|k|)

However, there is an ingenuous argument due to Landau (see notes) showing
that a linear excitation spectrum can stabilize dissipationless transport for v < vs
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Cooper instability of electron gas

In the final section of the course, we will explore a pairing instability of the electron
gas which leads to condensate formation and the phenomenon of superconductivity.

. History:

• 1911 discovery of superconductivity (Onnes)

• 1950 Development of (correct) phenomenology (Ginzburg-Landau)

• 1951 “isotope effect” — clue to (conventional) mechanism

• 1957 BCS theory of conventional superconductivity (Bardeen-Cooper-Schrieffer)

• 1976 Discovery of “unconventional” superconductivity (Steglich)

• 1986 Discovery of high temperature superconductivity in cuprates (Bednorz-Müller)

• ???? awaiting theory?

. (Conventional) mechanism: exchange of phonons induces non-local electron interaction

Ĥ ′ = Ĥ0 +
∑
kk′q

|Mq|2~ωq

(εk − εk−q)2 − (~ωq)2
c†k−qσc

†
k′+qσ′ck′σ′ckσ

Electrons can lower their energy by sharing lattice polarisation

As a result electrons can condense as pairs into state with energy gap to excitations

. Cooper instability

Consider two electrons above filled Fermi sea:
Is weak pair interaction V (r1 − r2) sufficient to create bound state?

Consider variational state

ψ(r1, r2) =

spin singlet︷ ︸︸ ︷
1√
2

(| ↑1〉 ⊗ | ↓2〉 − | ↑2〉 ⊗ | ↓1〉)

spatial symm. gk = g−k︷ ︸︸ ︷∑
|k|≥kF

gk e
ik·(r1−r2)

Applied to (spin-independent) Schrödinger equation: Ĥψ = Eψ∑
k

gk [2 εk + V (r1 − r2)] eik·(r1−r2) = E
∑
k

gke
ik·(r1−r2)

Fourier transforming equation: × 1
Ld

∫ L
0
dd(r1 − r2)e−ik

′·(r1−r2)

∑
k′

Vk−k′gk′ = (E − 2εk)gk, Vk−k′ =
1

Ld

∫
ddr V (r)ei(k−k

′)·r
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If we assume Vk−k′ =

{
− V
Ld
{|εk − εF |, |εk′ − εF |} < ωD

0 otherwise

− V
Ld

∑
k′

gk′ = (E − 2εk)gk 7→ −
V

Ld

∑
k

1

E − 2εk

∑
k′

gk′ =
∑
k

gk 7→ −
V

Ld

∑
k

1

E − 2εk
= 1

Using
1

Ld

∑
k

=

∫
ddk

(2π)d
=

∫
ν(ε) dε ∼ ν(εF )

∫
dε, where ν(ε) =

1

|∂kεk|
is DoS

− V
Ld

∑
k

1

E − 2εk
' −ν(εF )V

∫ εF+ωD

εF

dε

E − 2ε
=
ν(εF )V

2
ln

(
E − 2εF − 2ωD

E − 2εF

)
= 1

In limit of “weak coupling”, i.e. ν(εF )V � 1

E ' 2εF − 2ωDe
− 2
ν(εF )V

• i.e. pair forms a bound state (no matter how small interaction!)

• energy of bound state is non-perturbative in ν(εF )V

. Radius of pair wavefunction: g(r) =
∑

k gke
ik·r,

Using gk = 1
2εk−E

× const., ∂k = ∂εk
∂k

∂
∂εk

= v ∂
∂εk

, and

1

Ld

∑
k

|∂kgk|2 =

∫
ddr ddr′ r · r′

δ(r− r′)︷ ︸︸ ︷
1

Ld

∑
k

eik·(r−r
′) g(r)g∗(r′) =

∫
ddr r2|g(r)|2,

〈r2〉 =

∫
ddr r2|g(r)|2∫
ddr|g(r)|2 =

∑
k |∂kgk|2∑
k |gk|2

=

∫ εF+ωD
εF

dε ν(ε) v2
(
∂
∂ε

1
2ε−E

)2∫ εF+ωD
εF

dε ν(ε) 1
(2ε−E)2

'
v2
F

∫ εF+ωD
εF

4dε
(2ε−E)4∫ εF+ωD

εF

dε
(2ε−E)2

=
4

3

v2
F

(2εF − E)2

if binding energy 2εF − E ∼ kBTc, Tc ∼ 10K, vF ∼ 108cm/s, ξ0 = 〈r2〉1/2 ∼ 104Å,
i.e. other electrons must be important

. BCS wavefunction

Two electrons in a paired state has wavefunction

φ(r1 − r2) =
1√
2

(| ↑1〉 ⊗ | ↓2〉 − | ↓1〉 ⊗ | ↑2〉)g(r1 − r2)

Drawing analogy with Bose condensate, consider variational state

ψ(r1 · · · r2N) = N
N/2∏
n=1

φ(r2n−1 − r2n)
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Is ψ compatible with Pauli principle? For a single pair,

|φ〉 =
1

Ld

∫ L

0

ddr1

∫ L

0

ddr2 g(r1 − r2)c†↑(r1)c†↓(r2)|Ω〉

=
∑
k,k′

δk+k′,0 gk︷ ︸︸ ︷
1

L2d

∫ L

0

ddr1

∫ L

0

ddr2 g(r1 − r2)eik·r1eik
′·r2 c†k↑c

†
k′↓|Ω〉 =

∑
k

gkc
†
k↑c
†
−k↓|Ω〉

where gk = 1
Ld

∫
ddr g(r)eik·r

Then, of the terms in the expansion of

|ψ〉 =
N∏
n=1

[∑
kn

gknc
†
kn↑c

†
−kn↓

]
|Ω〉

those with all kns different survive

Generally, more convenient to work in grand canonical ensemble
where one allows for (small) fluctuations in the total particle number, viz.

|ψ〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|Ω〉 ∼

cf. coherent state of pairs︷ ︸︸ ︷
exp

[∑
k

gkc
†
k↑c
†
−k↓

]
|Ω〉

where normalisation demands u2
k + v2

k = 1 (exercise)

In non-interacting electron gas vk =

{
1 |k| < kF
0 |k| > kF

In interacting system, to determine the variational parameters, (uk, vk),

one can use a variational principle, i.e. to minimise 〈ψ|Ĥ − εF N̂ |ψ〉

. BCS Hamiltonian

However, since we are interested in both the g.s. energy and spectrum of excitations,
we will follow a different route and explore the model Hamiltonian

Ĥ =
∑
k

εkc
†
kσckσ −

V

Ld

∑
kk′

c†k′↑c
†
−k′↓c−k↓ck↑
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Lecture XIII: BCS theory of Superconductivity

. From Cooper argument, two electrons above Fermi sea can form a bound state

|φ〉 =
1

Ld

∫ L

0

ddr1

∫ L

0

ddr2 g(r1 − r2)c†↑(r1)c†↓(r2)|Ω〉

=
∑
k,k′

δk+k′,0 gk︷ ︸︸ ︷
1

L2d

∫ L

0

ddr1

∫ L

0

ddr2 g(r1 − r2)eik·r1eik
′·r2 c†k↑c

†
k′↓|Ω〉 =

∑
k

gkc
†
k↑c
†
−k↓|Ω〉

where gk = 1
Ld

∫
ddr g(r)eik·r denotes pair wavefunction

To develop insight into the many-body system, consider effective theory
involving only interaction between pairs: BCS Hamiltonian

Ĥ =
∑
k

εkc
†
kσckσ −

V

Ld

∑
kk′

c†k′↑c
†
−k′↓c−k↓ck↑

Transition to condensate signalled by development of “anomalous average”
b̄k = 〈g.s.|c†k↑c†−k↓|g.s.〉, i.e. |g.s.〉 is not an eigenstate of particle number!

Since we expect quantum fluctuations of b̄k to be small, we may set

c†k↑c
†
−k↓ = b̄k+

small︷ ︸︸ ︷
c†k↑c

†
−k↓ − b̄k

(cf. approach to BEC where a†0 replaced by a C-number) so that

Ĥ − µN̂ =
∑
kσ

ξk︷ ︸︸ ︷
(εk − µ) c†kσckσ −

V

Ld

∑
kk′

c†k′↑c
†
−k′↓c−k↓ck↑,

'
∑
kσ

ξkc
†
kσckσ −

V

Ld

∑
kk′

(
b̄kc−k′↓ck′↑ + bk′c

†
k↑c
†
−k↓ − b̄kbk′

)
+O(small)2

Setting
V

Ld

∑
k

bk ≡ ∆, obtain the “Bogoliubov-de Gennes” or “Gor’kov” Hamiltonian

Ĥ − µN̂ =
∑
kσ

ξkc
†
kσckσ −

∑
k

(
∆̄c−k′↓ck′↑ + ∆c†k↑c

†
−k↓

)
+
Ld|∆|2
V

=
∑
k

(
c†k↑ c−k↓

)(
ξk −∆
−∆̄ −ξk

)(
ck↑
c†−k↓

)
+
∑
k

ξk +
Ld|∆|2
V

For simplicity, let us for now assume that ∆ is real
(soon we will see that global phase is arbitrary...)
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Bilinear in fermion operators, Ĥ − µN̂ diagonalised by transformation

(
ck↑
c†−k↓

)
=

OT︷ ︸︸ ︷(
uk vk
−vk uk

) (
γk↑
γ†−k↓

)
where anticommutation relations require OTO = 1,

i.e. u2
k + v2

k = 1 (orthogonal transformations)

Substituting, transformed Hamiltonian OHOT diagonalised if (Ex.)

2ξkukvk + ∆(v2
k − u2

k) = 0

i.e. setting uk = sin θk and vk = cos θk,

tan 2θk = −∆

ξk
, sin 2θk =

∆√
ξ2
k + ∆2

, cos 2θk = − ξk√
ξ2
k + ∆2

(N.B. for complex ∆ = |∆|eiφ, vk = eiφ cos θk)

As a result,

Ĥ − µN̂ =
∑
k

ξk +
Ld∆2

V
+
∑
k

(
γ†k↑ γ−k↓

)(
(ξ2

k + ∆2)1/2

−(ξ2
k + ∆2)1/2

)(
γk↑
γ†−k↓

)
=
∑
k

(ξk − (ξ2
k + ∆2)1/2) +

Ld∆2

V
+
∑
kσ

(ξ2
k + ∆2)1/2 γ†kσγkσ

Quasi-particle excitations, created by γ†kσ, have minimum energy ∆

g.s. identified as state annihilated by all the quasi-particle operators γkσ, i.e.

|g.s.〉 ≡
∏
k

γ−k↓γk↑|Ω〉 =
∏
k

(ukc−k↓ + vkc
†
k↑)(ukck↑ − vkc†−k↓)|Ω〉

=
∏
k

vk(ukc−k↓c
†
−k↓ + vkc

†
k↑c
†
−k↓)|Ω〉 = const.×

∏
k

(uk + vkc
†
k↑c
†
−k↓)|Ω〉

in fact, const. = 1

Note that global phase of ∆ is arbitrary, i.e. |g.s.〉 continuously degenerate (cf. BEC)

. Self-consistency condition: BCS gap equation

∆ ≡ V

Ld

∑
k

b̄k =
V

Ld

∑
k

〈g.s.|c†k↑c†−k↓|g.s.〉 =
V

Ld

∑
k

ukvk

=
V

2Ld

∑
k

sin 2θk =
V

2Ld

∑
k

∆√
ξ2
k + ∆2
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i.e. 1 =
V

2Ld

∑
k

1√
ξ2
k + ∆2

=
V ν(µ)

2

∫ ωD

−ωD
dξ

1√
ξ2 + ∆2

= V ν(µ) sinh−1(ωD/∆)

if ωD � ∆, ∆ ' 2ωDe
− 1
ν(µ)V

. In limit ∆→ 0, v2
k = cos2 θk =

1

2
(cos 2θ + 1) =

1

2

(
1− ξk√

ξ2
k + ∆2

)
7→ θ(µ− εk),

and |g.s.〉 collapses to filled Fermi sea with chemical potential µ

For ∆ 6= 0, states in vicinity of µ rearrange into condensate of Cooper pairs

. Spectrum of quasi-particle excitations
√
ξ2
k + ∆2 shows rigid energy gap ∆

. Density of quasi-particle states:

ρ(ε) =
1

Ld

∑
kσ

δ(ε−
√
ξ2
k + ∆2) =

∫
dξν(ξ)δ(ε−

√
ξ2 + ∆2)

≈ ν(µ)
∑
s=±1

∫ ∞
−∞

dξ
δ
(
ξ − s(ε2 −∆2)1/2

)∣∣∣ ∂∂ξ (ξ2 + ∆2)1/2

∣∣∣ = 2ν(µ)Θ(ε−∆)
ε

(ε2 −∆2)1/2

i.e. spectral weight transferred from Fermi surface to interval [∆,∞]

. Field Theory of Superconductivity

Starting point is Hamiltonian for local (contact) pairing interaction:

Ĥ =

∫
ddr

[∑
σ

c†σ(r)
p̂2

2m
cσ(r)− V c†↑(r)c†↓(r)c↓(r)c↑(r)

]

. Quantum partition function: Z = tr e−β(Ĥ−µN̂)

Z =

∫
ψ(β)=−ψ(0)

D(ψ̄, ψ) exp
{
−

x≡(τ,r)
∫
dx︷ ︸︸ ︷∫ β

0

dτ

∫ L

0

ddr
[∑

σ

ψ̄σ

(
∂τ +

p̂2

2m
− µ

)
ψσ − V ψ̄↑ψ̄↓ψ↓ψ↑

]}
where ψσ(r, τ) denote Grassmann (anticommuting) fields

Options for analysis:

• perturbative expansion in V ? No — transition to condensate non-perturbative in V

• Mean-field (saddle-point) analysis

To prepare for s.p. analysis, it is useful to trade Grassmann fields for
“slow fields” that parameterise the low-energy fluctuations of condensed phase
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This is achieved by a general technique known as...

. Hubbard-Stratonovich decoupling:

Introduce complex commuting field ∆(r, τ) whose expectation value

translates to that of “anomalous average” 〈c†↑c†↓〉

eV
∫
dx ψ̄↑ψ̄↓ψ↓ψ↑ =

∫
D(∆̄,∆) exp

{
−
∫
dx

1
V

(∆̄+V ψ̄↑ψ̄↓)(∆+V ψ↓ψ↑)−V ψ̄↑ψ̄↓ψ↓ψ↑︷ ︸︸ ︷[ |∆(r, τ)|2
V

+ (∆̄ψ↓ψ↑ + ∆ψ̄↑ψ̄↓)
] }

Using identity
∫ β

0
dτ ψ̄↓∂τψ↓ = −

∫ β
0

(∂τ ψ̄↓)ψ↓ =
∫ β

0
ψ↓∂τ ψ̄↓

∫ β

0

dτ

∫ L

0

ddr ψ̄↓

[Ĝ
(p)
0 ]−1︷ ︸︸ ︷(

∂τ −
~2∂2

2m
− µ

)
ψ↓ =

∫ β

0

dτ

∫ L

0

ddr ψ↓

[Ĝ
(h)
0 ]−1︷ ︸︸ ︷(

∂τ +
~2∂2

2m
+ µ

)
ψ̄↓

where Ĝ
(p/h)
0 denotes GF or propagator of free particle/hole Hamiltonian,

Z =

∫
D(ψ̄, ψ)

∫
D(∆̄,∆)e−

∫
dx
|∆|2
g

× exp
[
−
∫
dx

Nambu spinor Ψ̄︷ ︸︸ ︷
( ψ̄↑ ψ↓ )

Gorkov Hamiltonian Ĝ−1︷ ︸︸ ︷(
[Ĝ

(p)
0 ]−1 ∆

∆̄ [Ĝ
(h)
0 ]−1

) (
ψ↑
ψ̄↓

)]
=

∫
D(ψ̄, ψ)

∫
D(∆̄,∆)e−

∫
dx
|∆|2
g exp

[
−
∫
dx Ψ̄Ĝ−1Ψ

]
Using Gaussian Grassmann field integral:∫

D(Ψ̄,Ψ) exp

[
−
∑
ij

Ψ̄iAijΨj

]
= det A = exp[ln det A] = exp[tr ln A]

Z =

∫
D(∆̄,∆) exp

[
−

Effective action S[∆]︷ ︸︸ ︷∫
dx
|∆|2
V

+ tr ln Ĝ−1[∆]
]

meaning of trace

i.e. Z expressed as functional field integral over complex scalar field ∆(x)

Formal expression is exact; but to proceed, we must invoke some approximation:
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. Examples of Hubbard-Stratonovich decoupling

e.g. (1) weakly interacting electron gas: Z ≡ tr e−β(Ĥ−µN̂) =

∫
ψ̄(0)=−ψ̄(β)
ψ(0)=−ψ(β)

D(ψ̄, ψ)e−S[ψ̄,ψ]

S =

∫ β

0

dτ

[∫
ddr

∑
σ

ψ̄σ(r, τ)

(
∂τ +

p̂2

2m
− µ

)
ψσ(r, τ)

+
1

2

∫
ddrddr′

∑
σ,σ′

ψ̄σ(r, τ)ψ̄σ′(r
′, τ)

e2

|r− r′|ψσ′(r
′, τ)ψσ(r, τ)

]

Coulomb interaction decoupled by scalar field, Z =

∫
D(ψ̄, ψ)

∫
Dφe−Seff

Seff =

∫ β

0

dτ

[∫
ddr

∑
σ

ψ̄σ(r, τ)

(
∂τ +

p̂2

2m
− µ+ ieφ

)
ψσ(r, τ) +

1

8π
(∂φ)2

]
Physically: φ represents bosonic photon field that mediates Coulomb interaction

e.g. (2) itinerant ferromagnetism in Hubbard model

S =

∫
dτ
∑
kσ

ψ̄kσ(∂τ + εk − µ)ψkσ + 3U

∫
dτ
∑
m

−2S2
m︷ ︸︸ ︷

ψ̄m↑ψ̄m↓ψm↓ψm↑

where Sm = 1
2

∑
αβ ψ̄mασαβψmβ (cf. electron spin operator)

Hubbard interaction decoupled by vector field, Z =

∫
D(ψ̄, ψ)

∫
DM e−Seff

Seff =

∫
dτ
∑
kσ

ψ̄kσ(∂τ + εk − µ)ψkσ +

∫
dτ
∑
m

[
M2

m

2U
−
∑
αβ

ψ̄mαMm · σαβψmβ

]

Physically: ~M represents bosonic magnetisation field
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Lecture XIV: Field Theory of Superconductivity

Recap: Cast as field integral

Z =

∫
ψ(β)=−ψ(0)

D(ψ̄, ψ) exp
{
−

x≡(τ,r)
∫
dx︷ ︸︸ ︷∫ β

0

dτ

∫ L

0

ddr
[∑

σ

ψ̄σ

[Ĝ
(p)
0 ]−1︷ ︸︸ ︷(

∂τ +
p̂2

2m
− µ

)
ψσ − V ψ̄↑ψ̄↓ψ↓ψ↑

]}
local pair interaction may be decoupled by Hubbard-Stratonovich field, ∆(x)

Integrating over the Grassmann fields, ψ̄σ, and ψσ, Z =

∫
D(∆̄,∆)e−S[∆] with

S[∆] =

∫
dx
|∆|2
V
−

∫
dx 〈x|tr2 ln Ĝ−1[∆]|x〉︷ ︸︸ ︷

tr ln Ĝ−1[∆] , Ĝ−1 =

[Ĝ
p/h
0 ]−1 = ∂τ

+/−

(
p̂2

2m
− µ

)
(

[Ĝ
(p)
0 ]−1 ∆

∆̄ [Ĝ
(h)
0 ]−1

)
To proceed further, it was necessary to invoke some approximation

. I. Mean-field theory: far from critical temperature, Tc, we expect
field integral to be dominated by saddle-point:

δS ≡ S[∆ + δ∆]− S[∆] =

∫
dx

1

V
(∆̄ δ∆ + δ∆̄ ∆ + |δ∆|2)

−tr ln

[
Ĝ−1 +

(
0 δ∆
δ∆̄ 0

)]
+ tr ln

[
Ĝ−1

]
= (· · ·)− tr ln

[
1 + Ĝ

(
0 δ∆
δ∆̄ 0

)]
=

∫
dx

1

V
(∆̄ δ∆ + δ∆̄ ∆)− tr

[
Ĝ
(

0 δ∆
δ∆̄ 0

)]
+O(|δ∆|2)

= (· · ·)−
∫
dx
(
G21(x, x)δ∆(x) + G12(x, x)δ∆̄(x)

)
+O(|δ∆|2)

where tr[Ĝ21δ∆] =

∫
dx 〈x|Ĝ21δ∆|x〉 =

∫
dxG21(x, x)δ∆(x)

i.e. ∆(x) obeys the saddle-point condition:
δS

δ∆̄
=

∆(x)

V
− G12(x, x) = 0

With the Ansatz ∆(x) = ∆ const., Ĝ|k〉 = G(k)|k〉, with |k〉 ≡ |ωn,k〉 and

G−1(k) =

(
−iωn + ξk ∆

∆̄ −iωn − ξk

)
, ξk =

~2k2

2m
− µ

G(k) =
1

−ω2
n − ξ2

k − |∆|2
(
−iωn − ξk −∆
−∆̄ −iωn + ξk

)
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i.e. ∆ obeys the gap equation:

∆

V
= 〈x|Ĝ12|x〉 =

∑
k

e−ik·x/
√
βLd/2︷ ︸︸ ︷

〈x|k〉 G12(k)〈k|x〉 =
1

βLd

∑
k

G12(k) =
1

βLd

∑
ωn,k

∆

ω2
n + E2

k

with Ek =
√
ξ2
k + |∆|2 and k · x = ωnτ − k · r

Using (fermionic) Matsubara frequency summation∑
ωn

h(ωn) =
∑
p

Res

[
h(−iz)

β

eβz + 1

]
z=zp

with h(−iz) =
1

(z − Ek)(−z − Ek)
, zp = ±Ek with residue h(zp) = ± 1

2Ek
and

∆

V
=

1

Ld

∑
k

(
1

e−βEk + 1
− 1

eβEk + 1

)
∆

2Ek
=

1

Ld

∑
k

tanh(βEk/2)
∆

2Ek

For T = 0, β →∞,

1

V
=

1

Ld

∑
k

1

2Ek
=

∫
dξν(ξ)

2
√
ξ2 + |∆|2

' ν(0)

2

∫ ~ωD

−~ωD

dξ√
ξ2 + |∆|2

= ν(0) sinh−1

(
~ωD
|∆|

)
,

i.e. |∆| ' 2~ωD exp

[
− 1

ν(0)V

]
For T = Tc, ∆ = 0,

1

V
' ν(0)

∫ ~ωD

−~ωD
dξ

tanh(βcξ/2)

2ξ
' ν(0) ln(1.14βc~ωD), kBTc ' 1.14~ωD exp

[
− 1

ν(0)V

]

. II. Ginzburg-Landau theory: since ∆ develops continuously from zero,
close to Tc, we may develop perturbative expansion in (small) ∆(x)

Noting : Ĝ−1[∆] = Ĝ−1
0

[
1 + Ĝ0

(
0 ∆
∆̄ 0

)]
, Ĝ0 ≡ Ĝ(∆ = 0)

tr ln Ĝ−1[∆] = tr ln Ĝ−1
0 −

1

2
tr

[
Ĝ0

(
0 ∆
∆̄ 0

)]2

+ · · · , ln(1 + z) = −
∞∑
n=1

(−z)n

n

• Zeroth order term in ∆ ; ‘free particle’ contribution, viz. Z0 = etr ln Ĝ−1
0 = det Ĝ−1

0

• First (and all odd) order term(s) absent
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• Second order term:

Noting Ĝ
(p/h)
0

|ωn,k〉︷︸︸︷
|k〉 =

G
(p/h)
0 (k)︷ ︸︸ ︷

(−iωn + (~2k2/2m− µ))−1 |k〉
and using id. =

∑
k

|k〉〈k|, ∆k =
1√
βLd

∫
dx e−ik·x∆(x)

tr[Ĝ
(p)
0 ∆Ĝ

(h)
0 ∆̄] =

∑
kk′

G
(p)
0 (k)

∆k′−k/
√
βLd︷ ︸︸ ︷

〈k|∆|k′〉 G
(h)
0 (k′)〈k′|∆̄|k〉

q=k′−k
=

∑
q

∆q∆̄q

pairing susceptibility Π(q)︷ ︸︸ ︷
1

βLd

∑
k

G
(p)
0 (k)G

(h)
0 (k + q)

i.e. Π(ωm,q) =
1

βLd

∑
ωn,k

1

−iωn + ξk

1

−i(ωn + ωm)− ξk+q

, ξk =
~2k2

2m
− µ

Combined with bare term,

S[∆] =
∑
q

[
1

V
+ Π(q)

]
∆̄q∆q +O(|∆|4)

In principle, one can evaluate Π(q) explicitly;
however we can proceed more simply by considering a...

. ‘Gradient expansion’:

Π(q, ωm) = Π(0) + iωm

τ︷ ︸︸ ︷
∂

∂(iωm)
Π(0) +qα

= 0︷ ︸︸ ︷
∂

∂qα
Π(0) +

1

2
qαqβ

Kδαβ, K =
1

d
∂2
qΠ(0)︷ ︸︸ ︷

∂2

∂qα∂qβ
Π(0) +O(ω2

m,q
4)

= Π(0) + iωmτ +
K

2
q2 +O(ω2

m,q
4)

At large enough temperatures, kBTc � 1/τ , dynamics may be neglected
altogether (viz. ∆(x) ≡ ∆(r)) and one obtains

. Ginzburg-Landau action

S[∆] =

∫ β

0

dτ
∑
q

(
t

2
+Kq2

)
∆̄q∆q +O(|∆|4)

= β

∫
ddr

[
t

2
|∆|2 +

K

2
|∂∆|2 + u|∆|4 + · · ·

]
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where
t

2
=

1

V
+ Π(0), and K, u > 0 (cf. weakly interacting Bose gas)

. Landau Theory: If we assume that dominant contribution to Z = e−βF arises from
minumum action, i.e. spatially homogeneous ∆ that minimises

S[∆]

βLd
=
t

2
|∆|2 + u|∆|4

one obtains |∆|
(
t+ 4u|∆|2

)
= 0, |∆| =

{
0 t > 0√
−t/4u t < 0

i.e. for t < 0, spontaneous breaking of continuous U(1) symmetry associated
with phase ; gapless fluctuations — Goldstone modes

Re

S

Im

[!]

[!]
[!]

|!|

Tc

With Π(0) ' −ν(0) ln(1.14β~ωD) (as before), Tc fixed by condition
t

2
≡ 1

V
+ Π(0)|T=Tc = 0,

i.e.
1

V
= ν(0) ln(1.14βc~ωD)

Therefore

t

2
=

1

V
+ Π(0, T ) = ν(0) ln

(
βc
β

)
= ν(0) ln

(
T

Tc

)
= ν(0) ln

(
1 +

T − Tc
Tc

)
' ν(0)

(
T − Tc
Tc

)
i.e. physically t is a ‘reduced temperature’
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Lecture XV: Superconductivity and Gauge Invariance

. Recall: Starting with Hamiltonian for electrons with local (contact) pairing interaction:

Ĥ =

∫
ddr

[∑
σ

c†σ(r)
p̂2

2m
cσ(r)− V c†↑(r)c†↓(r)c↓(r)c↑(r)

]
quantum partition function can be expressed as field integral involving complex field

Z =

∫
D[∆̄,∆]e−S[∆̄,∆], S =

∑
q

[
1

V
+ Π(q)

]
|∆q|2 +O(∆4)

where pair susceptibility

Π(q) =
1

βLd

∑
k

G
(p)
0 (k)G

(h)
0 (k + q), G

(p/h)
0 (k) =

1

−iωn+/−(~2k2/2m− µ)

Gradient expansion of action ; Ginzburg-Landau theory

S[∆] = β

∫
ddr

[
t

2
|∆|2 +

K

2
|∂∆|2 + u|∆|4 + · · ·

]

where
t

2
=

1

V
+ Π(0) ' ν(0)

T − Tc
Tc

, and constants K, u > 0

. What about the physical properties of the condensed phase?

To establish origin of perfect diamagnetism (and zero resistance),
one must accommodate electromagnetic field in Ginzburg-Landau action

. Inclusion of EM field into action requires minimal substitution: p̂→ p̂− eA
and addition of action for photon field (~ = 1, c = 1, 4πε0 = 1, µ0 = 1/ε0c

2 = 4π. )

SEM = −
∫
dx

1

4µ0

FµνF
µν , Fµν = ∂µAν − ∂νAµ

Repitition of field theory in presence of vector field obtains

generalised Ginzburg-Landau theory: Z =

∫
DA

∫
D[∆, ∆̄]e−S

S = β

∫
ddr
[ t

2
|∆|2 +

K

2
|(∂ − i2eA)∆|2 + u|∆|4+

LEM︷ ︸︸ ︷
1

8π
(∂ ×A)2

]
Factor of 2 due to pairing (focusing only on spatial fluctuations of A)

. Gauge Invariance: Action invariant under local gauge transformation

A 7→ A′ = A− ∂φ(r), ∆ 7→ ∆′ = e−2ieφ(r)∆
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(∂ − i2eA)∆ 7→ (∂ − i2e(A− ∂φ))e−2ieφ(r)∆ = e−2ieφ(r)(∂ − i2eA)∆

i.e. |(∂ − i2eA)∆|2 (as well as ∂ ×A) invariant

. “Anderson-Higgs mechanism”: phase of complex order parameter ∆ = |∆|e−2ieφ(r)

can be absorbed into A 7→ A′ = A− ∂φ(r)

S = β

∫
ddr

[
t

2
|∆|2 +

K

2
(∂|∆|)2 +

m2
ν

2
A2 + u|∆|4 +

1

8π
(∂ ×A)2

]
where m2

ν = 4e2K|∆|2

i.e. massless phase degree of freedom φ(r) has disappeared
and photon field A has acquired a ‘mass’ !

Example of a general principle:

“Below Tc, Goldstone bosons (φ) and gauge field A conspire to create massive
excitations, and massless excitations are unobservable”, cf. electroweak theory

Coherence (healing) length ξ =
√
K/t describes scale over which fluctuations
are correlated – diverges on approaching transition

. Meissner effect: minimisation of action w.r.t. A

1

4π
∂×

B︷ ︸︸ ︷
(∂ ×A) −m2

νA = 0 7→ (∂2 − 4πm2
ν)B = 0

B = 0 is the only constant uniform solution ; perfect diamagnetism

1/mν provides the length scale (London penetration depth),
over which a magnetic field can penetrates the superconductor at the boundary

Free energy of superconductor first proposed on phenomenological grounds — how?
...& why is crude gradient expansion so successful?

. Statistical Field Theory

Superconducting transition is an example of a “critical phenomena”

Close to critical point Tc, the thermodynamic properties of a system
are dictated by “universal” characteristics

To understand why, consider a simpler prototype:
the classical Ising (i.e. one-component) ferromagnet:

H = −J
∑
〈ij〉

Szi S
z
j +B

∑
i

Szi , Szi = ±1

Equilibrium Phase diagram?
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T

2

c

S

H
T

1

What happens in the vicinity of critical point?

1. 1st order transition — order parameter (magnetisation) changes discontinuously;
correlation length (scale over which fluctuations correlated) remains finite

2. 2nd order transition — order parameter changes continuously;
correlation length diverges (ξ ∼ 1/t1/2)

...motivates consideration of “hydrodynamic” theory which surrenders information
about microscopic length scales and involves a coarse-grained order parameter field

Z = e−βF =

∫
DS(r) e−βHeff [S(r)]

with βHeff [S] constrained (only) by fundamental symmetry (translation, rotation, etc.)

βHeff [S(r)] =

∫
ddr

[
t

2
S2 +

K

2
(∂S)2 + uS4 + · · ·+BS

]
cf. Ginzburg-Landau Theory

. Landau theory: S(r) = S const.

βF

Ld
=

min
S

[
t

2
S2 + uS4

]
, etc.

. Continuous phase transitions separate into Universality classes
with the same characteristic critical behaviour

E.g. (1) Ising model – liquid/gas: S → density ρ, B → pressure P

E.g. (2) Superconductivity – classical XY ferromagnet: ∆′ + i∆′′ → (Sx, Sy)
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